Effects of replacement of fish meal by fermented cottonseed meal on growth performance, feed utilization and intestinal bacteria community of juvenile golden pompano (Trachinotus ovatus)
-
摘要: 发酵棉籽粉是一种优质植物蛋白原料,具有替代饲料鱼粉的潜力。为评估发酵棉籽粉作为卵形鲳鲹 (Trachinotus ovatus) 饲料蛋白源的适宜性及适宜替代水平,用发酵棉籽粉分别替代卵形鲳鲹幼鱼饲料中0% (对照组)、25%、50%、75%和100%的鱼粉 (基础饲料中鱼粉质量分数为35%),配制成5种实验饲料,饲喂幼鱼 [初始体质量为 (12.57±0.25) g] 7周,探究了发酵棉籽粉替代鱼粉对幼鱼存活、生长和饲料利用性能及肠道菌群组成的影响。结果显示,发酵棉籽粉替代组的存活、生长、饲料利用率以及蛋白质、脂肪沉积效率均低于鱼粉对照组,而25%和50%替代组与对照组无显著性差异 (P>0.05)。但当发酵棉籽粉替代75%~100%鱼粉时,刺激了卵形鲳鲹肝脏的抗氧化系统,使总超氧化物歧化酶 (T-SOD) 和过氧化氢酶 (CAT) 活性高于对照组。此外肝脏HE染色切片显示其细胞空泡化现象加剧,100%替代组的血清总蛋白、白蛋白和球蛋白含量降低,肝脏合成蛋白能力可能下降。发酵棉籽粉高水平替代鱼粉会影响卵形鲳鲹的肠道菌群组成,表现为有益菌丰度下降、有害菌丰度上升,从而影响了肠道菌群功能。综合考虑生长性能和鱼体健康,建议卵形鲳鲹饲料中发酵棉籽粉替代鱼粉水平以25%为宜。Abstract: Fermented cottonseed meal (FCSM) is a high-quality plant protein ingredient with potential to replace fishmeal in feed. To evaluate the suitability of FCSM as a protein source in the diet of juvenile golden pompano (Trachinotus ovatus) and its appropriate replacement level, we had fed the juveniles with initial body mass of (12.57±0.25) g for seven weeks by five diets to replace 0% (Control group), 25%, 50% and 100% of fishmeal by FCSM, and the fish meal in reference diet was 35%. Then we investigated the effects of FCSM replacement of fishmeal on the survival, growth, feed utilization performance and intestinal microflora of the juveniles. The results show that the survival, growth, feed efficiency, dietary protein and lipid deposition rates were lower in FCSM treatments compared with those in reference diet, while the differences between 25%, 50% replacement groups and the reference diet were not significant (P>0.05). However, the liver antioxidant system was stimulated, and the activities of total superoxide dismutase (T-SOD) and catalase (CAT) in 75%−100% replacement groups were higher than those in the control group. In addition, the liver hematoxylin-eosin-stained sections show that the cellular vacuolation phenomenon was aggravated. The contents of total protein, albumin and globulin in serum in 100% replacement group were reduced, and the protein synthesis capacity of liver might be impaired. High-level replacement of fish meal by FCSM affected the composition of intestinal flora, with the abundance of beneficial bacteria decreasing and that of harmful bacteria increasing. Taking into account both growth performance and fish health, it is recommended to replace fish meal with 25% FCSM in the diet for T. ovatus.
-
Keywords:
- Trachinotus ovatus /
- Fermented cottonseed meal /
- Growth /
- Feed utilization /
- Intestinal flora
-
带鱼 (Trichiurus japonicus) 隶属鲈形目、带鱼科、带鱼属,为广泛分布于温带、亚热带和热带水域的暖水性底层鱼类,是我国沿海的重要经济鱼种,也是南海北部底拖网和刺网的主要渔获对象[1]。朱江峰和邱永松[2]根据20世纪90年代调查数据对南海北部带鱼的生长、死亡等参数进行了估算,并利用动态综合模型模拟其资源开发状况,结果表明南海北部带鱼能承受较大的捕捞压力,但幼鱼遭到过度捕捞,资源利用不合理;王跃中等[3]对南海北部带鱼的渔获量、捕捞努力量及环境数据进行了综合分析,探讨了其渔获量对捕捞压力及气候变化的响应;颜云榕[4]通过对北部湾带鱼食物组成的定量分析,研究了带鱼的摄食习性和摄食生态。
鱼类生长、死亡和性成熟等生物学参数的评估是探索渔业资源变动规律和开展渔业资源评估的基础[5],尤其在数据缺乏条件下的渔业资源评估中具有重要意义[6]。随着捕捞压力增大和环境恶化加剧,鱼类的生长、死亡等生物学特征必将产生相应的变化,如渤、黄海的小黄鱼 (Larimichthys polyactis)[7]、东海鲐鱼 (Scomber japonius)[8]和北部湾的短尾大眼鲷 (Priacanthus macracanthus)[9]等均出现了个体规格小型化、性成熟提前和生长速度加快等现象。然而,近20年来南海北部带鱼的生物学特征是否发生了转变尚缺乏相应的研究。因此,本文根据2014—2015年南海北部底拖网调查的渔业生物学资料,对该时期带鱼的渔获率、群体结构进行分析,并估算其生长及死亡等参数,以期为南海北部带鱼资源的评估及合理利用提供基础数据。
1. 材料与方法
1.1 数据来源
研究样品数据来自2014—2015年南海北部底拖网调查资料,调查站点根据其资源按水深分布[10]的特点设计,站位图 (图1) 与蔡研聪等[11]的研究一致。调查按季节进行,分别是2014年夏季 (7—8月)、秋季 (10—11月) 与2015年冬季 (1—2月)、春季 (4—5月)。采集的带鱼样本冷冻保存后带回实验室测定肛长、体质量、性成熟度和胃饱满度等生物学数据。每个站位带鱼的尾数大于50尾时测定50尾,少于50尾时全部测定,4个航次调查共测定带鱼1 128尾 (表1)。
