珠江典型河段浮游植物群落结构特征及其对水质的指示作用

陈亮东, 詹建坡, 王庆

陈亮东, 詹建坡, 王庆. 珠江典型河段浮游植物群落结构特征及其对水质的指示作用[J]. 南方水产科学, 2023, 19(6): 1-10. DOI: 10.12131/20230059
引用本文: 陈亮东, 詹建坡, 王庆. 珠江典型河段浮游植物群落结构特征及其对水质的指示作用[J]. 南方水产科学, 2023, 19(6): 1-10. DOI: 10.12131/20230059
CHEN Liangdong, ZHAN Jianpo, WANG Qing. Community structure of phytoplankton and their indicative effect on water quality of Pearl River[J]. South China Fisheries Science, 2023, 19(6): 1-10. DOI: 10.12131/20230059
Citation: CHEN Liangdong, ZHAN Jianpo, WANG Qing. Community structure of phytoplankton and their indicative effect on water quality of Pearl River[J]. South China Fisheries Science, 2023, 19(6): 1-10. DOI: 10.12131/20230059

珠江典型河段浮游植物群落结构特征及其对水质的指示作用

基金项目: 广东省基础与应用基础研究基金 (2022A1515011387);南方海洋科学与工程广东省实验室 (珠海) 创新团队建设项目 (311022011)
详细信息
    作者简介:

    陈亮东 (1988—),男,工程师,硕士,研究方向为渔业生态环境和资源保护。E-mail: 352642665@qq.com

    通讯作者:

    王 庆 (1981—),男,副研究员,博士,研究方向为浮游生物生态学。E-mail: wq2010@jnu.edu.cn

  • 中图分类号: S 932

Community structure of phytoplankton and their indicative effect on water quality of Pearl River

  • 摘要:

    浮游植物为河流生态系统的初级生产者,其动态变化关系到渔业资源和水生态系统的稳定。分别于2021年枯水期 (3月)、丰水期 (7月) 和平水期 (11月) 对珠江3个典型河段开展浮游植物群落结构调查,利用生物多样性等指标评价水质现状,为珠江水污染防治和水生态恢复提供技术支撑。结果显示,浮游植物种类、密度、生物量和优势种呈现显著的时空变化 (P<0.05)。全年共鉴定出浮游植物187种,3、7和11月分别鉴定出117、98和77种,平均密度分别为8.6×105、7.2×106和4.0×105 个·L−1,生物量分别为1.235 4、4.674 5和0.569 8 mg·L−1,其中丰水期北江流溪河石角段蓝藻密度高达1.18×107 个·L−1 (达到轻微蓝藻水华水平)。上游北江流溪河河段浮游植物群落结构由枯水期的绿藻型演变为丰水期的绿藻-蓝藻型,全年以四尾栅藻 (Scenedesmus quadricauda)、细小平裂藻 (Merismopedia tenuissima) 和被甲栅藻博格变种双尾变型 (S. armatus var. boglariensis f. bicaudatus) 为优势种,下游珠江河口莲花山到大虎岛段呈硅藻型到硅藻-蓝藻型的演变,以颗粒直链藻 (Melosira granulata) 和细小平裂藻为优势种。Shannon多样性指数 (H')、Pielou 均匀度指数 (J') 和Margalef 丰富度指数 (D) 分别介于1.58~3.05、0.51~0.84和1.60~3.42。基于生物多样性指数综合评价显示,被调查的珠江3个典型河段水质介于轻度污染到α-中污染之间,水质仍需治理改善。

    Abstract:

    As the primary producer of river ecosystem, the dynamic changes of phytoplankton are related to the stability of fishery resources and water ecosystem. We investigated the community structure of phytoplankton in three typical sections of the Pearl River in dry season (March), wet season (July) and level season (November) in 2021, and evaluated the current situation of water quality by biodiversity and other indicators, so as to provide technical support for the Pearl River water pollution control and water ecological restoration. Results indicate that the species composition, abundance and dominant species of phytoplankton showed significant spatiotemporal changes (P<0.05). A total of 187 species were identified throughout the year (117 in March, 98 in July and 77 in November). The average cell abundance of phytoplankton was 8.6×105, 72.1×105 and 4.0×105 cells·L−1 , and the biomass was 1.235 4, 4.674 5 and 0.569 8 mg·L−1 in March, July and November, respectively. The abundance of Cyanophyta reached 1.18×107 cells·L−1 (Slight cyanobacteria bloom level) in Shijiao section of the Pearl River in wet season. The phytoplankton community structure in the upper reaches of the Pearl River changed from chlorophyta type in dry season to chlorophyta-cyanobacteria type in wet season, and Scenedesmus quadricauda, Merismopedia tenuissima and S. armatus var. boglariensis f. bicaudatus were the dominant species throughout the year. In the lower reaches, the phytoplankton community structure changed from diatomic type to diatom-cyanobacteria type, with Melosira granulata and M. tenuissima as the dominant species. Shannon-Wiener index (H'), Pielou index (J') and Margalef index (D) were 1.58–3.05, 0.51–0.84 and 1.60–3.42, respectively. According to the comprehensive evaluation based on the biodiversity indexes, the water quality in the three typical reaches of the Pearl River was between mild pollution and α-medium pollution, and the water quality still needs to be improved.

