Effects of schizophyllan on growth, immunity and intestinal microflora of Litopenaeus vannamei
-
摘要:
裂褶菌多糖是裂褶菌 (Schizophyllum communer Fr.) 子实体、菌丝体或发酵液提取的具有β-(1,6) 分支的 β-(1,3)-D葡聚糖。为了探究裂褶菌多糖饲养凡纳滨对虾 (Litopenaeus vannamei) 的效果,选用12口凡纳滨对虾养殖池,按照裂褶菌多糖的添加量 (质量分数),分别设置0% (C组)、0.5% (S1组)、1.0% (S2组) 和2.0% (S3组) 4组进行56 d的饲养实验,分析对虾的生长、血清理化、免疫指标和肠道菌群等变化。结果显示,S2组的终末体质量、平均体质量增长率和特定生长率均显著高于C、S1和S3组 (P<0.05);S2、S3组内层上皮细胞的高度显著高于C和S1组 (P<0.05)。与对照组相比,S2和S3组血清中的尿酸含量显著降低 (P<0.05),S1组则无显著性差异 (P>0.05)。S2和S3组血清中溶菌酶、总一氧化氮合成酶、酚氧化酶和碱性磷酸酶的活性均显著高于对照组 (P<0.05)。S2组过氧化氢酶、超氧化物歧化酶活性和总抗氧化能力显著高于对照组 (P<0.05);各实验组血清丙二醛含量均有不同程度的降低 (P>0.05)。肠道菌群Ace、Chao1、Shannon、Simpson指数均无显著性差异 (P>0.05)。在门水平上,与对照组相比,添加裂褶菌多糖的各实验组变形菌门相对丰度均下降,软壁菌门升高。在属水平上,与对照组相比,S2组中Formosa、Pseudoruegeria、Muricauda和鲁杰氏菌属 (Ruegeria) 相对丰度均显著升高 (P<0.05),而弧菌属 (Vibrio) 相对丰度显著降低 (P<0.05)。结果表明,在饲料中添加1.0%的裂褶菌多糖能显著提升凡纳滨对虾的生长性能、免疫力和抗氧化能力,增加肠道有益菌丰度,降低有害菌丰度。
Abstract:Schizophyllan (SPG) is a type of polysaccharide with β-(1,6) branching β-(1,3)-D-glucan, extracted from the fruiting body, mycelium or fermentation broth of Schizophyllum communer. In order to study the effects of SPG feed on the cultivation of Litopenaeus vannamei, we selected 12 L. vannamei breeding ponds, and set up four groups according to the addition amounts of SPG [Group C (0%), Group S1 (0.5%), Group S2 (1.0%) and Group S3 (2.0%)] for a 56-day experiment, then we investigated the growth, blood clearance, immune indicators and intestinal microflora. The results show that the final body mass, average weight gain rate and specific weight gain rate of Group S2 were significantly higher than those of Group C, S1 and S3 (P<0.05). The height of inner epithelial cells in Group S2 and S3 were significantly higher than those in Group C and S1 (P<0.05). Compared with Group C, the contents of serum uric acid (UC) in Group S2 and S3 were significantly lower (P<0.05), but there was no significant difference in Group S1 (P>0.05). The activities of lysozyme (LZM), total nitric oxide synthase (TNOS), phenol oxidase (PO) and alkaline phosphatase (AKP) in serum of Group S2 and S3 were significantly higher than those in Group C (P<0.05). The activities of catalase (CAT), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) in Group S2 were significantly higher than those of Group C (P<0.05). Compared with the control group, the contents of serum malondialdehyde (MDA) in all experimental groups decreased to different extents (P>0.05). There was no significant difference in Ace, Chao1, Shannon and Simpson indexes of intestinal flora (P>0.05). At phylum level, compared with Group C, the abundance of Proteobacteria in the experimental groups added with SPG decreased, while that of Tenericutes increased. At genus level, compared with Group C, the abundances of Formosa, Pseudoruegeria, Muricauda and Rugella in Group S2 increased significantly (P<0.05), while the abundance of Vibrio decreased significantly (P<0.05). In conclusion, adding 1.0% SPG in feed can improve the growth performance, immunity and antioxidant capacity of L. vannamei, increase the proportion of beneficial bacteria and reduce the proportion of harmful bacteria in intestinal tract.