表 1 带鱼的群体结构Table 1. Population structure of T. japonicus采样时间
Sampling time尾数
Number性比 (♀/♂)
Sex ratio肛长 Anal length/mm 体质量 Body mass/g 范围
Range均值
Mean优势组
Dominant范围
Range均值
Mean优势组
Dominant春 Spring 243 2.96 70~451 185.0 130~170 11~1200 128.5 20~60; 80~90 夏 Summer 428 1.66 61~505 184.1 160~210 10~1462 101.7 30~50; 60~80 秋 Autumn 178 0.67 87~500 246.8 230~250 9~1400 232.4 190~200 冬 Winter 279 1.11 92~528 199.9 160~200 13~1650 136.8 50~90 1.2 群体结构分析
带鱼样本按肛长10 mm为组距分组,分别进行肛长频次分析,其中占样品总数8%及以上的肛长组定义为优势肛长组。采用非参数Kol-mogorov-Smirnov Z检验分析雌、雄个体肛长组成的显著性差异;采用单因素方差分析研究4个季度带鱼肛长均值的显著性差异。
1.3 肛长体质量关系
带鱼肛长、体质量的测定分别精确到1 mm和1 g。肛长与体质量关系由函数W=aLb进行拟合,式中W表示体质量,L为肛长,a为生长的条件因子,b为异速生长因子。运用t检验分析雌雄个体的肛长体质量关系是否存在显著性差异。将相对体质量rw (%) 的平均值表示为肥满度[12],计算公式为rw=(W/aLb)×100%。
1.4 性比与性腺发育
统计每个季度以及肛长组中带鱼的雌、雄个体数目及性腺发育状况,性腺按Ⅰ—Ⅵ期标准进行划分,规定Ⅲ期及以上的为性成熟个体,通过适合性卡方检验对不同季度和肛长组的雌雄比例是否为1∶1进行分析。根据带鱼的生殖习性,采用春、夏季雌性样品计算50%性成熟肛长 (L50),由最小二乘法 (Least square method, LSM) 拟合以下逻辑斯蒂模型得到[13]:
$${P_i} = \frac{1}{{1 + {{\rm e}^{[ - r({L_i} - {L_{50}})]}}}}$$ (1) 其中Pi为肛长组Li对应的成熟个体比例,r为模型参数。
1.5 生长、死亡参数估计
带鱼的生长关系可由von Bertalanffy生长方程[5]进行拟合:
$$\begin{split} &\;\qquad \qquad \qquad \\ &{L_t} = {L_\infty }\{ 1 - \exp [ - K(t - {t_0})]\} \end{split}$$ (2) 式中Lt为t龄的肛长,L∞表示渐近肛长,K为生长系数,t0表示肛长为0时的理论年龄。参数L∞和K通过FISAT II (FAO-ICLARM Stock Assessment Tool II) 软件中的ELEFAN I (Electronic Length Frequency Analysis I) 估算。t0及体质量生长拐点tp可用以下经验公式求得[5]:
$$ {\log _{10}}( - {t_0}) = - 0.392\;2 - 0.275{\log _{10}}{L_\infty } - 1.038{\log _{10}}K $$ (3) $${t_p} = \frac{{{\rm{ln}}b}}{K} + {t_0}$$ (4) 根据生长参数L∞和K的评估结果,总死亡系数 (Z) 由线性体长变换渔获曲线法求得[5],Z的95%置信区间利用线性回归计算。自然死亡系数(M)通过Pauly经验公式估算[14]:
$${\rm{ln}}(M)= - 0.152-0.279{\rm{ln}}({L_\infty })+0.654{\rm{ln}}K + 0.463{\rm{ln}}T$$ (5) 其中T为栖息海域的年平均水温 (℃)。本研究中平均水温为调查站点的实际测量数据,为23.4 ℃。
捕捞死亡系数(F)和开发率(E)分别通过以下公式计算[5]:
$$ F = Z - M $$ (6) $$E = F/Z$$ (7) 2. 结果
2.1 渔获率的季节变化
本研究中,南海北部带鱼主要分布在水深小于100 m的海域,且渔获率随季节变化明显 (图2)。夏季渔获率较高的区域集中在北部湾和海南岛东北部海域;春、秋季渔获率较高的区域分布广泛,从北部湾至广东省东南部沿海海域皆有分布;冬季带鱼群体渔获率较低。
2.2 群体结构特征
从2014—2015年南海北部带鱼肛长频率分布 (图3-a,表1) 分析可知,带鱼肛长频率分布为明显的单峰型,肛长介于61~528 mm,优势肛长组为160~190 mm,占29.2%,雌、雄个体肛长组成无显著差异 (P>0.05)。秋季的带鱼个体最大,肛长均值为246.8 mm,体质量均值为232.4 g,远超其他三季,其次是春季,夏季个体最小,单因素方差分析表明4个季节的肛长均值差异显著 (P<0.05)。
2.3 肛长体质量关系
用LSM方法评估2014—2015年带鱼肛长体质量关系为W=4.09×10−5L2.79,a的95%置信区间为 (3.30×10−5,4.88×10−5),b的95%置信区间为 (2.76, 2.82),经t检验,雌雄个体的肛长体质量关系无显著差异 (P>0.05)。由肥满度随肛长变化 (图3-c) 得出,肛长介于100~150 mm,肥满度波动较大,肛长大于150 mm时肥满度保持约100%,无较明显的变化;当肛长为380 mm时肥满度最低 (88%)。此外,由于未测定纯质量数据,仅用体质量进行分析的情况下,存在一定的偏差,肛长小于100 mm时肥满度较高 (最高超过200%)。
2.4 性比与性腺发育
除去151尾雌雄不分个体,2014—2015年南海北部带鱼雌、雄个体性比为1.54。从4个季节性比可看出,春季雌性个体占比较大,夏季雌性个体占比有所下降,秋季雌性个体数远低于雄性,冬季雌性个体占比回升 (表1)。适合性卡方检验分析表明,4个季节雌雄比与1∶1均差异显著 (P<0.05)。性比随肛长变化 (图4-a),肛长组60~70 mm、80~90 mm、380~390 mm、400~410 mm、430~440 mm、450~470 mm、490~500 mm、520~530 mm均为雄性,肛长组360~370 mm均为雌性。肛长组130~140 mm、260~270 mm、300~310 mm、330~340 mm、350~360 mm、420~430 mm、500~510 mm性比与1∶1无显著差异 (P>0.05) 外,其他肛长组性比与1∶1均有显著差异。
4个季节中秋季雄性的性成熟比例高于雌性,而春、夏、冬季雌性性成熟比例均高于雄性(图5)。雌性中夏季的性成熟比例高于其他三季,秋季性成熟比例最低;而雄性中秋季性成熟比例最高,春季性成熟比例最低。各季度中未达到性成熟的个体占比均超过50%,且雄性中无性腺成熟度达到Ⅵ期的个体。南海北部带鱼样品分析表明,2014—2015年南海北部带鱼的最小性成熟肛长为113 mm。逻辑斯蒂方程拟合结果 (图4-b) 表明,50%性成熟肛长为241.5 mm。
2.5 生长、死亡参数估计
由ELEFAN I技术估算得到带鱼von Bertalanffy生长参数L∞、K分别为585 mm和0.2 a−1,由经验公式 (3) 求得t0为0.37年。因此带鱼的生长方程为:
$${L_t} = 585 \times (1 - {{\rm{e}}^{ - 0.20 \times (t + 0.37)}})$$ (8) $${W_t} = 1\;763 \times {(1 - {{\rm{e}}^{ - 0.20 \times (t + 0.37)}})^{2.79}}$$ (9) Wt为t龄的体质量。根据体质量生长方程求得的体质量拐点年龄为4.76龄,对应拐点的体质量为722 g。线性体长变换渔获量曲线法估算的总死亡系数为1.172 (图6),95%置信区间为 (0.582, 1.762)。由经验公式 (5) 算得M为0.475,由公式 (6) 和 (7) 可算得F为0.697,E为0.59。