  • 鱼类生长激素(growth hormone,GH)是由脑垂体细胞合成和分泌的一种单链多肽,其分子量在22 kDa左右,可分为信号肽和成熟肽2个部分,信号肽一般由16~17个氨基酸残基组成,成熟蛋白由173~190个氨基酸组成。GH对鱼类最明显的作用是刺激鱼体重和体长的增长,促进发育,参与鱼体代谢调节,还可以调节海河洄游性鱼类的渗透压,并促进其对海水适应能力[1]。GH不但可以作为激素对鱼类的生长发育和生殖起重要作用,而且可以作为一种细胞分裂素,在免疫反应起作用,同时还参与调节蛋白质,糖和脂肪等的合成和释放,从而影响蛋白质、糖和脂肪的代谢[2-4]。深入研究鱼类生长激素的表达调控规律,弄清鱼类生长发育的调控机理,可为人工调控鱼类生长发育,促进水产养殖业的发展提供理论依据。

    鲮(Cirrhinus molitorella)隶属鲤形目(Cypriniformes)鲤科(Cyprinidae)中的野鲮亚科(Labeoninae),广泛分布于中国华南地区,东南亚和非洲的热带及亚热带地区[5]。鲮是中国华南地区重要的淡水养殖品种之一,其产量占广东、广西池塘养殖鱼类总产量的35%左右,具有产量高、抗病力强和肉质鲜美的特点,其适合制作罐装食品和鱼丸,是中国淡水鱼加工附加值最高的品种之一。但是鲮生长速度慢,且不耐低温,是目前制约鲮养殖产业发展的因素之一。与哺乳动物类似,鱼类生长发育主要受GH-IGF(胰岛素样生长因子)的调控,深入开展鲮生长激素表达调控机理的研究,以便为人工控制鲮的生长发育提供理论依据。目前该试验室已克隆了鲮生长激素cDNA并在大肠杆菌中进行了重组表达。为进一步研究在各种条件下鲮血液和脑垂体中生长激素蛋白的表达规律,必须要制备特异性强、灵敏度高的抗鲮生长激素抗体。因此,该研究在重组表达了鲮生长激素蛋白的基础上,制备了兔抗鲮生长激素多克隆抗体,并对其灵敏度和特异性进行了分析。

    重组工程菌M15(pQE30-GH)由笔者实验室构建,新西兰大白兔(Oryctolagus cuniculus)购于广州中医药大学实验动物中心,鲮鱼购于广州鹭江市场,镍琼脂糖凝胶FF填料购自北京韦氏博慧色谱科技有限公司,HRP标记的羊抗兔IgG购于Amersham公司,DAB显色试剂盒购自武汉博士德生物工程有限公司,其它试剂均为分析纯。

    取含有500 mL LB(100 μg · mL-1 Amp和25 μg · mL-1 Km)及种菌的烧瓶,最佳诱导条件参照江世贵等[6]对鲮生长激素cDNA的克隆及其重组表达产物的促生长活性的研究。在37℃加入浓度为100 mmol · L-1的IPTG溶液使其终浓度1 mmol ·L-1 250 rpm振荡培养诱导5 h,4℃保存。菌体经超声波破碎后,4℃,8 000 rpm离心20 min,离心收集到的包涵体经TE1(Tris-Cl 10 mmol · L-1,pH 8.0,EDTA 1 mmol · L-1),TE2[1%TritonX-100(V/V),Tris-Cl 10 mmol · L-1,pH 8.0,EDTA 1 mmol · L-1]和TE3(尿素2 mol · L-1,Tris-Cl 10 mmol · L-1 pH 8.0,EDTA 1 mmol · L-1)洗涤后,即可得到初步纯化的包涵体蛋白,然后将包涵体蛋白溶解在变性液(尿素8 mol · L-1,Tris-Cl 20 mmol ·L-1 pH 8.0,0.5 mol · L-1 NaCl,5 mmol · L-1 imidazole,1 mmol · L-1 2-mercaptoethanol)中。

    经过包涵体分离得到的包涵体蛋白,在4℃,8 000 rpm离心10 min后,上清液用0.2 μm的过滤器过滤,然后上样经镍琼脂糖凝胶FF(装填后柱床长5 cm,直径1.6 cm)亲合层析。上柱后以含20 mmol · L-1,500 mmol · L-1的咪唑以及ddH2O进行阶段洗脱,流速1.5 mL · min-1,手工收集洗脱峰。将收集后的样品进行SDS-PAGE分析,同时将纯化后的蛋白用稀释变性液(尿素8 mol · L-1,Tris-Cl 20 mmol · L-1 pH8.0,0.5 mol · L-1 NaCl)稀释到1 mg · mL-1装入处理好的透析袋中,采用逐步稀释的方法复性。具体操作如下,将装有蛋白的透析袋放到等体积的复性液(氧化型谷胱甘肽0.1 mmol · L-1,还原型谷胱甘肽0.9 mmol · L-1,Tris-Cl 20 mmol ·L-1,pH 8.0)中,4℃搅拌过夜,使尿素浓度由4~2.5 mol · L-1,再到0.8 mol · L-1逐步稀释,然后在ddH2O(pH 8.0)透析过夜以除去剩余的变性剂。最后,将复性后的蛋白用超滤离心管过滤浓缩。