-
Keywords:
- Litopenaeus vannamei /
- Schizophyllan /
- Intestinal microbiota /
- Immunity
-
金属卤化物集鱼灯 (简称“金卤灯”) 是光诱渔业最常用的光源类型[1-6]。光诱渔船海面光场分布计算是集鱼灯应用研究的重要课题之一[3,7]。光场分布计算方法包括几何光学法[2,8-9]和蒙特卡罗 (Monte Carlo, MC) 模拟方法[10-12]。几何光学方法中,Bae等[3]将点光源模型 (Point model, PM) 与指数衰减模型结合计算了渔船海面照度,假定灯具空间光场分布各向同性。Choi等[13]提出了线性光源模型 (Line model, LM) 计算灯光船周围海面照度,因其假定灯组为连续发光体,计算值大于实际情况。肖启华和张丽蕊[14]提出了面光源模型,适用于灯具表面积大、计算点与灯具之间小的光场数值的计算。Lai等[15]应用球面模型对LED集鱼灯进行二次透镜设计,并计算船舷两侧的海面光场分布。钱卫国和王飞[9]、叶超[16]、侍炯等[17]提出了配光曲线模型 (Light distribution curve model, LDC) 并做了大量的海上实证研究。由于几何方法主要采用光在水汽界面的折射定律和在空气中直线传播规律,无法求解海面波动状态下的照度分布,学者开始引入蒙特卡罗方法求解光学传输问题[12,18-22]。张涤[12]应用蒙特卡罗方法研究了可见光水下信道问题,指出了不同波长光子信道衰减情况。官文江等[20]结合风浪斜率概率模型[23-24],进一步应用蒙特卡罗提出了集鱼灯光场分布的计算框架。然而计算框架中的光子数取值问题和光子辐射模型还有待进一步完善,这两个环节决定了集鱼灯光场计算的准确度,进而影响到光场有效诱集范围、渔船之间合理作业间距等方面的估算。因此本文通过数值模拟方法讨论不同光子数取值对模拟结果稳定性的影响,同时根据灯具光度分布提出了新的灯具辐射模型并验证,结合新的辐射模型给出算例,为光诱渔船光场分布计算提供借鉴和参考。
1. 材料与方法
1.1 坐标系
为描述灯具和海面计算点的相对位置,建立
$ xyz $ 三维坐标系 (图1)。其中船尾至船首的纵剖面为$ xoz $ ,船尾中点在海面的投影点为原点$ o $ ,船舯线为$ x $ 轴 (船首为$x $ 正向),船尾垂直于$ xoz $ 方向为$y$ 轴 (右舷为$ y $ 轴正向),$ z$ 轴垂直于$ xoy $ 平面 (向上为正)。灯具垂直悬挂于点$ L(x, y, h)$ ,$ h$ 为灯具距离海面的高度,$P$ 点位于$ {xoy} $ 平面内 (图1-a)。定义光束LP在$xoy$ 平面的投影与$x$ 轴顺时针方向的夹角为投影旋转角$φ$ 。定义光束LP与$z$ 轴正方向的夹角为天底角$ {θ} $ 。海面为波动状态,海面与水平面夹角为β (图1-b)。1.2 材料
选取目前光诱渔业中广泛应用的金属卤化物集鱼灯 (2 kW DCJ 2000TT型) 作为研究对象,选取目前光诱渔业中广泛应用的金属卤化物集鱼灯(2 kW DCJ 2000TT 型) 作为研究对象,集鱼灯额定功率2000 W,电压范围210~250 V,额定光通量220000 lm,灯头型号E39/79-A,灯具中心高度295 mm,全长465 mm,最大直径90 mm。
灯具光度分布数据在国家远洋渔业工程技术研究中心进行了测试,灯具配光在垂直方向和水平方向的配光曲线分布见图2。测试设备:远方光电GO-2 000光度分布测试仪,测试模式选系统内置的C−γ。
可以看出光强在水平和垂直剖面内的光强分布曲线存在一定差异,取C90/270和γ90平面内光强分布曲线,借助Matlab (R2015b) 软件用Fourier级数拟合灯具光强分布曲线,公式分别对应如下:
$$\begin{aligned} I(\theta)=& 19\;670-3\;366 \cos (1.851 \theta)+2\;197 \sin (1.851 \theta)-\\ & 1\;201 \cos (3.702 \theta)+2\;245 \sin (3.702 \theta)+\\ & 38.56 \cos (5.553 \theta)+1\;176 \sin (5.553 \theta)\left(R^{2} = 0.96\right) \end{aligned}$$ (1) $$\begin{aligned} g(\varphi)=& 15\;320-9\;206 \cos (1.962 \varphi)-396.3 \sin (1.962 \varphi)-\\ & 3\;534 \cos (3.924 \varphi)-238.8 \sin (3.924 \varphi)-\\ & 1\;305 \cos (5.886 \varphi)-167 \sin (5.886 \varphi)\left(R^{2} = 0.98\right) \end{aligned}$$ (2) 式中:
$ {θ} $ 为灯具垂直剖面γ90配光曲线,决定了灯具不同天底角光束的辐射强度;$ {φ} $ 为灯具水平剖面C90/270配光曲线,决定了灯具不同投影旋转角光束的辐射强度。1.3 模型建立