3. 讨论
3.1 与其他海域带鱼种群参数的比较
不同海区带鱼的生长、死亡和性成熟等生物学参数均存在较大差异 (表2)。由于不同海域的捕捞压力和生活环境相差较大,带鱼个体规格存在显著差异。福建海区带鱼个体的平均规格最小,印尼阿拉弗拉海的平均规格最大,而北部湾带鱼肛长的分布范围最广,最大肛长可达896 mm,最小仅20 mm。肛长体质量关系式中b与鱼类生活环境相关,本研究与其他海域相比,b差异较大,东海区带鱼b最大,印尼阿拉弗拉海带鱼的最小。这种不同海域的差异可能主要是由其营养条件所致[5]。L∞与K是描述鱼类个体生长规律的重要参数,分别代表了鱼类极限体长和生长曲线的平均曲率[5]。与本研究相比,伊朗阿曼湾海域带鱼极限肛长和生长参数均偏大,而东海海域带鱼极限肛长最小,生长参数最大。这种差异可能是不同海域带鱼的种群密度、栖息水温和饵料生物等不同所引起的。L50是带鱼渔业管理中重要的生物学参考点,由表2可知,各海域带鱼的L50差异显著,当前南海北部带鱼的最小,印尼阿拉弗拉海带鱼的最大。M与E是反映渔业资源开发现状的重要参数,以Gulland[23]提出的鱼类最适E为0.5作为判断依据,南海北部带鱼处于过度开发状态。
表 2 不同海区带鱼的种群参数Table 2. Population parameters of T. japonicus in different sea areas海区及采样时间
Sea area and sampling time肛长范围
Anal length range/mm平均
肛长
Mean anal
length/mm异速生
长因子
b渐近肛长
L∞/mm生长
系数
K/a50%性
成熟肛长
L50/mm自然死
亡系数
M总死亡
系数
E参数评估方法
Assessment method for parameters印尼阿拉弗拉海 (2008)[15]
Arafura Sea of Indonesia123~650 343.00 2.420 − − 368.0 − − 体长频率法
Length-frequency method缅甸外海 (2012—2013)[16]
Andaman Sea of Myanmar101~422 212.26 2.752 − − 242.7 − − 体长频率法
Length-frequency method伊朗阿曼湾 (2017—2018)[17]
Iran's Gulf of Oman119~580 − 2.914 610.4 0.220 242.3 − − 体长频率法
Length-frequency method福建闽南渔场 (2000—2002)[18]
Minnan Sea of Fujian52~332 160.00 2.529 − − − − − 体长频率法
Length-frequency method东海 (2002—2004)[19]
East China Sea− − 3.006 493.0 0.346 − − − 年龄鉴定法
Age-determination method东海近海 (2007—2008)[20]
Costal waters of East China Sea126~332 182.62 2.795 − − 164.7 − − 体长频率法
Length-frequency method北部湾 (2006—2007)[21]
Beibu Gulf20~896 − 2.970 − − − − − − 南海北部 (1981—1982)[22]
Northern South China Sea132~605 342.84 2.400 622.0 0.160 322.0 0.212 0.71 体长频率法
Length-frequency method南海北部 (1997—1999)[2]
Northern South China Sea20~670 187.60 3.028 700.0 0.270 276.0 0.390 0.87 体长频率法
Length-frequency method南海北部 (2014—2015) (本研究)
Northern South China Sea (This study)61~528 198.10 2.790 585.0 0.200 241.5 0.475 0.59 体长频率法
Length-frequency method注:−. 文献中未查找到相应的参数值或评估方法 Note: −. Values of parameter or assessment method are not found in the References. 3.2 南海北部带鱼生物学特征的年际变化
大多数鱼类的表型特征在经过较强的捕捞压力胁迫后会产生适应性响应,其中个体规格的变化较为明显[24]。3个时期南海北部带鱼肛长频率分布对比表明,在持续多年的捕捞胁迫下,南海北部带鱼的群体结构发生了较明显的转变,肛长频率分布从20世纪80年代初的多峰型变为90年代末的双峰型,至今已变为较明显的单峰型 (图7),渔获物肛长从342.84 mm下降至187.60 mm,虽然当前其平均肛长小幅度上升至198.1 mm (表2),但群体结构依然呈现简单化的趋势。需要注意的是,不同时期调查所使用的网具和调查船存在一定的差异,可能会对结果造成一定影响。相关渔业研究表明,当前南海带鱼群体组成以1龄鱼和当年鱼为主,渔获物趋于小型化,渔获质量显著下降[25-26]。从渐近肛长和50%性成熟肛长来看,L∞、L50分别从80年代的622和322.0 mm减小到现在的585和241.5 mm (表2),表明南海北部带鱼存在明显的小型化和性成熟提前现象,这可能是对捕捞压力的响应,并且与北部湾深水金线鱼 (Nemipterus bathybius)[27]、东海小黄鱼[28]等一致。K从20世纪80年代至今增加了0.04,表明南海北部带鱼生长加快,且b呈增大趋势,这可能是带鱼对资源结构性衰退的生物学适应性响应所致[29]。
在较高强度捕捞压力下,南海北部带鱼的生物学特征发生了明显变化,结构趋于简单,个体小型化,造成种群参数变化的原因可归结于2个:1) 高强度的捕捞压力使得种群密度降低,来自捕食及种间竞争的压力减小,剩余群体能够获得相对充足的饵料供给,从而使得小型个体迅速进入渔业[30],这种变化在降低捕捞压力的情况下是可逆的,如日本北海道的大麻哈鱼 (Oncorhynchus keta)[31];2) 捕捞驱动进化 (Fisheries-induced evolution, FIE),即长期的过度捕捞迫使种群的某种基因发生变化,该变化为不可逆。笔者分析认为南海北部带鱼表型特征变化可能是由第一种原因所引起。自1999年起,我国政府开始对南海区域的渔船数和渔船功率进行管控,调整了渔业生产结构,同时大力建设人工鱼礁并开展增殖放流,加上休渔期的实施和捕捞成本的不断攀升,使得南海渔业资源的开发强度有所降低[32]。有研究表明,南海近年来的渔业政策对鱼类生物学特征的变化存在积极影响,如北部湾二长棘犁齿鲷 (Evynnis cardinalis) 的平均体长、L50等有所恢复[33]。本研究中数据显示南海北部带鱼资源的E从20世纪80年代初的0.71上升至90年代末的0.87,至今降至0.59,捕捞强度明显减小,但仍处于过度捕捞状态。在捕捞强度下降期间,带鱼的平均肛长由187.6 mm恢复至198.1 mm,K则从0.27减小至0.20,其生长加快的现象有所缓解,这一变化趋势与北部湾蓝圆鲹 (Decapterus maruadsi) 类似[34]。因此,亟需控制带鱼的捕捞压力,探索开展总量管理和限额捕捞[35],并加大对网具及开捕规格的管理,帮助其资源的恢复。
由于本研究按季节采样,样本量有限,而基于肛长频率 (ELEFAN) 对生物学样本量和频率分布要求较高,因此在估算L∞和K时会产生一定误差;此外,解释捕捞压力对经济鱼类的影响及其种群产生的适应性变化还需要来自种群遗传学和室内生态受控实验的进一步证据。
-
图 2 不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹的血清总蛋白、白蛋白、球蛋白和尿素氮浓度
注:方柱上不同字母表示具有显著性差异 (P<0.05)。