    将浓缩后的重组鲮GH作为抗原,采用改进的方法[7]免疫新西兰大白兔。在第1天和第3天,将1 mL样品A(300 μg · 500 μL-1纯化浓缩蛋白和500 μL Freund′s完全佐剂)采用多点注射到兔子的背部和腿部;第28天将1 mL样品B(300 μg · 500 μL-1纯化浓缩蛋白和500 μL Freund′s不完全佐剂)加强免疫1次。第35天,颈动脉取血,37℃放置2 h,4℃过夜,离心收集血清。

    采用间接ELISA检测抗血清效价。用pH 9.6,0.05 mol · L-1的碳酸盐缓冲液将纯化的重组鲮生长激素稀释为20 μg · mL-1,包被酶标板,每孔100 μL,4℃包被过夜。次日每孔加入100 μL 5%的脱脂奶粉,37℃封闭1 h后,用pH 7.4的PBST洗涤3次。然后每孔加入200~51 200倍稀释的兔抗血清100 μL,阴性对照为1:50倍稀释的免疫前血清,空白对照为兔抗血清稀释液(PBS),每份样品均做1平行,37℃孵育1 h后,同上洗涤3次。再次每孔加入100 μL HRP标记的羊抗兔IgG,37℃孵育1 h后,同上洗涤3次。接下来每孔加入100 μL TMB显色液,37℃避光反应20 min后,每孔再加入50 μL 2 mol · L-1硫酸终止液。最后,在酶标仪上测450 nm下的OD值。

    将抗原稀释为0.5、1、2、4和10 ng,经15% SDS-PAGE电泳分离后转移到硝酸纤维素膜上。用稀释度1:500的抗血清作为一抗[8],比例1:2 000作为二抗稀释度,DAB显色。标准分子量蛋白质转膜后用丽春红染色液染色。

    鲮组织提取物中GH同源蛋白质的检测。取100 mg脑垂体组织加入到100 μL抽提液(4 M Urea,0.5% W/V SDS,10 mM EDTA和2 mM PMSF)中匀浆,94℃孵育10 min,10 000 g离心10 min后,用Bradford方法进行定量测定[9-10]。取鲮血4℃,6 500 rpm离心20 min分离血清,同样用Bradford方法进行定量测定。分别取1 μg脑垂体提取蛋白和1 μg血清蛋白进行Western blotting分析。

    图 1所示,IPTG可诱导M15(pQE30-GH)在大肠杆菌中大量表达。SDS-PAGE凝胶电泳结果显示,1条24.5 kDa的诱导表达重组鲮GH带。经过包涵体分离、纯化、浓缩得到纯度很高的蛋白。

    图  1  鲮鱼生长激素的重组融合表达,包涵体的分离,纯化和浓缩电泳图
    M. 低分子量蛋白标准;1. IPTG诱导生长激素的表达;2. 生长激素表达负对照;3. M15(pQE30)诱导表达;4. 包涵体分离后电泳图;5. 包涵体纯化后电泳图;6. 纯化蛋白浓缩后电泳图
    Fig. 1  The electrophoresis map of the recombinant expression and purification of mud carp growth hormone
    M. low molecular weight protein marker; 1. the growth hormone induced by IPTG; 2. growth hormone expressed negative control; 3. M15(pQE30)expressed; 4. inclusion body; 5. purified inclusion body; 6. condensed protein

    兔抗鲮生长激素的血清进行间接ELISA检测时,当(样品吸光值-空白吸光值)/(阴性吸光值-空白吸光值)>2.1即认为是阳性[11],经计算,此研究制备的兔抗血清效价为1 : 12 800(表 1)。

    表  1  ELISA检测结果
    Table  1  The results of ELISA
    免疫血清稀释倍数
    the antiserum dilution times
    免疫血清OD450
    the antiserum OD450
    阴性对照血清OD450
    normal rabbit serum OD450
    空白对照OD450
    black control OD450
    P/N
    1:200 1.186 0.336 0.175 +
    1:400 1.138 0.336 0.175 +
    1:800 1.180 0.336 0.175 +
    1:1 600 1.029 0.336 0.175 +
    1:3 200 0.872 0.336 0.175 +
    1:6 400 0.656 0.336 0.175 +
    1:12 800 0.533 0.336 0.175 +
    1:25 600 0.464 0.336 0.175
    1:51 200 0.379 0.336 0.175
    下载: 导出CSV 
    | 显示表格

    将抗原稀释为0.5、1、2、4和10 ng,经15% PAGE电泳分离后,转移到硝酸纤维素膜上。用稀释度1:500的抗血清作为一抗,比例1:2 000作为二抗稀释度,DAB显色。标准分子量蛋白质转膜后用丽春红染色液染色。结果显示,可检测到10 ng抗原量,表明此抗体灵敏度较高(图 2)。