蒙特卡罗方法是研究光辐射传输特性的经典方法[24-26],通过将光束能量离散成大量光子,利用随机抽样方法追踪光子路径来解决光束传输问题,计算流程参考官文江等[20]的方法。模型计算假定条件:1) 模拟中所有光子无波长差异;2) 光子在水气界面只考虑反射与入射,无其他形式衰减;3) 不考虑光子在空气中的吸收与散射作用。
1.3.1 光子辐射优化模型
官文江等[20]报道的光子辐射模型中投影旋转角 (
$ {φ} $ ) 使用均匀随机数生成,难以全面反映灯具辐射特征 (图1-a)。对此本文进一步优化,辐射模型考虑光子辐射天底角 ($ {θ} $ ) 和投影旋转角 ($ {φ} $ ) 两个方向的特征,计算公式:$$\left\{\begin{array}{l}F({{{θ}}})=\dfrac{\int_{0}^{{{{θ}}}_{{{i}}}} \mathrm{I}({{{θ}}}) \mathrm{d} {{{θ}}}}{\int_{0}^{2 \pi} \mathrm{I}({{{θ}}}) \mathrm{d} {{{θ}}}} \\ M(\varphi)=\dfrac{\int_{0}^{\varphi_{{{i}}}} \mathrm{~g}({\varphi) \mathrm{d} \varphi}}{\int_{0}^{2 \pi} \mathrm{g}(\varphi) \mathrm{d} \varphi}\end{array}\right.$$ (3) 其中:
$ F $ ($ {θ} $ )、$ {M}{(}{φ}{)} $ 分别为光子天底角$ {θ} $ 和投影旋转角$ {φ} $ 的归一化概率分布函数,考虑到集鱼灯投向天空的光源属于浪费资源,故$ {θ} $ 取值介于[0.5π, π]。$ {θ} $ 和$ {φ} $ 利用反函数法[25]产生。1.3.2 海浪斜率计算
光子从灯具出射后,沿直线投射至水面。而海面受风的影响形成了毛细海浪,因此交互界面有一定的斜率。根据Cox和Munk[27]观测,不同风速下的波浪面倾斜角经验概率密度公式:
$$\rho(\beta)=\frac{2}{\sigma^{2}} {\rm{e}}^{\frac{-\tan ^{2} \beta}{\sigma^{2}}} \tan \beta \sec ^{2} \beta$$ (4) 其中:σ2=0.003+0.005 12V,V为距海面10 m处的风速(m·s−1);
$ {β} $ 为波浪面与水平面的夹角,同样利用反函数法产生伪随机数[25]确定波浪斜率。确定海浪斜率后即可确定法线方向,光束在海面的入射角
$ {{θ}}_{{i}} $ 调整为:$$ {{θ}}_{{i}}={θ}-{β} $$ (5) 式中:
$ {θ} $ 为光子从灯具出射的天底角;$ {β} $ 同上。1.3.3 海面反射系数
光束经过大气−海水界面发生折射和反射,总反射率Rt计算公式:
$$R_{\mathrm{t}}=R_{\mathrm{f}}+R_{\mathrm{u}}$$ (6) 式中:
$ {{R}}_{\rm{f}} $ 为镜面折射率;$ {{R}}_{\rm{u}} $ 水下反射率。丁明亮[10]指出$ {{R}}_{\rm{u}} $ 泡沫反射率远小于折射率$ {{R}}_{\rm{f}} $ ,因此忽略不计。光子调整角度后在水面反射与入射遵循Fresnel反射定律[28]:$$R_{{f}}=\left[\frac{{n}_{1} \cos {{θ}}_{{i}}-{n}_{2} \sqrt{1-\left(\dfrac{{n}_{1}}{{n}_{2}} \sin {{θ}}_{{i}}\right)^{2}}}{{n}_{1} \cos {{θ}}_{{i}}+{n}_{2} \sqrt{1-\left(\dfrac{{n}_{1}}{{n}_{2}} \sin {{θ}}_{{i}}\right)^{2}}}\right]^{2}$$ (7) 式中:
$ {{θ}}_{{i}} $ 为入射角;$ {{n}}_{{1}} $ 为空气折射率,取1;$ {{n}}_{{2}} $ 为海水折射率,取1.33。若$ {{θ}}_{{i}}{=0} $ ,则$ {{R}}_{{{\rm{f}}}} $ 按下式计算:$$R_{{{\rm{f}}}}=\left(\frac{{n}_{1}-{n}_{2}}{{n}_{1}+{n}_{2}}\right)^{2}$$ (8) 模拟过程中,依据轮盘赌法[26]进行判别:取随机数
$ {R} $ (为0~1内均匀分布随机数),当$ {R}{ > }{{R}}_{{{\rm{t}}}} $ ,则光子落入水中,否则反射不予统计。对接收面进行栅格化处理后,通过统计每个栅格内的光子数能量与栅格面积之比得到照度值。1.4 模型验证
为验证模型准确性,在光学实验室内完成验证测试。将灯具安装在自动旋转台上,灯高1.6 m,功率2 kW,照度计型号Hobo Mx2202,分辨率为0.01 lx。灯具安装在旋转平台上,照度计放置于地面,与灯具中心水平距离1~5 m,间隔1 m放置一个照度计,见图3-a中的t1—t5位置。测试过程中,转台绕C轴转动,从而测得灯具不同投影旋转角