Figure 2. Contents of serum total protein, albumin, globulin and blood urea nitrogen of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements
Note: Different letters on the bars are significantly different (P<0.05).
表 1 实验饲料组成及营养组成 (干物质)
Table 1 Formulation and proximate composition of reference and experimental diets (Dry mass)
% 原料 Ingredient 发酵棉籽粉替代鱼粉比例 Proportion of FCSM replacement 0% 25% 50% 75% 100% 鱼粉① Fish meal 35.00 26.25 17.50 8.75 0.00 发酵棉籽粉② Fermented cottonseed meal 0.00 11.47 22.94 34.41 45.00 大豆浓缩蛋白③ Soy protein Conc 13.00 13.00 13.00 13.00 13.00 鸡肉粉④ Chicken meal 5.00 5.00 5.00 5.00 5.00 赖氨酸 L-Lysine 0.00 0.21 0.42 0.63 0.85 蛋氨酸 DL-methionine 0.00 0.10 0.19 0.29 0.39 高筋面粉⑤ Gluten flour 20.00 20.00 20.00 20.00 20.00 诱食剂⑥ Attractant 0.30 0.30 0.30 0.30 0.30 卵磷脂 Lecithin 2.50 2.50 2.50 2.50 2.50 鱼油 Fish oil 6.00 6.50 7.00 7.50 8.00 维生素和矿物质预混料⑦
Vitamin and mineral premix2.00 2.00 2.00 2.00 2.00 氯化胆碱 Choline chloride 0.50 0.50 0.50 0.50 0.50 磷酸二氢钙 Ca(H2PO4)2 2.00 2.00 2.00 2.00 2.00 维生素 Vitamin C 0.50 0.50 0.50 0.50 0.50 骨粉 Bone meal 13.20 9.67 6.15 2.62 0 营养成分分析 (干基) Analyzed proximate composition (Dry basis) 水分 Moisture 9.5±0.2 8.3±0.1 10.4±0.1 11.0±0.1 9.9±0.1 粗蛋白 Crude protein 40.6±0.3 41.6±0.3 43.3±0.3 44.6±0.1 44.9±0.1 粗脂肪 Crude lipid 9.7±0.1 9.7±0.2 9.8±0.1 9.8±0.15 9.8±0.1 粗纤维 Crude fiber 0.33 1.62 2.91 4.20 5.39 灰分 Ash 21.4±0.1 18.1±0.2 14.2±0.1 10.9±0.1 8.6±0.1 游离棉酚质量分数
Free gossypol mass fraction/(mg·kg−1)0 29.93 59.85 89.78 119.70 注:① 水分7.1% (质量分数,后同)、粗蛋白68.0%、粗脂肪8.0%、粗纤维0.2%、灰分16.4%;② 水分7.2%、粗蛋白59.7%、粗脂肪1.7%、粗纤维11.4%、灰分6.6%;③ 水分9.0%、粗蛋白65.0%、粗脂肪0.5%、粗纤维0.1%、灰分2.6%;④ 水分9.0%、粗蛋白65.0%、粗脂肪5.0%、粗纤维2.6%、灰分12.1%;⑤ 水分9.7%、粗蛋白16.4%、粗脂肪1.0%、粗纤维0.6%、灰分1.5%;⑥ 诱食剂为二甲基-β-丙酸噻亭(Dimethyl-β-propiothetin , DMPT)、甘氨酸、牛磺酸等比例混合;⑦ 维生素和矿物质预混料物质质量分数 (mg·kg−1):维生素A乙酸酯150 000 IU,维生素D3 75 000 IU,dl-α-生育酚乙酸酯2 500,亚硫酸氢烟酰胺甲萘醌250,硝酸硫铵 (维生素B1) 320,核黄素 (维生素B2) 700,盐酸吡哆醇 (维生素B6) 500,氰钴胺 (维生素B12) 4,肌醇4 000,L-抗坏血酸-2-磷酸酯5 500,烟酰胺3 800,D-泛酸钙1 600,叶酸80,D-生物素4,铜 (甘氨酸铜络合物) 200,一水硫酸亚铁1 800,硫酸锰450,硫酸锌5 500,碘酸钙100,亚硒酸钠15,硫酸钴50,乙氧基喹啉0~300,二丁基羟基甲苯0~750。 Note: ① Moisture 7.1% (Mass fraction, the same below), crude protein 68.0%, crude lipid 8.0%, crude fiber 0.2%, ash 16.4%; ② Moisture 7.2%, crude protein 59.7%, crude lipid 1.7%, crude fiber 11.4%, ash 6.6%; ③ Moisture 9.0%, crude protein 65.0%, crude lipid 0.5%, crude fiber 0.1%, ash 2.6%; ④ Moisture 9.0%, crude protein 65.0%, crude lipid 5.0%, crude fiber 2.6%, ash 12.1%; ⑤ Moisture 9.7%, crude protein 16.4%, crude lipid 1.0%, crude fiber 0.6%, ash 1.5%; ⑥ The palatability enhancer is a mixture of dimethyl-β-propionate, glycine and taurine; ⑦ Composition of vitamin and mineral premixa (mg·kg−1): Retinyl acetate 150 000 IU, Vitamin D3 75 000 IU, dl-α-tocopherol acetate 2 500 mg, Menadione nicotinamide bisulfite 250, Vitamin B1 320, Riboflavin (Vitamin B2) 700, Vitamin B6 500, Vitamin B12 4, Inositol 4 000, Cholinesalicylate 5 500, Nicotinamide 3 800, D-calcium pantothenate 1 600, Folic acid 80, D-biotin 4, Copper (Copperdiglycinate) 200, Ferrous sulfate monohydrate 1 800, Manganese (II) sulfate monohydrate 450, Zinc (Zinc sulfate monohydrate) 5 500, Iodine (calcium iodate) 100, Selenium (Sodium selenite) 15, Cobalt (Cobalt sulfate hydrate) 50, Ethoxyquin 0–300, Dibutylhydroxytoluene 0–750. 表 2 不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹幼鱼的存活、生长和饲料利用性能
Table 2 Survival, growth and feed utilization of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements
指标
Index发酵棉籽粉替代鱼粉水平 Replacement of fish meal by FCSM 单因素方差分析
ANOVA
(P>F)线性趋势
Linear
trend