    图  2  抗体灵敏度分析
    M. 低分子量蛋白标准;1. 10 ng抗原;2. 4 ng抗原;3. 2 ng抗原;4. 1 ng抗原;5. 0.5 ng抗原
    Fig. 2  The antibody sensitivety analysis
    M. low molecular weight protein marker; 1. 10 ng antigen; 2. 4 ng antigen; 3. 2 ng antigen; 4. 1 ng antigen; 5. 0.5 ng antigen

    为了解这一抗血清的特异性,取鲮脑垂体组织和血清进行Western blotting分析。结果显示,用此多抗可检测到1条大约为21.5 kDa的条带(图 3),这说明这一多抗具有较好的免疫特性。

    图  3  抗体特性性分析
    M. 低分子量蛋白标准;1. 血清;2. 脑组织
    Fig. 3  The antibody specificity analysis
    M. low molecular weight protein marker; 1. serum; 2. pituitary

    此试验所表达的重组鲮生长激素主要以包涵体形式存在。另外,包涵体中的杂蛋白较少、且50%以上为重组蛋白,给重组蛋白的纯化带来便利。经过3次TE缓冲液洗涤,包涵体达到了较好的纯化效果,洗涤后重组蛋白纯度达到85%以上。初步纯化后的包涵体重组蛋白经镍琼脂糖凝胶FF亲和层析后,由含20 mmol · L-1,500 mmol · L-1的咪唑以及ddH2O进行阶段洗脱,进一步纯化该重组蛋白,纯度可达到95%以上。由于GH基因内Cys含量较高,分子内可形成2个二硫键,在复性时容易形成蛋白质聚集体,所以笔者利用GSH/GSSG氧化交换系统促使二硫键的正确配对,同时采用稀释复性和透析复性相结合的方式对纯化蛋白进行复性。在复性过程中融合蛋白的再聚合是令人棘手的问题。姚燕等[12]中华绒鳌蟹(Eriocheir japonica sinensis)蜕皮抑制激素基因的表达及抗体制备研究表明在可在复性液中加入甘油增加粘度来减少蛋白分子间的相互作用,从而阻止透析复性过程中蛋白的再聚合,并且L-精氨酸作为小分子促溶剂,使整个透析过程中蛋白的聚合几率降到最低。张傅山等[13]研究表明在复性液中加入10%无水乙醇可提高复性效率。另外,蛋白质浓度也是影响蛋白质复性的重要因素。当蛋白浓度超过1 mg · mL-1时,即使复性液中加入甘油和L-精氨酸,复性后透析时仍会出现浑浊现象。笔者在试验中并没有加入促溶剂,直接将纯化后的蛋白用复性稀释液稀释到1 mg · mL-1再进行复性也得到了较好的复性效果。

    经过包涵体分离的蛋白通过镍琼脂糖凝胶FF填料来分离带His标签的重组蛋白,其纯度可达95%以上。分离纯化的蛋白质大小为24.5 kDa,这比GH成熟蛋白大了约3 kDa左右,这是因为6xHis标签的分子量约为3 kDa,而GH成熟蛋白的分子量约为22 kDa,所以该蛋白质带大小与预期大小一致。纯化的方法有很多,此试验采用的是亲和层析,该纯化方法简便,分离效果好,其纯化产物可达95%以上,且经过SDS-PAGE和考马斯亮蓝染色呈现均一的1条带。这说明该纯化产物可用于抗体的制备和后续的生化实验的需要。

    用经改良的方法进行免疫新西兰大白兔,经过35 d免疫注射后,用间接ELISA方法检测其抗体滴度为12 800,可以用来Western blotting分析。用改良后的方法来免疫新西兰大白兔在时间上由原来的3~4个月缩短到35 d,大大缩短了制备高效抗血清的时间,且所制备抗血清均能用于ELISA和Western blotting分析。胡志红等[14]用改良的方法制备了猴(Macaca mulatta)Esc-615基因多克隆抗体的制备,其抗血清滴度达到100 000。冯浩等[8]制备了青鱼(Mylopharyngodon piceus)生长激素多克隆抗血清也能用于ELISA和Western blotting分析。从而表明了上诉方法制备抗鲮GH的多克隆抗体不仅简便,而且行之有效,可为生长激素活性及功能的研究提供有效免疫学鉴定工具。

    此试验制备的兔抗鲮生长激素多克隆抗体,经ELISA检测其滴度为12 800,经Western blotting分析,可以检测到10 ng的抗原量,而且可以在脑垂体提取物和血清中检测到大小为21.5 kDa的蛋白质,充分说明该抗体具有较强的灵敏性和免疫原性,为进一步研究在不同条件下鲮血液和脑垂体中生长激素蛋白的表达规律奠定了基础。

