发酵棉籽粉替代鱼粉对卵形鲳鲹幼鱼生长、饲料利用性能及肠道菌群的影响

吴光德, 兰鲲鹏, 陈旭, 王芸, 周传朋, 林黑着, 马振华, 王珺

吴光德, 兰鲲鹏, 陈旭, 王芸, 周传朋, 林黑着, 马振华, 王珺. 发酵棉籽粉替代鱼粉对卵形鲳鲹幼鱼生长、饲料利用性能及肠道菌群的影响[J]. 南方水产科学, 2023, 19(4): 126-138. DOI: 10.12131/20230036
引用本文: 吴光德, 兰鲲鹏, 陈旭, 王芸, 周传朋, 林黑着, 马振华, 王珺. 发酵棉籽粉替代鱼粉对卵形鲳鲹幼鱼生长、饲料利用性能及肠道菌群的影响[J]. 南方水产科学, 2023, 19(4): 126-138. DOI: 10.12131/20230036
WU Guangde, LAN Kunpeng, CHEN Xu, WANG Yun, ZHOU Chuanpeng, LIN Heizhao, MA Zhenhua, WANG Jun. Effects of replacement of fish meal by fermented cottonseed meal on growth performance, feed utilization and intestinal bacteria community of juvenile golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2023, 19(4): 126-138. DOI: 10.12131/20230036
Citation: WU Guangde, LAN Kunpeng, CHEN Xu, WANG Yun, ZHOU Chuanpeng, LIN Heizhao, MA Zhenhua, WANG Jun. Effects of replacement of fish meal by fermented cottonseed meal on growth performance, feed utilization and intestinal bacteria community of juvenile golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2023, 19(4): 126-138. DOI: 10.12131/20230036

发酵棉籽粉替代鱼粉对卵形鲳鲹幼鱼生长、饲料利用性能及肠道菌群的影响

基金项目: 国家自然科学基金面上项目 (32172984);中国水产科学研究院中央级公益性科研院所基本科研业务费专项资金 (2020TD55, 2022XT0404);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助 (2021SD09)
详细信息
    作者简介:

    吴光德 (1998—),男,硕士研究生,研究方向为鱼类营养与饲料。E-mail: 843007708@qq.com

    通讯作者:

    王 珺 (1979—),女,研究员,博士,研究方向为水产动物营养与饲料学。E-mail: jwang@scsfri.ac.cn

  • 中图分类号: S 917.4

Effects of replacement of fish meal by fermented cottonseed meal on growth performance, feed utilization and intestinal bacteria community of juvenile golden pompano (Trachinotus ovatus)

  • 摘要: 发酵棉籽粉是一种优质植物蛋白原料,具有替代饲料鱼粉的潜力。为评估发酵棉籽粉作为卵形鲳鲹 (Trachinotus ovatus) 饲料蛋白源的适宜性及适宜替代水平,用发酵棉籽粉分别替代卵形鲳鲹幼鱼饲料中0% (对照组)、25%、50%、75%和100%的鱼粉 (基础饲料中鱼粉质量分数为35%),配制成5种实验饲料,饲喂幼鱼 [初始体质量为 (12.57±0.25) g] 7周,探究了发酵棉籽粉替代鱼粉对幼鱼存活、生长和饲料利用性能及肠道菌群组成的影响。结果显示,发酵棉籽粉替代组的存活、生长、饲料利用率以及蛋白质、脂肪沉积效率均低于鱼粉对照组,而25%和50%替代组与对照组无显著性差异 (P>0.05)。但当发酵棉籽粉替代75%~100%鱼粉时,刺激了卵形鲳鲹肝脏的抗氧化系统,使总超氧化物歧化酶 (T-SOD) 和过氧化氢酶 (CAT) 活性高于对照组。此外肝脏HE染色切片显示其细胞空泡化现象加剧,100%替代组的血清总蛋白、白蛋白和球蛋白含量降低,肝脏合成蛋白能力可能下降。发酵棉籽粉高水平替代鱼粉会影响卵形鲳鲹的肠道菌群组成,表现为有益菌丰度下降、有害菌丰度上升,从而影响了肠道菌群功能。综合考虑生长性能和鱼体健康,建议卵形鲳鲹饲料中发酵棉籽粉替代鱼粉水平以25%为宜。
    Abstract: Fermented cottonseed meal (FCSM) is a high-quality plant protein ingredient with potential to replace fishmeal in feed. To evaluate the suitability of FCSM as a protein source in the diet of juvenile golden pompano (Trachinotus ovatus) and its appropriate replacement level, we had fed the juveniles with initial body mass of (12.57±0.25) g for seven weeks by five diets to replace 0% (Control group), 25%, 50% and 100% of fishmeal by FCSM, and the fish meal in reference diet was 35%. Then we investigated the effects of FCSM replacement of fishmeal on the survival, growth, feed utilization performance and intestinal microflora of the juveniles. The results show that the survival, growth, feed efficiency, dietary protein and lipid deposition rates were lower in FCSM treatments compared with those in reference diet, while the differences between 25%, 50% replacement groups and the reference diet were not significant (P>0.05). However, the liver antioxidant system was stimulated, and the activities of total superoxide dismutase (T-SOD) and catalase (CAT) in 75%−100% replacement groups were higher than those in the control group. In addition, the liver hematoxylin-eosin-stained sections show that the cellular vacuolation phenomenon was aggravated. The contents of total protein, albumin and globulin in serum in 100% replacement group were reduced, and the protein synthesis capacity of liver might be impaired. High-level replacement of fish meal by FCSM affected the composition of intestinal flora, with the abundance of beneficial bacteria decreasing and that of harmful bacteria increasing. Taking into account both growth performance and fish health, it is recommended to replace fish meal with 25% FCSM in the diet for T. ovatus.
  • 近年来,实时声学成像技术迅速发展,形成具有各种频率、范围和分辨率的机械扫描或多波束声呐 (成像声呐)[1]。成像声呐的先驱DIDSON (Dual-frequency Identification Sonar) 由华盛顿大学应用物理实验室为美国海军研发[2],其基于“声学照相机”的概念[3],利用多波束原理生成可视化的点像素阵列。而基于波束形成技术及声学透镜的使用[4],DIDSON可以生成接近光学质量的高分辨率数字图像,可用于识别具有生物学意义的目标。自适应分辨率成像声呐 (Adaptive Resolution Imaging Sonar, ARIS) 是DIDSON的升级版,旨在获取更高分辨率的图像并捕捉更多信息,提供比同类声呐更出色的图像清晰度。