$ {φ} $ 所对应的地面照度值,实际测试灯具与照度计布置见图3-b。2. 结果
2.1 光子数取值对模拟结果的影响
通过设定不同的光子数值105~1010讨论模拟结果的稳定性,重复模拟1 000次,取模拟结果的差异系数 (Coefficient of variation, CV) 作为稳定性计量指标,差异系数越低稳定性越高。结果显示:1) 对同一计算点,光子数从105增至1010,模拟结果差异系数减少;以与灯具水平距离5 m的计算点为例,当光子数增至108,差异系数为0.07%,光子数取值增大,差异系数减少至0.05%; 2) 相同光子数取值条件下,距灯具水平距离越近的计算点,计算结果稳定性越高;随着光子数取值增大,稳定性差异缩小 (图4)。
2.2 光子辐射模型优化
金属卤化物灯由于内部支架等遮挡影响,其空间光场分布在水平切面内并非饶轴对称 (图2-a)。针对新的光子辐射模型不同出射方向 (
$ {φ} $ =90º、60º、30º、0º) 的照度值进行计算并实测,结果显示新模型计算结果与实测相对误差分别为5.12%、4.72%、3.28%、5.03%,平均值为4.53%,未优化模型相对误差均值为5.23% (图5)。不同方向上的计算结果差异系数小于0.08%,模拟稳定性较好 (图6)。作为对比,基于点光源模型的模拟结果与实际的误差分别为3.57%、4.57%、6.81%、17.1%,平均值8.41%,显然误差增大;基于配光曲线模型计算结果与实际的误差分别为7.07%、8.1%、10.42%、21.04%,平均值11.65%,误差最大。由上可知,本文提出的优化光子输出模型,能够较好地反映灯具光场的空间分布情况。
2.3 优化模型应用实例
结合本文提出的光子辐射优化模型,提供了光诱渔船在实际作业海域的光场分布算例,光诱渔船集鱼灯配置等参数见表1。风速取2 m·s−1,数据来自Noaa Erddap。实测值参照Choi等[13]的研究。
表 1 模型参数表Table 1. Model parameters项目 Item 数值 Value 项目 Item 数值 Value 船舶吨位 Tonnage 19.9 金卤灯功率 Metal halide lamp power/kW 2.0 船长 Length/m 22.0 金卤灯光通量 Luminous flux/lm 200 000 船宽 Width/m 4.8 灯组长度 Lamp length/m 17.0 灯与灯间距 Distance between lamps/m 1.1 灯距水面高度 Height of lamp above water/m 3.0 船尾第一个灯与船尾距离 Fist lamp near stern/m 2.8 渔船集鱼灯总功率 Total power/kW 75 根据上述参数计算了船舷一侧垂直于船舯线不同距离的照度值,并与Choi等[13]的实测值进行对比,结果显示优化后的蒙特卡罗计算结果与实测值平均误差约为5.23%,计算值接近实测值 (图7)。作为对比,应用线光源法和点光源法计算结果与历史研究实测值的平均相对误差分别为52.62%和54.00%,并且随着距离增大,相对误差增加。
3. 讨论
蒙特卡罗模拟通过大量随机抽样观察规律,样本量决定模拟结果的准确性。研究发现,光子数取值越大,模拟结果的差异系数越小且趋于极值。究其原因,当光子数取值足够大时,计算机所生成的伪随机数分布情况越接近概率分布函数,当然这还取决于伪随机数的生成方法[25,29]。本文通过预试验发现当光子数取值108时,模拟结果的差异系数为0.07%,此后差异系数趋于稳定值。本试验也发现光子数取值对模拟时长有较大影响。因此光束取值须兼顾模拟结果的稳定性、计算机性能等因素。本试验还发现,距离灯具越近的计算点,模拟的稳定性越高,这种现象在光子数取值较小时尤为明显,当光子数取值增大,远近距离计算点之间结果稳定性的差异减少。这是由于近光源处接受面所对应的灯具立体角较大,相同光子密度条件下,往往造成近光源处接受面能接受到更多光子,光子数越多,进一步造成计算结果越容易趋于稳定值。
针对光子辐射模型方面,本文利用灯具光度分布数据,从水平和垂直两个方向构建光子辐射概率模型并进行验证,发现优化模型的计算结果更接近事实。较官文江等[20]的研究,优化辐射模型充分考虑了灯具不同投影旋转角的光束辐射差异性,可以更加准确地计算灯与灯间光照叠加区域的亮度,进而计算合适的灯间安装距离以达到光源利用最大化。本文提出的光子辐射模型存在局限性,即假定不同的水平和垂直剖面内配光曲线分布趋势一致。因此,本文提出的建模方法无法应用于结构复杂的光源,建议选用二维随机变量分布函数描述[30]。
在算例中,本研究对比分析了几何算法与蒙特卡罗算法结果,发现线光源模型与点光源模型计算结果大于蒙特卡罗算法结果。原因是当海面具有一定斜率,光束在水汽交互界面的透射率发生改变。本文引用Cox和Munk[27]观测模型计算海面倾斜角,可拓展计算不同风速条件下的海面照度情况。
4. 结论