  • 图  1   珠江水域采样点分布

    Figure  1.   Sampling stations in Pearl River

    图  2   珠江各河段浮游植物物种组成

    Figure  2.   Phytoplankton species composition at each station of Pearl River

    图  3   珠江各站点浮游植物密度与生物量变化

    Figure  3.   Abundance and biomass of phytoplankton at each station of Pearl River

    图  4   珠江各站点浮游植物密度与生物量相对组成

    Figure  4.   Relative contribution of phytoplankton abundance and biomass at each station of Pearl River

    图  5   珠江各河段生物指数及基于生物多样性指数的水质评价

    Figure  5.   Biological indices and water quality assessment based on biodiversity indices at each station of Pearl River

    表  1   基于浮游植物多样性指数的评价标准

    Table  1   Evaluation criteria based on indexes of phytoplankton diversity

    Shannon-Wiener
    多样性指数
    H'
    Pielou 均匀度
    指数
    J'
    Margalef 丰富度
    指数
    D
    评价等级
    Evaluation
    level
    >4>0.8>5清洁
    3~40.5~0.84~5轻度污染
    2~30.3~0.53~4β-中污染
    1~20.1~0.31~3α-中污染
    <1<0.1<1重污染
    下载: 导出CSV

    表  2   珠江浮游植物优势种组成 (优势度Y>0.02) 及分布

    Table  2   Composition and distribution of dominant species (Dominance Y>0.02) of phytoplankton in Pearl River

    站位
    Station
    3 月
    Mar.
    7月
    Jul.
    11月
    Nov.
    北江流溪河街口段 (S1) 四尾栅藻 (Scenedesmus quadricauda) (0.24);细小平裂藻 (Merismopedia tenuissima) (0.13) ;被甲栅藻博格变种双尾变型 (S. armatus var. boglariensis f. bicaudatus) (0.07) 细小平裂藻 (0.13) ;点形平裂藻 (M. punctata) (0.13);被甲栅藻博格变种双尾变型 (0.05) 被甲栅藻博格变种双尾变型 (0.19);四尾栅藻 (0.10);二形栅藻 (0.05)
    北江流溪河石角段 (S2) 被甲栅藻博格变种双尾变型 (0.09);颗粒直链藻极狭变种 (Melosira granulata var. angustissima) (0.07);四尾栅藻 (0.06) 螺旋鱼腥藻 (Anabaena spiroides) (0.06);惠氏微囊藻 (Microcystis wesenbergii) (0.05) 四尾栅藻 (0.17);简单颤藻 (Oscillatoria simplicissima) (0.13);被甲栅藻博格变种双尾变型 (0.08)
    东江北干流段 (S3) 颗粒直链藻 (0.18);啮蚀隐藻 (C. erosa) (0.12);颗粒直链藻极狭变种 (0.08) 鱼腥藻属 (0.16);颗粒直链藻 (0.06);钝顶节旋藻 (Arthrospira platensis) (0.03) 鱼腥藻属 (0.05);颗粒直链藻极狭变种 (0.05);被甲栅藻博格变种双尾变型 (0.04)
    珠江河口莲花山段
    (S4)
    颗粒直链藻极狭变种 (0.10);颗粒直链藻 (0.30);二角盘星藻纤细变种 (0.04) 颗粒直链藻 (0.28);小环藻属 (0.23);伪鱼腥藻属 (0.06) 顶锥十字藻 (0.09);模糊直链藻 (M. ambigua) (0.09);伪鱼腥藻属 (0.08)
    珠江河口大虎岛段
    (S5)
    颗粒直链藻 (0.05);布氏双尾藻 (Ditylum brightwellii) (0.04);中华盒形藻 (Biddulphia sinensis) (0.03) 颗粒直链藻 (0.25);细小平裂藻 (0.22);湖生伪鱼腥藻 (P. limne-tica) (0.16) 颗粒直链藻 (0.53);颤藻属 (0.04);细小隐球藻 (Aphanocapsa elachista) (0.03)
    下载: 导出CSV

    表  3   基于浮游植物的珠江水质评价

    Table  3   Water quality assessment based on phytoplankton in Pearl River

    站位 
    Station
    Shannon-Wiener指数
    H'
    藻类密度
    Algae density
    Shannon-Wiener指数
    H'
    Pielou 指数
    J'
    Margalef 指数
    D
    S1丰富水平贫-中营养β-中污染轻度污染α-中污染
    S2丰富水平贫-中营养β-中污染轻度污染α-中污染
    S3较好水平贫营养β-中污染轻度污染α-中污染
    S4较好水平贫营养β-中污染轻度污染α-中污染
    S5较好水平贫-中营养β-中污染轻度污染α-中污染
    下载: 导出CSV

    表  4   基于浮游植物群落结构的河流水质评价

    Table  4   Water quality assessment of rivers based on phytoplankton community structure