(P>F)二次趋势
Quadratic
trend
(P>F)0% (对照组
Control)25% 50% 75% 100% 成活率 Survival/% 85.00±5.09b 80.00±6.94ab 85.00±6.31b 72.50±5.34ab 63.33±2.72a 0.061 0.010 0.210 终末质量 FBW/g 42.34±3.92 40.78±2.62 39.87±1.49 39.14±3.80 35.08±1.38 0.487 0.095 0.648 体质量增长率 WGR/% 239.8±31.9 226.7±20.0 217.6±10.2 212.81±29.4 181.07±12.7 0.471 0.087 0.692 摄食率 FR/(%·d−1) 3.15±0.03 3.27±0.10 3.21±0.04 3.29±0.08 3.31±0.14 0.659 0.203 0.856 饲料利用率 FE 0.64±0.06b 0.59±0.07ab 0.61±0.01ab 0.54±0.06ab 0.45±0.05a 0.116 0.016 0.348 蛋白沉积率 PR/% 28.32±1.75b 27.12±2.86ab 26.21±1.64ab 21.94±3.14ab 17.17±1.78a 0.020 0.002 0.225 脂肪沉积率 LR/% 76.79±9.80c 67.04±4.14bc 64.41±1.43bc 48.73±4.11ab 25.50±4.63a 0.000 0.000 0.079 注:同行不同上标字母表示差异显著 (P<0.05),F代表显著性概率。后表同此。 Note: Values with different letters within the same row are significantly different (P<0.05). F represents the probability of significance. The same case in the following tables. 表 3 不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹鱼体的营养组成 (湿基)
Table 3 Proximate composition of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements (wet basis) %
指标
Index发酵棉籽粉替代鱼粉水平 Replacement of fish meal by FCSM 单因素
方差分析
ANOVA
(P>F)线性趋势
Linear
trend
(P>F)二次趋势
Quadratic
trend
(P>F)0% (对照组
Control)25% 50% 75% 100% 水分质量分数
Mass fraction of moisture/%65.93±0.67a 66.37±0.32ab 67.13±0.19ab 68.30±0.54bc 70.26±0.58c 0.000 0.000 0.083 粗蛋白质量分数
Mass fraction of crude protein/%18.00±0.35 18.43±0.22 18.34±0.55 18.25±0.36 17.72±0.31 0.673 0.542 0.189 粗脂肪质量分数
Mass fraction of crude lipid/%10.31±0.53c 9.72±0.25bc 9.42±0.09bc 8.48±0.35b 6.57±0.25a 0.000 0.000 0.017 灰分质量分数
Mass fraction of ash/%4.30±0.17 4.21±0.05 4.43±0.13 4.25±0.06 4.65±0.17 0.162 0.089 0.256 表 4 不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹鱼体的形体指标
Table 4 Physical indexes of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements
指标
Index发酵棉籽粉替代鱼粉水平 Replacement of fish meal by FCSM 单因素方差分析
ANOVA
(P>F)线性趋势
Linear trend
(P>F)二次趋势
Quadratic trend
(P>F)0% (对照组 Control) 25% 50% 75% 100% 肝体比 HIS/% 1.39±0.13b 0.91±0.05a 1.02±0.05a 1.14±0.08ab 1.06±0.04a 0.002 0.083 0.007 脏体比 VSI/% 6.34±0.16 6.21±0.14 5.80±0.41 6.31±0.16 6.44±0.19 0.388 0.686 0.124 肥满度 CF/(g·cm−3) 3.09±0.06 3.11±0.06 3.09±0.05 3.18±0.05 3.04±0.05 0.395 0.837 0.241 表 5 不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹的肠道消化酶活性和肝脏抗氧化酶活性
Table 5 Digestive enzyme activities and hepatic antioxidant enzyme activities of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements
指标
Index发酵棉籽粉替代鱼粉水平 Replacement of fish meal by FCSM 单因素
方差分析
ANOVA
(P>F)线性趋势
Linear
trend
(P>F)二次趋势
Quadratic
trend
(P>F)0%
(对照组 Control)25% 50% 75% 100% 胃蛋白酶活性
Pepsin activity/(U·mg−1)71.73±6.91 60.93±6.15 62.17±4.13 62.08±5.94 58.18±4.95 0.518 0.133 0.637 肠道胰蛋白酶活性
Intestinal trypsin activity/(U·mg−1)2 119.7±392.6 1 902.7±619.7 1 606.1±223.0 1 705.5±390.6 1 482.0±232.6 0.700 0.193 0.760 肠道α-淀粉酶活性
Intestine α-amylase activity /(U·mg−1)1.53±0.17 1.39±0.24 1.36±0.13 0.97±0.21 0.98±0.13 0.123 0.015 0.944 肠道脂肪酶活性
Intestinal lipase activity/(U·g−1)1.40±0.06a 1.73±0.08b 1.60±0.02ab 1.54±0.03ab 1.73±0.11b 0.018 0.026 0.536 肝脏超氧化物歧化酶活性
T-SOD of liver/(U·mg−1)444.86±33.68 432.68±29.54 445.68±17.98 484.21±37.00 450.95±13.16 0.794 0.540 0.802 肝脏过氧化氢酶活性
CAT of liver/(U·mg−1)39.59±7.73 46.32±6.51 41.83±3.32 50.94±4.31 48.02±0.49 0.494 0.174 0.792 肝脏总抗氧化能力
T-AOC of liver/(mmol·g−1)0.33±0.03 0.20±0.02 0.25±0.02 0.24±0.01 0.25±0.04 0.063 0.125 0.061 -
[1] FAO. The state of the world fisheries and aquaculture [M]. Rome: Food and Agricultural Organization of the United Nations, 2022: 1-3.