    成像声呐具备在低能见度水中清晰成像的优势,对调查对象无损害,具有方便快捷的优点[5-6],相比原始生物调查(网捕调查和生物标记调查)和传统声学技术(如单波束和分波束技术)更具有生态学的调查意义[7-11]。成像声呐已广泛用于鱼类通道的活动规律[12-14]、鱼类计数[15-16]、鱼类丰度与多样性[17-20]以及鱼类洄游与逃逸能力[21-23]等方面的研究,成为研究鱼类的重要工具,然而针对成像声呐测量鱼类长度的研究报道较少。

    鱼类长度特征对更全面地理解渔业生物学至关重要[24-26]。鱼类长度是揭示鱼类种群的生长、增长和死亡率的重要信息,同时可为包括渔业生态与管理、种群评估、种群增长和环境恢复在内的调查提供重要的数据支持[27]。而在现有利用成像声呐开展鱼类长度的研究中,Hightower等[28]主要研究了不同鱼类对成像声呐测量鱼类映像长度的影响,推测长度测量误差与鱼类吻部或异尾鳍结构有关。Cook等[29]在研究成像声呐测量鱼类长度中发现,游泳模式对鱼类映像长度测量精度并无显著交互影响。Daroux等[30]提出了一种测量员误差效应,即最小鱼类 (长度<57 cm) 长度被高估,而最大鱼类 (长度>57 cm) 长度被低估。Burwen等[31]在利用成像声呐估计大鳞大麻哈鱼 (Oncorhynchus tshawytscha) 和红大麻哈鱼 (O. nerka)长度中未记录估计精度的距离相关性,同时Cook等[29]发现探测距离 (鱼类目标与声呐的距离) 的增加不会增大鱼类映像长度的测量误差。目前,国内尚未开展针对ARIS映像测量鱼类长度误差影响因素及修正的研究工作。

    本文以ARIS鱼类映像为研究对象,依据ARIS单点部署测量实验,阐明ARIS映像测量长度与鱼类尺寸、鱼类与扫描波束的夹角、探测距离以及声呐频率之间的关系,对不同影响因素下ARIS映像测量长度误差开展科学评估,并提出ARIS映像测量鱼类长度修正模型的新方法,以期为成像声呐获取精准鱼类长度提供基础理论支持。

    2021年7月在上海海洋大学明湖开展鱼类长度测量实验。声学实验水池如图1所示,实验水池 (长4 m×宽3 m×高3 m) 四周和底部配置网格 (网眼对角线:5 cm) 防止非实验鱼的干扰,水池内侧安装踏板 (图1阴影部分),便于实验人员控制实验变量。实验水池装置对水下声学探测无影响,忽略人为活动干扰。实验期间,水流和水深无明显变化,实验水池水温恒定31 ℃。