    序号
    No.
    河段
    Stream segment
    研究年份
    Survey year
    种 (属) 数
    Number of species (Genera)
    密度
    Density/(104 个·L−1)
    生物评价等级
    Evaluation level
    文献
    Reference
    1黄河干流2019350 种7.90~1 037.28轻度污染-中度污染[47]
    2黑河张掖段2017316 种0.92~116.67轻度-中轻度污染[48]
    3渭河陕西段2017—201869 种84.9~3 868.3轻度污染-中度污染[49]
    4汉江下游2019110 种平均 936中度污染[10]
    5东江干流201083 种0.51~366.04轻度污染-中度污染[28]
    6汾河中下游2012298 种29 900~39 300中污染至重污染[50]
    7淮河干流及主要支流2015153 种0.19~1 318.00中等污染,部分点位重污染[11]
    8太湖主要河口2018—2019119 种1 200~8 550健康状况较差[51]
    9白洋淀流域府河2020111 种780~2 814轻度-中度污染[20]
    10赣江中下游201953 种 (属)11.0~468.7中度至重度污染[52]
    11沱江201356 种100~2 300中-富营养状态[53]
    12珠江水域广州段2021187 种12.0~183.3轻度至 α-中污染本文
    下载: 导出CSV
  • [1] 胡金, 万云, 洪涛, 等. 基于河流物理化学和生物指数的沙颍河流域水生态健康评价[J]. 应用与环境生物学报, 2015, 21(5): 783-790.
    [2]

    LEPISTO L, HOLOPAINEN L L, VUORISTO H. Type-specific and indicator taxa of phytoplankton as a quality criterion for assessing the ecological status of Finnish boreal lakes[J]. Limnol, 2004, 34(3): 236-248. doi: 10.1016/S0075-9511(04)80048-3

    [3]

    HERING D, JOHNSON R K, KRAMM S, et al. Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress[J]. Freshw Biol, 2006, 51: 1757-1785. doi: 10.1111/j.1365-2427.2006.01610.x

    [4]

    GARMENDIA M, REVILLA M, BALD J, et al. Phytoplankton communities and biomass size structure (fractionated chlorophyll "a"), along trophic gradients of the Basque coast (northern Spain)[J]. Biogeochemistry, 2011, 106: 243-263. doi: 10.1007/s10533-010-9445-2

    [5]

    ABONYI A, LEITAO M, LANCON A M, et al. Phytoplankton functional groups as indicators of human impacts along the River Loire (France)[J]. Hydrobiologia, 2012, 698(1): 233-249. doi: 10.1007/s10750-012-1130-0

    [6]

    STANKOVI C I, VLAHOVI C T, GLIGORA U, et al. Phytoplankton functional and morpho-functional approach in large floodplain rivers[J]. Hydrobiologia, 2012, 698(1): 217-231.

    [7]

    OBERHOLSTER P J, BOTHA A M, CLOETE T E. Using a battery of bioassays, benthic phytoplankton and the AUSRIVAS method to monitor long-term coal tar contaminated sediment in the cache la Poudre River, Colorado[J]. Water Res, 2005, 39(20): 4913-4924. doi: 10.1016/j.watres.2005.08.029

    [8]

    BORICS G, VARBIRO G, GRIGORSZKY I, et al. A new evaluation technique of potamo-plankton for the assessment of the ecological status of rivers[J]. Arch Hydrobiol Suppl, 2007, 17(3/4): 465-486.

    [9] 谭香, 夏小玲, 程晓莉, 等. 丹江口水库浮游植物群落时空动态及其多样性指数[J]. 环境科学, 2011, 32(10): 2875-2882.
    [10] 余业鑫, 李艳, 向罗京, 等. 汉江下游干支流浮游植物群落特征及其对水质的指示评价[J]. 中国环境监测, 2022, 38(1): 124-135.
    [11] 邱阳凌, 林育青, 刘俊杰, 等. 淮河干流及主要支流夏季浮游植物群落生物多样性评价[J]. 环境科学学报, 2018, 38(4): 1665-1672.
    [12] 王超, 李新辉, 赖子尼, 等. 珠三角河网浮游植物生物量的时空特征[J]. 生态学报, 2013, 33(18): 5835-5847.
    [13] 赵俊, 易祖盛, 周叶先, 等. 广州市水生动植物本底资源[M]. 北京: 科学出版社, 2010: 28-53.
    [14] 国家环境保护局. 水和废水监测分析方法 第四版增补版[M]. 北京: 中国环境科学出版社, 2002: 701-707.
    [15] 胡鸿钧, 魏印心. 中国淡水藻类: 系统、分类及生态[M]. 北京: 科学出版社, 2006: 300-899.
    [16] 齐雨藻. 中国淡水藻志 第四卷 硅藻门 中心纲[M]. 北京: 科学出版社, 1995: 5-89.
    [17] 周风霞, 陈剑虹. 淡水微型生物图谱[M]. 北京: 化学工业出版社, 2010: 53-178.
    [18] 章宗涉, 黄祥飞. 淡水浮游生物研究方法[M]. 北京: 科学出版社, 1991: 339-345.
    [19]

    HILLEBRAND H, DÜRSELEN C D, KIRSCHTEL D, et al. Biovolume calculation for pelagic and benthic microalgae[J]. J Phycol, 1999, 35(2): 403-424. doi: 10.1046/j.1529-8817.1999.3520403.x

    [20] 张仲伟, 陈思宝, 汪家鑫, 等. 白洋淀流域府河夏季浮游植物的群落结构及其对水质的指示[J]. 河北大学学报(自然科学版), 2022, 42(1): 67-74.
    [21]

    UNNI K S, PAWAR S. The phytoplankton along a pollution gradient in the river Mahanadi (M. P. state) India: a multivariate approach[J]. Hydrobiologia, 2000, 430(1/2/3): 87-96.