本文利用数值模拟方法研究了蒙特卡罗模拟过程中光子数取值对计算结果稳定性的影响,讨论了造成这一影响的原因。同时,根据光度分布数据提出了光子辐射优化模型并进行验证,发现新的光子辐射模型与实际情况较为接近,能够较为全面地表征灯具不同方向光子的辐射特征。在此基础上,结合实际渔船的灯光配置参数和风速,计算了光诱渔船实际作业环境下的光场分布,结果显示在海面波动条件下,蒙特卡罗计算结果比几何方法计算结果更接近实测值。
-
图 1 对照组与实验组肠道切片对比 (200×)
a. C组 (0%) 肠道切片;b. S1 组 (0.5%) 肠道切片;c. S2 组 (1.0%) 肠道切片;d. S3 组 (2.0%) 肠道切片;A、B、C为不同上皮细胞高度。
Figure 1. Comparison of intestinal slices between control group and test groups (200×)
a. Intestinal slices of Group C; b. Intestinal slices of Group S1; c. Intestinal slices of Group S2; d. Intestinal slices of Group S3; A, B and C represent different epithelial cell heights.
表 1 裂褶菌多糖对凡纳滨对虾生长性能比较
Table 1 Comparison of effects of schizophyllan on growth performance of L. vannamei
指标
Index裂褶菌多糖添加量 Addition amounts of schizophyllan 0% (C) 0.5% (S1) 1.0% (S2) 2.0% (S3) 初始体质量 Initial body mass/g 1.85±0.03 1.85±0.03 1.85±0.03 1.85±0.03 终末体质量 Final body mass/g 18.44±3.34a 20.33±0.45a 23.13±0.31b 19.90±2.55a 体质量增长率 WGR/% 896.94±180.42a 999.10±24.37a 1 150.45±16.51b 975.68±137.90a 特定生长率 SGR/(%·d−1) 4.09±0.33a 4.28±0.40a 4.51±0.24b 4.23±0.23a 饲料系数 FCR 1.45±0.01 1.47±0.02 1.45±0.02 1.46±0.03 成活率 SR/% 70.15±0.10a 70.12±0.11a 75.37±0.32b 72.21±0.13c 摄食量 FI/g 18.89±0.43a 21.44±0.36b 25.77±0.38c 21.23±0.40b 终末体长 Final body length/cm 11.03±1.16 11.75±0.35 12.25±0.64 11.88±0.88 注:组间显著性差异采用不同小写字母表示 (P<0.05),下同。 Note: Different lowercase letters indicate significant differences between groups (P<0.05); the same below. 表 2 裂褶菌多糖对凡纳滨对虾血清生化指标的影响
Table 2 Effect of schizophyllan on serum biochemical indexes of L. vannamei
指标
Index裂褶菌多糖添加量 Addition amount of schizophyllan 0% (C) 0.5% (S1) 1.0% (S2) 2.0% (S3) 总蛋白 TP/(g·L−1) 52.71±13.01 59.49±11.00 69.07±4.48 53.91±7.18 胆固醇 CHO/(mmol·L−1) 0.72±0.21 0.69±0.10 0.64±0.20 0.74±0.39 尿酸 UA/(μmol·L−1) 20.17±5.95a 16.06±3.51ab 12.95±2.09b 10.75±2.44b 谷草转氨酶 AST/(U·L−1) 382.00±142.68 443.67±100.81 474.33±140.63 427.33±143.12 谷丙转氨酶 ALT/(U·L−1) 431.67±55.37a 247.33±91.15b 302.00±61.29ab 230.67±123.45b 溶菌酶 LZM/(U·mL−1) 0.05±0.01a 0.09±0.03ac 0.14±0.04b 0.13±0.03bc 酚氧化酶 PO/(U·mL−1) 0.30±0.11a 0.52±0.03b 0.47±0.03b 0.41±0.05b 碱性磷酸酶 ALP/(U·mL−1) 0.64±0.32a 1.43±0.39b 1.70±0.24b 1.43±0.03b 总一氧化氮合酶 TNOS/(U·mL−1) 12.89±1.44a 13.75±0.83ac 15.59±1.64bc 16.23±1.04b 超氧化物歧化酶 SOD/(U·mL−1) 246.55±7.35a 267.37±47.87a 333.78±25.07b 253.23±40.09a 过氧化氢酶 CAT/(U·mL−1) 12.93±2.87a 17.18±2.57b 23.68±0.91c 20.59±0.97bc 丙二醛 MDA/(nmol·L−1) 6.40±1.20 5.95±0.54 5.77±0.68 6.31±2.71 总抗氧化能力 T-AOC/(U·mL−1) 5.18±1.66a 5.75±0.82ab 8.67±2.41b 7.40±1.62ab 表 3 裂褶菌多糖对凡纳滨对虾肠道菌群多样性的影响