    图  1  声学实验水池
    Figure  1.  Acoustic experimental pool

    本研究中使用ARIS1800在垂直方向14°和水平方向29°生成扇形多波束阵列。ARIS1800在两个离散频率下工作:高频1.8 MHz可以产生高分辨率图像,水平角度分辨率为0.3°,换能器阵列被水平分成96个波束单元;1.1 MHz可以探测远距离目标,图像分辨率会有所降低,此时换能器阵列有48个单元。本研究ARIS1800设置视场窗口长度8 m,设置开始窗0.7 m,图像采集帧率设为每秒8帧。ARIS1800部署在水平面以下1 m深度。研究思路如图2所示。

    图  2  研究思路
    Figure  2.  Research idea

    实验选取长度介于10~50 cm的鳙 (Hypophthal michthys) 和鲫 (Carassius auratus)。测量前,将实验鱼浸泡在体积分数45%的乙醇溶液中3 min进行活性抑制,限制游动速度,并利用鱼体测量板实测实验鱼吻端到尾鳍端的长度,即全长 (Total length, TL) 和吻端到尾叉最深点长度,即尾叉长 (Fork length, FL) (表1)。

    表  1  实验鱼长度统计
    Table  1.  Length statistics of trial fish
    编号
    No.
    种类
    Species
    全长
    Total length/cm
    尾叉长
    Fork length/cm
    147.541.8
    238.035.5
    320.517.0
    426.523.5
    537.534.0
    642.039.0
    744.039.0
    837.534.0
    下载: 导出CSV 
    | 显示表格

    利用鱼类固定装置和鱼线 (0.3 mm) 固定实验鱼进行静态测量。3条鱼线被缝进8号实验鱼下颚、尾巴和脊椎,头尾线分别固定于A和B连接点,脊线附着于C连接点 (图3)。3条鱼线被拉伸,确保实验鱼直立姿态。固定装置部署在水下1.0 m与ARIS1800波束垂直,该部署方式利于波束穿透鱼体,增加ARIS1800检测面积。该实验以距离100 cm为起点,每隔50 cm记录30 s声学数据。

    图  3  鱼类固定装置
    Figure  3.  Fixed device of fish

    利用0.3 mm鱼线一端固定于实验鱼脊椎上,另一端固定于图1的 A点 (与ARIS1800距离约为3.5 m) 进行系留鱼测量。鱼线长度为1.5 m,确保实验鱼在ARIS1800视场自由游动。每条实验鱼采集5 min声学数据,以便获取不同姿态下的鱼类声学映像。

    本研究利用ARIS控制和显示软件 (V2.6.0) 手动鱼类测量功能从声学映像中估算鱼类长度。通过使用ARIS的动态背景去除算法 (Simple Marching Cubes) 去除图像中静止结构噪声。该算法依赖于操作员选择参数来确定从显示图像中减去图像噪音大小,本研究选择默认值 (系数=10 cm2)。设置图像显示阈值 (最低值18 dB,最高值70 dB) 以便优化鱼类图像对比度,有助于选定鱼类完整映像帧并测量鱼类长度 (ARIS1800 length)。ARIS1800 length估计仅限于实验鱼在活动期间拍摄的图像,以便动态背景去除算法不会减少目标鱼图像,同时操作员要排除显示串扰的图像 (即由相邻光束中的明亮返回形成的电弧)。ARIS1800 length估计选择几何测量模式,操作员暂停ARIS1800映像,放大感兴区域鱼类目标,第一次鼠标点击在与鼻子相关的像素前沿,最后一次点击在与尾巴相关的像素后沿,形成测量矩形框 (图4),软件依据鼠标点击ARIS1800图像的像素坐标计算矩形框的边长长度。由于操作员测量ARIS1800鱼类映像长度时存在主观效应,故本研究将实验鱼完整长度帧数限制为10帧,以接近实验鱼测量长度所能达到的合理值,将其10次测量值的平均值用作ARIS1800 length的估计值。

    图  4  不同角度实验鱼映像图
    注:a. φ 为0°时实验鱼映像图;b. φ 为51°时实验鱼映像图;c. φ为90°时实验鱼映像图。映像两侧数字表示声呐探测视距。
    Figure  4.  Images of trial fish from different angles
    Note: a. Trial fish image at 0°; b. Trial fish image at 51°; c. Trial fish image at 90°. The numbers on both sides of the image indicate the sonar detection sight range.