    [22]

    O'FARRELL I, LOMBARDO R J, DEPINTO P T. The assessment of water quality in the Lower Luján River (Buenos Aires, Argentina): phytoplankton and algal bioassays[J]. Environ Pollut, 2002, 120(2): 207-218. doi: 10.1016/S0269-7491(02)00136-7

    [23]

    DESCY J P, LEITAO M, EVERBECQ E, et al. Phytoplankton of the River Loire, France: a biodiversity and modelling study[J]. J Plankton Res, 2012, 34(2): 120-135. doi: 10.1093/plankt/fbr085

    [24]

    WU Z S, HE H, CAI Y J, et al. Spatial distribution of chlorophyll a and its relationship with the environment during summer in Lake Poyang: a Yangtze-connected Lake[J]. Hydrobiologia, 2014, 732(1): 61-70. doi: 10.1007/s10750-014-1844-2

    [25] 徐姗楠, 杨玉滔, 粟丽, 等. 珠江口南沙海域浮游植物群落结构特征[J]. 南方水产科学, 2017, 13(4): 26-33.
    [26]

    KAMENER Y, DUBINSKY Z, ZOHARY T. Phytoplankton size structure stability in a meso-eutrophic subtropical lake[J]. Hydrobiologia, 2004, 520: 89-104. doi: 10.1023/B:HYDR.0000027729.53348.c7

    [27] 王超, 赖子尼, 李新辉, 等. 西江下游浮游植物群落周年变化模式[J]. 生态学报, 2013, 33(14): 4398-4408.
    [28] 王珊, 于明, 刘全儒, 等. 东江干流浮游植物的物种组成及多样性分析[J]. 资源科学, 2013, 35(3): 473-480.
    [29] 江源, 王博, 杨浩春, 等. 东江干流浮游植物群落结构特征及与水质的关系[J]. 生态环境学报, 2011, 20(11): 1700-1705.
    [30]

    WANG C, LI X H, LAI Z N, et al. Seasonal variations of Aulacoseira granulata population abundance in the Pearl River Estuary[J]. Estuar Coast Shelf Sci, 2009, 85(4): 585-592. doi: 10.1016/j.ecss.2009.09.031

    [31]

    BRAUER V S, STOMP M, HUISMAN J. The nutrient-load hypothesis: patterns of resource limitation and community structure driven by competition for nutrients and light[J]. Am Nat, 2012, 179(6): 721-740. doi: 10.1086/665650

    [32]

    STOERMER E F, KREIS R G, SICKO G L. A systematic, quantitative, and ecological comparison of Melosira islandica O. Müll. with M. granulata (Ehr.) Ralfs from the Laurentian Great Lakes[J]. J Great Lakes Res, 1981, 7(4): 345-356. doi: 10.1016/S0380-1330(81)72063-X

    [33] 戴明, 李纯厚, 贾晓平, 等. 珠江口近海浮游植物生态特征研究[J]. 应用生态学报, 2004, 15(8): 1389-1394. doi: 10.3321/j.issn:1001-9332.2004.08.018
    [34]

    SOMMER U, GLIWICZ Z M, LAMPERT W, et al. The PEG-model of seasonal succession of planktonic events in freshwaters[J]. Hydrobiologie, 1986, 106(4): 433-471. doi: 10.1127/archiv-hydrobiol/106/1986/433

    [35] 福迪 B. 藻类学[M]. 罗迪安, 译. 上海: 上海科学技术出版社, 1980: 127-239.
    [36] 孙育平, 王晓辉, 胡韧, 等. 南亚热带高产渔业水库—显岗水库敞水区浮游植物群落结构的季节变化特征[J]. 应用与环境生物学报, 2010, 16(2): 228-234.
    [37] 任辉, 田恬, 杨宇峰, 等. 珠江口南沙河涌浮游植物群落结构时空变化及其与环境因子的关系[J]. 生态学报, 2017, 37(22): 7729-7740.
    [38] 钱志萍, 李卓远, 李燕均, 等. 温度、光照及藻细胞密度对3种水华蓝藻生长及竞争的影响[J]. 上海师范大学学报(自然科学版), 2020, 49(1): 18-23.
    [39] 李建, 尹炜, 贾海燕, 等. 汉江中下游硅藻水华研究进展与展望[J]. 水生态学杂志, 2021, 41(5): 136-144.
    [40] 宋挺, 张军毅, 李旭文, 等. 黄色的蓝藻水华[J]. 湖泊科学, 2022, 34(4): 1384-1391.
    [41] 夏瑞, 张远, 王璐, 等. 汉江下游河流型水华暴发的多影响要素特征识别[J]. 环境科学研究, 2020(4): 911-920.
    [42] 罗晓佼, 张钘, 黄伟, 等. 三峡库区澎溪河河段间水华程度差异及其机制[J]. 环境科学, 2023, 44(1): 282-292.
    [43]