[2] WU G Y. Recent advances in animal nutrition and metabolism [M]. Berlin: Springer Cham, 2022: 237-261.
[3] BRITTEN G L, DUARTE C M, WORM B. Recovery of assessed global fish stocks remains uncertain[J]. Proc Natl Acad Sci USA, 2021, 118(31): e2108532118. doi: 10.1073/pnas.2108532118
[4] COTTRELL R S, BLANCHARD J L, HALPERN B S, et al. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030[J]. Nat Food, 2020, 1: 301-308. doi: 10.1038/s43016-020-0078-x
[5] KHAN M A, WAHID A, AHMAD M, et al. Cotton production and uses [M]. Berlin: Springer, 2020: 978-981.
[6] WANG J, CLARK G, JU M, et al. Effects of replacing menhaden fishmeal with cottonseed flour on growth performance, feed utilization and body composition of juvenile red drum Sciaenops ocellatus[J]. Aquaculture, 2020, 523: 735217. doi: 10.1016/j.aquaculture.2020.735217
[7] 余忠丽, 恽辉, 王俊青, 等. 一种酶解发酵生产棉籽蛋白的方法: CN112219934B [P]. 2021-07-16. [8] LIM S J, LEE K J. A microbial fermentation of soybean and cottonseed meal increases antioxidant activity and gossypol detoxification in diets for Nile tilapia, Oreochromis niloticus[J]. J World Aquac Soc, 2011, 42(4): 494-503. doi: 10.1111/j.1749-7345.2011.00491.x
[9] 孙宏, 叶有标, 姚晓红, 等. 发酵棉籽粕部分替代鱼粉对黑鲷幼鱼生长性能, 体成分及血浆生化指标的影响[J]. 动物营养学报, 2014, 26(5): 1238-1245. doi: 10.3969/j.issn.1006-267x.2014.05.014 [10] SUN H, TANG J W, YAO X H, et al. Effects of replacement of fish meal with fermented cottonseed meal on growth performance, body composition and haemolymph indexes of Pacific white shrimp, Litopenaeus vannamei Boone, 1931[J]. Aquac Res, 2016, 47(8): 2623-2632. doi: 10.1111/are.12711
[11] LIU B, GUO H Y, ZHU K C, et al. Growth, physiological, and molecular responses of golden pompano Trachinotus ovatus (Linnaeus, 1758) reared at different salinities[J]. Fish Physiol Biochem, 2019, 45: 1879-1893. doi: 10.1007/s10695-019-00684-9
[12] XUN P W, ZHOU C P, HUANG X L, et al. Effects of dietary sodium acetate on growth performance, fillet quality, plasma biochemistry, and immune function of juvenile golden pompano (Trachinotus ovatus)[J]. Aquac Nutr, 2022, 2022: 1-11.
[13] 农业农村部渔业渔政管理局, 全球水产技术推广总站, 中国水产学会. 2022中国渔业统计年鉴 [M]. 北京: 中国农业出版社, 2022: 22. [14] WANG F, HAN H, WANG Y, et al. Growth, feed utilization and body composition of juvenile golden pompano Trachinotus ovatus fed at different dietary protein and lipid levels[J]. Aquac Nutr, 2013, 19(3): 360-367. doi: 10.1111/j.1365-2095.2012.00964.x
[15] ZHOU C P, HUANG Z, LIN H Z, et al. Effects of dietary leucine on glucose metabolism, lipogenesis and insulin pathway in juvenile golden pompano Trachinotus ovatus[J]. Aquac Rep, 2021, 19: 100626. doi: 10.1016/j.aqrep.2021.100626
[16] LIU K, LIU H, CHI S Y, et al. Effects of different dietary lipid sources on growth performance, body composition and lipid metabolism-related enzymes and genes of juvenile golden pompano, Trachinotus ovatus[J]. Aquac Res, 2018, 49(2): 717-725. doi: 10.1111/are.13502
[17] LI M M, ZHANG M, MA Y C, et al. Dietary supplementation with n-3 high unsaturated fatty acids decreases serum lipid levels and improves flesh quality in the marine teleost golden pompano Trachinotus ovatus[J]. Aquaculture, 2020, 516: 734632. doi: 10.1016/j.aquaculture.2019.734632
[18] FANG H H, ZHAO W, XIE J J, et al. Effects of dietary lipid levels on growth performance, hepatic health, lipid metabolism and intestinal microbiota on Trachinotus ovatus[J]. Aquac Nutr, 2021, 27(5): 1554-1568. doi: 10.1111/anu.13296
[19] ZHOU C P, GE X P, LIN H Z, et al. Effect of dietary carbohydrate on non-specific immune response, hepatic antioxidative abilities and disease resistance of juvenile golden pompano (Trachinotus ovatus)[J]. Fish Shellfish Immunol, 2014, 41(2): 183-190. doi: 10.1016/j.fsi.2014.08.024
[20] XUN P W, LIN H Z, WANG R X, et al. Effects of dietary vitamin B1 on growth performance, intestinal digestion and absorption, intestinal microflora and immune response of juvenile golden pompano (Trachinotus ovatus)[J]. Aquaculture, 2019, 506: 75-83. doi: 10.1016/j.aquaculture.2019.03.017
[21] WANG J, GATLIN III D M, LI L H, et al. Dietary chromium polynicotinate improves growth performance and feed utilization of juvenile golden pompano (Trachinotus ovatus) with starch as the carbohydrate[J]. Aquaculture, 2019, 505: 405-411. doi: 10.1016/j.aquaculture.2019.02.060
[22] TAN X H, SUN Z Z, HUANG Z, et al. Effects of dietary hawthorn extract on growth performance, immune responses, growth-and immune-related genes expression of juvenile golden pompano (Trachinotus ovatus) and its susceptibility to Vibrio harveyi infection[J]. Fish Shellfish Immunol, 2017, 70: 656-664. doi: 10.1016/j.fsi.2017.09.041
[23] 马学坤. 卵形鲳鲹幼鱼对饲料中蛋白能量比和几种必需氨基酸需求的研究[D]. 青岛: 中国海洋大学, 2013: 26. [24] HARDY R W. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal[J]. Aquac Res, 2010, 41(5): 770-776. doi: 10.1111/j.1365-2109.2009.02349.x
[25] National Research Council. Nutrient requirements of fish and shrimp [M]. Now York: National Academies Press, 2011: 238.