Table 3 Effects of schizophyllan on intestinal microflora diversity of L. vannamei
指标
Index裂褶菌多糖添加量 Addition amounts of schizophyllan 0% (C) 0.5% (S1) 1.0% (S2) 2.0% (S3) 操作分类单元 OTUs 236.33±19.50 201.00±25.16 242.67±82.97 240.33±3.21 Chaol 指数 Chao1 261.33±19.43 227.33±24.83 266.67±78.82 274.33±23.03 ACE 指数 ACE 261.33±10.50 226.33±22.23 269.67±71.39 262.47±22.50 香农指数 Shannon 3.37±0.57 3.45±0.18 3.48±0.15 3.42±0.12 辛普森指数 Simpson 0.70±0.24 0.53±0.13 0.57±0.08 0.65±0.05 覆盖率指数 Coverage 0.999±0.00 0.999±0.00 0.999±0.00 0.999±0.00 -
[1] 文国樑, 李卓佳, 林黑着, 等. 规格与盐度对凡纳滨对虾肌肉营养成分的影响[J]. 南方水产, 2007, 3(3): 31-34. [2] 李玉虎, 宋芹芹, 张志怀, 等. 凡纳滨对虾生长发育规律及生长曲线拟合研究[J]. 南方水产科学, 2015, 11(1): 89-95. [3] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2023中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2023: 22, 24. [4] TZIANABOS A O. Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function[J]. Clin Microbiol Rev, 2000, 13(4): 523-533. doi: 10.1128/CMR.13.4.523
[5] 张虎成, 齐贺. 发酵原料药生产[M]. 北京: 中国轻工业出版社, 2014: 238-240. [6] 尚庆辉, 解玉怀, 张桂国, 等. 植物多糖的免疫调节作用及其机制研究进展[J]. 动物营养学报, 2015, 27(1): 49-58. doi: 10.3969/j.issn.1006-267x.2015.01.008 [7] 毛绍春, 李竹英, 李聪. 人工裂褶菌多糖结构及含量变化研究[J]. 资源开发与市场, 2007, 23(5): 385-386. doi: 10.3969/j.issn.1005-8141.2007.05.001 [8] 李翘楚, 张璐, 王红艳, 等. 裂褶菌胞内多糖的提取纯化及生物活性分析[J]. 食品工业科技, 2023, 44(4): 252-260. [9] 刘小玲, 徐向群, 黄燕华, 等. 桦褐孔菌多糖对凡纳滨对虾生长和血清免疫相关酶活性的影响[J]. 水产科学, 2014, 33(4): 201-207. [10] 昌鸣先, 陈孝煊, 吴志新, 等. 虫草多糖对日本沼虾免疫机能的影响[J]. 华中农业大学学报, 2001, 20(3): 275-278. doi: 10.3321/j.issn:1000-2421.2001.03.020 [11] 徐申波, 郭振, 陈师勇, 等. 灵芝多糖对凡纳滨对虾生长和免疫功能的影响[J]. 青岛农业大学学报 (自然科学版), 2021, 38(4): 290-294, 304. [12] 李红权, 刘存歧, 李志英, 等. 灰树花多糖对日本对虾免疫活性的影响[J]. 水生态学杂志, 2008, 29(6): 128-131. [13] ZHAO H X, CAO J M, WANG A L, et al. Effect of long-term administration of dietary β-1, 3-glucan on growth, physiological and immune responses in Litopenaeus vannamei (Boone, 1931)[J]. Aquac Int, 2012, 20(1): 145-158. doi: 10.1007/s10499-011-9448-6