    BORMANS M, MAIER H, BURCH M, et al. Temperature stratification in the lower River Murray, Australia: implication for cyanobacterial bloom development[J]. Mar Freshw Res, 1997, 48(7): 647-654. doi: 10.1071/MF97058

    [44] 卓泉龙, 林罗敏, 王进, 等. 广州流溪河氮磷浓度的季节变化和空间分布特征[J]. 生态学杂志, 2018, 37(10): 3100-3109.
    [45] 广东省生态环境厅. 2021年广东省近岸海域水质监测信息: 环境质量与监测, 江河水质量[EB/OL]. (2023-03-25) [2023-05-28]. http://gdee.gd.gov.cn/jhszl/content/post_3893822.html.
    [46] 广东省生态环境厅. 2021年广东省近岸海域水质监测信息: 环境质量与监测, 江河水质量[EB/OL]. (2023-03-25)[2023-05-28]. http://gdee.gd.gov.cn/jhszl/content/post_3349098.html.
    [47] 丁一桐, 潘保柱, 赵耿楠, 等. 黄河干流全河段浮游植物群落特征与水质生物评价[J]. 中国环境科学, 2021, 41(2): 891-901.
    [48] 杨宋琪, 祖廷勋, 王怀斌, 等. 黑河张掖段浮游植物群落结构及其与环境因子的关系[J]. 湖泊科学, 2019, 31(1): 159-170.
    [49] 白海锋, 王怡睿, 宋进喜, 等. 渭河陕西段浮游植物群落结构时空变化与影响因子分析[J]. 环境科学学报, 2021, 41(8): 3290-3301. doi: 10.13671/j.hjkxxb.2021.0273
    [50] 王爱爱, 冯佳, 谢树莲. 汾河中下游浮游藻类群落特征及水质分析[J]. 环境科学, 2014, 35(3): 915-923.
    [51] 马廷婷, 范亚民, 李宽意, 等. 基于浮游植物完整性指数的太湖主要河口生态健康评价[J]. 生态与农村环境学报, 2021, 37(4): 501-508.
    [52] 王俊颉, 夏雨, 于新平, 等. 赣江中下游浮游藻类时空分布特征及水质评价[J]. 生态与农村环境学报, 2023, 39(8): 1031-1041.
    [53] 陶敏, 谢碧文, 齐泽民, 等. 沱江浮游植物群落特征及水质评价[J]. 海洋与湖沼, 2016, 47(4): 854-861. doi: 10.11693/hyhz20160500108
  • 期刊类型引用(2)

    1. 王庚申,颜懿,李彤,董鹏生,谢建军,许文军,张德民,张化俊. 漂白粉消毒后对虾养殖源水细菌群落的响应特征研究. 海洋与湖沼. 2024(01): 202-212 . 百度学术
    2. 郑仕夫,徐慧敏,陈曦,裘丽萍,宋超,范立民,李丹丹,孟顺龙,徐跑. 水产养殖尾水处理技术的研究现状和发展趋势. 中国农学通报. 2024(12): 159-164 . 百度学术

    其他类型引用(1)

推荐阅读
免漂洗罗非鱼鱼糜凝胶品质改良及机理分析
罗颖莹 et al., 南方水产科学, 2025
南海岛礁鱼源产蛋白酶菌株热带芽孢杆菌btzb2的特性研究
胡晓娟 et al., 南方水产科学, 2024
草鱼subfatin分子鉴定及表达特性分析
杨博雅 et al., 南方水产科学, 2024
植物乳植杆菌通过抑制蛋白水解改善罗非鱼发酵鱼糜凝胶强度
崔巧燕 et al., 南方水产科学, 2024
环境微生物对水体中微囊藻毒素降解机制的研究进展
张赫 et al., 渔业研究, 2024
养殖环境及贝源溶藻弧菌mlst分型及其毒力基因、耐药性分析
ZHENG Yudong et al., PROGRESS IN FISHERY SCIENCES, 2024
Scrutinization of marangoni convective flow of dusty hybrid nanofluid with gyrotactic microorganisms and thermophoretic particle deposition
Abbas, Munawar et al., JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024
Comprehensive investigation of cu2+ adsorption from wastewater using olive-waste-derived adsorbents: experimental and molecular insights
Elboughdiri, Noureddine et al., INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024
Comparative laboratory wettability study of sandstone, tuff, and shale using 12-mhz nmr t1-t2 fluid typing: insight of shale
SPE JOURNAL
Isolation, identification, and characterization of an aspergillus niger bioflocculant-producing strain using potato starch wastewater as nutrilite and its application
PLOS ONE, 2018
Powered by
图(5)  /  表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-03-15
  • 修回日期:  2023-04-24
  • 录用日期:  2023-06-27
  • 网络出版日期:  2023-06-29
  • 刊出日期:  2023-12-04

目录

/

返回文章
返回