[26] WILSON R P, ROBINSON E H, POE W E. Apparent and true availability of amino acids from common feed ingredients for channel catfish[J]. J Nutr, 1981, 111(5): 923-929. doi: 10.1093/jn/111.5.923
[27] ZHAO W, LIU Z L, NIU J. Growth performance, intestinal histomorphology, body composition, hematological and antioxidant parameters of Oncorhynchus mykiss were not detrimentally affected by replacement of fish meal with concentrated dephenolization cottonseed protein[J]. Aquac Rep, 2021, 19: 100557. doi: 10.1016/j.aqrep.2020.100557
[28] XU X Y, YANG H, ZHANG C Y, et al. Effects of replacing fishmeal with cottonseed protein concentrate on growth performance, flesh quality and gossypol deposition of largemouth bass (Micropterus salmoides)[J]. Aquaculture, 2022, 548: 737551. doi: 10.1016/j.aquaculture.2021.737551
[29] LIU H, DONG X H, TAN B P, et al. Effects of fish meal replacement by low-gossypol cottonseed meal on growth performance, digestive enzyme activity, intestine histology and inflammatory gene expression of silver sillago (Sillago sihama Forsskál) (1775)[J]. Aquac Nutr, 2020, 26(5): 1724-1735. doi: 10.1111/anu.13123
[30] BU X Y, CHEN A J, LIAN X Q, et al. An evaluation of replacing fish meal with cottonseed meal in the diet of juvenile Ussuri catfish Pseudobagrus ussuriensis: growth, antioxidant capacity, nonspecific immunity and resistance to Aeromonas hydrophila[J]. Aquaculture, 2017, 479: 829-837. doi: 10.1016/j.aquaculture.2017.07.032
[31] XIE S C, ZHOU Q C, ZHANG X S, et al. Effect of dietary replacement of fish meal with low-gossypol cottonseed protein concentrate on growth performance and expressions of genes related to protein metabolism for swimming crab (Portunus trituberculatus)[J]. Aquaculture, 2022, 549: 737820. doi: 10.1016/j.aquaculture.2021.737820
[32] LI M H, ROBINSON E H. Use of cottonseed meal in aquatic animal diets: a review[J]. N Am J Aquac, 2006, 68(1): 14-22. doi: 10.1577/A05-028.1
[33] ROMANO G B, SCHEFFLER J A. Lowering seed gossypol content in glanded cotton (Gossypium hirsutum L.) lines[J]. Plant breed, 2008, 127(6): 619-624. doi: 10.1111/j.1439-0523.2008.01545.x
[34] GAYLORD T G, GATLIN III D M. Determination of digestibility coefficients of various feedstuffs for red drum (Sciaenops ocellatus)[J]. Aquaculture, 1996, 139(3/4): 303-314. doi: 10.1016/0044-8486(95)01175-7
[35] 王开卓. 棉酚对草鱼肠道结构和免疫屏障的作用及其机制 [D]. 雅安: 四川农业大学, 2019: 1-2. [36] GONZÁLEZ-PEÑA M C, GOMES S Z, MOREIRA G S. Effects of dietary fiber on growth and gastric emptying time of the freshwater prawn Macrobrachiurn rosenbergii (de Man, 1879)[J]. J World Aquac Soc, 2002, 33(4): 441-447. doi: 10.1111/j.1749-7345.2002.tb00023.x
[37] DIAS J, HUELVAN C, DINIS M T, et al. Influence of dietary bulk agents (silica, cellulose and a natural zeolite) on protein digestibility, growth, feed intake and feed transit time in European seabass (Dicentrarchus labrax) juveniles[J]. Aquat Living Resour, 1998, 11(4): 219-226. doi: 10.1016/S0990-7440(98)89004-9
[38] LIU C, ZHAO L P, SHEN Y Q. A systematic review of advances in intestinal microflora of fish [J]. Fish Physiol Biochem, 2021, 47: 2041-2053.
[39] 兰鲲鹏, 吴光德, 王珺, 等. 饲料中添加菊粉对卵形鲳鲹幼鱼存活、生长和肠道菌群的影响[J]. 南方水产科学, 2022, 18(5): 55-65. doi: 10.12131/20220082 [40] SUN Y G, ZHANG S S, NIE Q X, et al. Gut firmicutes: relationship with dietary fiber and role in host homeostasis [J]. Crit Rev Food Sci Nutr, 2022: 1-16. DOI: 10.1080/10408398.2022.2098249.
[41] THOMAS F, HEHEMANN J H, REBUFFET E, et al. Environmental and gut bacteroidetes: the food connection[J]. Front Microbiol, 2011, 2: 93.
[42] MENETREY Q, SORLIN P, JUMAS-BILAK E, et al. Achromobacter xylosoxidans and Stenotrophomonas maltophilia: emerging pathogens well-armed for life in the cystic fibrosis patients' lung[J]. Genes, 2021, 12(5): 610. doi: 10.3390/genes12050610
[43] YIN Z Q, LIU X B, QIAN C Q, et al. Pan-genome analysis of Delftia tsuruhatensis reveals important traits concerning the genetic diversity, pathogenicity, and biotechnological properties of the species[J]. Microbiol Spectr, 2022, 10(2): e02072-21.