[14] 万安滔, 张林存, 程星宇, 等. 香菇多糖对罗非鱼非特异性免疫力的影响[J]. 江苏农业科学, 2012, 40(4): 225-227. [15] 杨娜, 王鸿飞, 董栓泉, 等. 裂褶菌多糖对小鼠免疫活性作用的研究[J]. 现代食品科技, 2014, 30(8): 1-5. [16] COOK M T, HAYBALL P J, HUTCHINSON W, et al. Administration of a commercial immunostimulant preparation, EcoActiva™ as a feed supplement enhances macrophage respiratory burst and the growth rate of snapper (Pagrus auratus, Sparidae (Bloeh and Schneider)) in winter[J]. Fish Shellfish Immunol, 2003, 14(4): 333-345. doi: 10.1006/fsim.2002.0441
[17] MISRA C K, DAS B K, MUKHERJEE S C, et al. Effect of long term administration of dietary β-glucan on immunity, growth and survival of Labeo rohita fingerlings[J]. Aquaculture, 2006, 255(14): 82-94.
[18] AI Q H, MAI K, ZHANG L, et a1. Effects of dietary β-l, 3 glucan on innate immune response of large yellow croaker, Pseudosciaena crocea[J]. Fish Shellfish Immunol, 2007, 22(4): 394-402. doi: 10.1016/j.fsi.2006.06.011
[19] 董淑丽, 王占彬, 雷雪芹, 等. 热应激对动物血液生化指标的影响[J]. 家畜生态, 2004, 25(2): 54-56. [20] COMA J, CARRION D, ZIMMERMAN D R. Use of plasma urea nitrogen as a rapid response criterion to determine the lysine requirement of pigs[J]. J Anim Sci, 1995, 73(2): 472-481. doi: 10.2527/1995.732472x
[21] 赵军, 林英庭, 孙建凤, 等. 饲粮中不同水平浒苔对蛋鸡蛋黄品质、抗氧化能力和血清生化指标的影响[J]. 动物营养学报, 2011, 23(3): 452-458. [22] WORTMANN, ROBERT L. Gout and hyperuricemia[J]. Curr Opin Rheumatol, 2002, 14(3): 281-286. doi: 10.1097/00002281-200205000-00015
[23] LI H F, XU C, ZHOU L, et al. Beneficial effects of dietary β-glucan on growth and health status of Pacific white shrimp Litopenaeus vannamei at low salinity[J]. Fish Shellfish Immunol, 2019, 91: 315-324.
[24] 黄健彬, 迟艳, 周传朋, 等. 褐藻寡糖对卵形鲳鲹幼鱼生长性能, 抗氧化能力和免疫功能的影响[J]. 南方水产科学, 2022, 18(3): 118-128. [25] 江晓路, 杜以帅, 王鹏, 等. 褐藻寡糖对刺参体腔液和体壁免疫相关酶活性变化的影响[J]. 中国海洋大学学报, 2009, 39(6): 1188-1192. [26] 王鹏, 江晓路, 江艳华, 等. 褐藻低聚糖对提高大菱鲆免疫机能的作用[J]. 海洋科学, 2006, 30(8): 6-9. [27] VALENTE L M P, BATISTA S, RIBEIRO C, et al. Physical processing or supplementation of feeds with phytogenic compounds, alginate oligosaccharide or nucleotides as methods to improve the utilization of Gracilaria gracilis by juvenile European seabass (Dicentrarchus labrax)[J]. Aquaculture, 2021, 530: 1-14.
[28] JAMI M J, KENARI A A, PAKNEJAD H, et al. Effects of dietary b-glucan, mannan oligosaccharide, Lactobacillus plantarum and their combinations on growth performance, immunity and immune related gene expression of Caspian trout, Salmo trutta caspius (Kessler, 1877)[J]. Fish Shellfish Immunol, 2019, 91: 202-208.
[29] ZHAO H X, CAO J M, WANG A L, et al. Effect of dietary β-1, 3-glucan on the immune response of Litopenaeus vannamei exposed to nitrite-N[J]. Aquac Nutr, 2012, 18(3): 272-280. doi: 10.1111/j.1365-2095.2011.00893.x
[30] SORAAT A, SASIMANAS U, CHEEWARAT P, et al. Feeding-regimen of β-glucan to enhance innate immunity and disease resistance of Nile tilapia, Oreochromis niloticus Linn, against Aeromonas hydrophila and Flavobacterium columnare[J]. Fish Shellfish Immunol, 2019, 87: 120-128. doi: 10.1016/j.fsi.2018.12.062
[31] JONES S E, LENNON J T. Dormancy contributes to the maintenance of microbial diversity[J]. P Natl Acad Sci USA, 2010, 107(13): 5881-5886. doi: 10.1073/pnas.0912765107
[32] WU J F, XIONG J B, WANG X, et al. Intestinal bacterial community is indicative for the healthy status of Litopenaeus vannamei[J]. Chin J Appl Ecol, 2016, 27(2): 611-621.
[33] 韩少锋. 罗非鱼腐败过程菌群结构分析及腐败菌的分离、鉴定与调控[D]. 北京: 中国农业科学院, 2010: 7-33. [34] MUKHOPADHYA I, HANSEN R, ELOMAR E M, et al. IBD: what role do proteobacteria play?[J]. Nat Rev Gastro Hepat, 2012, 9(4): 219-230. doi: 10.1038/nrgastro.2012.14
[35] 于明超, 张晓华, 郑艳芬, 等. 一种运动鲁杰氏菌菌株及其应用: CN105779366B[P]. 2019-05-31. [36] KO S R, JEONG Y, CHO S H, et al. Functional role of a novel algicidal compound produced by Pseudoruegeria sp. M32A2M on the harmful algae Alexandrium catenella[J]. Chemosphere, 2022, 300: 1-9.
[37] 陈晓瑛, 王国霞, 孙育平, 等. 饲料中添加低聚木糖对凡纳滨对虾幼虾消化酶活力、肠道形态及细菌数量的影响[J]. 动物营养学报, 2018, 30(4): 1522-1529. [38] SU P, HAN Y, JIANG C, et al. Effects of chitosan ligosaccharides on growth performance, digestive enzyme and intestinal bacterial flora of tiger puffer (Takifugu rubripes Temminck et Schlegel, 1850)[J]. J Appl Ichthyol, 2017, 33(3): 458-467. doi: 10.1111/jai.13282
[39] 潘金露. 饲料中壳寡糖和褐藻酸寡糖对大菱鲆(Scophthalmus maximus)消化及肠道菌群的影响[D]. 大连: 大连海洋大学, 2016: 19-24. [40] 殷朝敏, 高虹, 范秀芝, 等. 一种增强白参菌多糖生物活性的复合改性方法及其在调节人体肠道菌群中的应用: CN202210822554.4[P]. 2022-07-13. [41] 曹海鹏, 温乐夫, 周桂娴, 等. 南美白对虾白便综合征病原霍乱弧菌的分离与药敏试验[J]. 动物医学进展, 2016, 37(2): 128-132. [42] PESTOVA M I, CLIFT R E, VICKERS R J, et al. Effect of weaning and dietary galactose supplementation on digesta glycoproteins in pigs[J]. J Sci Food Agric, 2000, 80(13): 1918-1924. doi: 10.1002/1097-0010(200010)80:13<1918::AID-JSFA731>3.0.CO;2-B
-
期刊类型引用(2)
1. 邱星宇,刘庆霞,陈作志,蔡研聪,黄洪辉. 2023年春季南沙珊瑚岛礁主要鱼类碳氮稳定同位素研究. 热带海洋学报. 2024(06): 104-113 . 百度学术
2. 彭谦,王啟芳,宋普庆,黄丁勇,张涵,王建佳,郑新庆. 秋季涠洲岛珊瑚礁主要鱼类营养关系的初步研究. 海洋学报. 2023(09): 91-104 . 百度学术
其他类型引用(0)