[44] LIU L, FENG Y, WEI L, et al. Genome-based taxonomy of brevundimonas with reporting Brevundimonas huaxiensis sp. nov[J]. Microbiol Spectr, 2021, 9(1): e00111-21.
[45] SINGH S, SAHU C, PATEL S S, et al. Pandoraea apista bacteremia in a COVID-positive man: a rare coinfection case report from North India[J]. J Lab Phys, 2021, 13(2): 192-194.
[46] ZHANG Z S, WANG X M, HAN S W, et al. Effect of two seaweed polysaccharides on intestinal microbiota in mice evaluated by illumina PE250 sequencing[J]. Int J Biol Macromol, 2018, 112: 796-802. doi: 10.1016/j.ijbiomac.2018.01.192
[47] LI W J, ZHANG L, WU H X, et al. Intestinal microbiota mediates gossypol-induced intestinal inflammation, oxidative stress, and apoptosis in fish[J]. J Agric Food Chem, 2022, 70(22): 6688-6697. doi: 10.1021/acs.jafc.2c01263
[48] WANG M M, WICHIENCHOT S, HE X W, et al. In vitro colonic fermentation of dietary fibers: fermentation rate, short-chain fatty acid production and changes in microbiota[J]. Trends Food Sci Technol, 2019, 88: 1-9. doi: 10.1016/j.jpgs.2019.03.005
[49] ATSUMI S, HANAI T, LIAO J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels[J]. Nature, 2008, 451(7174): 86-89. doi: 10.1038/nature06450
[50] XU Y Q, ZHU Y, LI X T, et al. Dynamic balancing of intestinal short-chain fatty acids: the crucial role of bacterial metabolism[J]. Trends Food Sci Tech, 2020, 100: 118-130. doi: 10.1016/j.jpgs.2020.02.026
[51] KONDO T, KISHI M, FUSHIMI T, et al. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation[J]. J Agric Food Chem, 2009, 57(13): 5982-5986. doi: 10.1021/jf900470c
[52] de VADDER F, KOVATCHEVA-DATCHARY P, GONCALVES D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J]. Cell, 2014, 156(1/2): 84-96.
[53] GE H F, LI X F, WEISZMANN J, et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids[J]. Endocrinology, 2008, 149(9): 4519-4126. doi: 10.1210/en.2008-0059
[54] HONG Y H, NISHIMURA Y, HISHIKAWA D, et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43[J]. Endocrinology, 2005, 146(12): 5092-5099. doi: 10.1210/en.2005-0545
[55] SAHURI-ARISOYLU M, BRODY L P, PARKINSON J R, et al. Reprogramming of hepatic fat accumulation and 'browning' of adipose tissue by the short-chain fatty acid acetate[J]. Int J Obes, 2016, 40(6): 955-963. doi: 10.1038/ijo.2016.23
[56] JIA Y M, HONG J, LI H F, et al. Butyrate stimulates adipose lipolysis and mitochondrial oxidative phosphorylation through histone hyperacetylation-associated β3-adrenergic receptor activation in high-fat diet-induced obese mice[J]. Exp Physiol, 2017, 102(2): 273-281. doi: 10.1113/EP086114
[57] GAO Z G, YIN J, ZHANG J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice[J]. Diabetes, 2009, 58(7): 1509-1517. doi: 10.2337/db08-1637
[58] 荀鹏伟. 卵形鲳鲹饲料脂肪需求量及短链脂肪酸的营养功能研究 [D]. 上海: 上海海洋大学, 2022: 105. [59] DU Z Y, TURCHINI G M. Are we actually measuring growth? An appeal to use a more comprehensive growth index system for advancing aquaculture research[J]. Rev Aquac, 2022, 14(2): 525-527. doi: 10.1111/raq.12604
[60] DENG J M, MAI K S, CHEN L Q, et al. Effects of replacing soybean meal with rubber seed meal on growth, antioxidant capacity, non-specific immune response, and resistance to Aeromonas hydrophila in tilapia (Oreochromis niloticus×O. aureus)[J]. Fish Shellfish Immunol, 2015, 44(2): 436-444. doi: 10.1016/j.fsi.2015.03.018
[61] DODOU K. Investigations on gossypol: past and present developments[J]. Expert Opin Investig Drugs, 2005, 14(11): 1419-1434. doi: 10.1517/13543784.14.11.1419
[62] LIN Q R, LI C G, ZHA Q B, et al. Gossypol induces pyroptosis in mouse macrophages via a non-canonical inflammasome pathway[J]. Toxicol Appl Pharmacol, 2016, 292: 56-64. doi: 10.1016/j.taap.2015.12.027
[63] HE X, WU C Y, CUI Y H, et al. The aldehyde group of gossypol induces mitochondrial apoptosis via ROS-SIRT1-p53-PUMA pathway in male germline stem cell[J]. Oncotarget, 2017, 8(59): 100128-100140. doi: 10.18632/oncotarget.22044
[64] JIANG J, YE W, LIN Y C. Gossypol inhibits the growth of MAT-LyLu prostate cancer cells by modulation of TGFβ/Akt signaling[J]. Int J Mol Med, 2009, 24(1): 69-75.
[65] ZHANG M C, LIU H P, GUO R B, et al. Molecular mechanism of gossypol-induced cell growth inhibition and cell death of HT-29 human colon carcinoma cells[J]. Biochem Pharmacol, 2003, 66(1): 93-103. doi: 10.1016/S0006-2952(03)00248-X
[66] LIU Y L, LU Q S, XI L W, et al. Effects of replacement of dietary fishmeal by cottonseed protein concentrate on growth performance, liver health, and intestinal histology of largemouth bass (Micropterus salmoides)[J]. Front Physiol, 2021, 12: 2308.
[67] BIAN F, ZHOU H G, WANG C, et al. Effects of replacing fishmeal with different cottonseed meals on growth, feed utilization, haematological indexes, intestinal and liver morphology of juvenile turbot (Scophthalmus maximus L.)[J]. Aquac Nutr, 2017, 23(6): 1429-1439. doi: 10.1111/anu.12518
[68] TRIPATHI A, DEBELIUS J, BRENNER D A, et al. The gut-liver axis and the intersection with the microbiome[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(7): 397-411. doi: 10.1038/s41575-018-0011-z