    ARIS1800 length估计原则为:实验鱼与扫面波束面平行时,ARIS1800 length为映像矩形框的高度值 (图4-a);实验鱼与扫面波束面成一定角度时,ARIS1800 length为映像矩形框的对角线的长度值 (图4-b);实验鱼与扫面波束面垂直时,ARIS1800 length为映像矩形框的宽度值 (图4-c)。依据ARIS1800映像坐标计算选择区域矩形框高度、宽度和对角线长度 (ARIS1800映像测量坐标系见图5x轴表示矩形宽度,y轴表示矩形高度)。

    图  5  ARIS映像测量坐标系
    Figure  5.  ARIS image measurement system

    由公式 (1) 计算扫描垂直波束面夹角 $ \text{φ} $

    $$ \text{φ}={\rm{arctan}}\frac{{\text{W}}_{\rm{BC}}}{{\text{H}}_{\rm{AB}}} $$ (1)

    式中:$ {\text{W}}_{\rm{BC}} $为测量坐标系矩形宽度值;$ {\text{H}}_{\rm{AB}} $为测量坐标系矩形高度值。

    在利用成像声呐ARIS1800测量鱼类目标时,静态测量鱼类ARIS1800 length估计值随距离的增大而减小,ARIS1800 length估计值在距离较近时偏大,距离较远时偏小,ARIS1800 length估计值误差有逐渐增大的趋势 (图6-a),长度测量精度在200~300 cm内最高并接近鱼类目标实际长度,而后随距离的增加而逐渐下降。但在系留鱼实验中,鱼类ARIS1800 length估计值与距离无相关性,测量误差在距离因素分布上表现出随机性 (图6-a)。鱼类目标的大小对ARIS1800测量精度产生偏差,鱼类目标测量误差最大值为10 cm;同时,在系留鱼实验中,鱼类目标测量ARIS1800 length往往被低估 (图6-b)。

    图  6  鱼类目标成像声呐测定误差受探测距离和已知长度的影响。
    注:正误差值表示对鱼长高估,而负值表示低估。
    Figure  6.  Measurement error of imaging sonar of fish target as affected by detection distance and known length
    Note: Positive error values represent overestimated fish lengths, while negative values represent underestimated fish lengths.

    在系留鱼实验中,当基于鱼类映像ARIS1800 length和鱼类与阵列垂直波束面夹角 $ \text{φ} $的关系进行对比分析时,可以看出 $ \text{φ} $是造成鱼类映像ARIS1800 length测量误差的主要因素。理论上当鱼类目标与波束垂直时($ \text{φ} $为90°),鱼类目标接收更多波束采样点的检测,测量值精度最高,但由于串扰的影响,此时ARIS1800 length仍低于全长。鱼类目标与波束平行 ($ \text{φ} $为0°) 时,ARIS1800 length显著减小,同时在不同声呐频率的鱼类目标测量上保持一致 (图7)。在 $ \text{φ} $为45°~90°时,鱼类测量值精度趋于稳定,ARIS1800 length与鱼类目标全长最接近,而在其他夹角情况下,鱼类ARIS1800 length测量逐渐减小,且 $ \text{φ} $越小,ARIS1800 length就越小。在1.1 MHz频率下小体型鱼类 (FL<20 cm) 受夹角 $ \text{φ} $影响更大 (图8-a);但对大体型鱼类 (FL>40 cm),不同工作频率对观察到的长度无明显偏差 (图8-d)。

    图  7  分别使用传感器的两个频率在水平面展开的侧面测定所有鱼类映像长度
    Figure  7.  All fish image lengths measured on side of horizontal expansion using two frequencies of sensor
    图  8  映像长度误差的模型取决于夹角 φ 大小
    注:a. 高频鱼类映像长度与全长误差;b. 低频鱼类映像长度与全长误差;c. 高频鱼类映像长度与尾叉长误差;d. 低频鱼类映像长度与尾叉长误差。
    Figure  8.  Model of image length error depends on size of angle
    Note: a. Error between length and total length of high-frequency fish image; b. Error between image length and total length of low-frequency fishimage; c. Error between length of high-frequency fish image and length of tail fork; d. Error between image length and fork length of low-frequency fish.

    本研究部署鱼类均能在扫测视场中被有效检测。从系留鱼ARIS1800图像中发现ARIS1800 length稳定性较好 (表2),不同大小鱼类的映像长度中误差均小于3 cm。

    表  2  映像长度统计
    Table  2.  Image length statistics
    编号
    No.
    映像长度均值
    Average image length/cm
    映像长度误差
    Image length error/cm
    中误差
    Mean square error/cm
    1.8 MHz1.1 MHz1.8 MHz1.1 MHz1.8 MHz1.1 MHz
    1 42.1 40.75 5.4 6.4 2.79 1.8
    2 34.35 31.2 3.65 7.8 2.43 1.31
    3 18.16 16.55 2.34 3.95 1.98 1.54
    4 22.58 22.42 3.95 4.18 1.74 2.34
    下载: 导出CSV 
    | 显示表格

    ARIS1800高频或低频工作时,ARIS1800 length小于全长 (图8-a、8-b),且全长误差函数模型偏离全长程度较高,误差均值为4.6 cm。当 $ \text{φ} $大于40°时,ARIS1800 length普遍大于鱼类尾叉长,当 $ \text{φ} $小于40°时,ARIS1800 length普遍小于尾叉长 (图8-c、8-d)。在不同频率上尾叉长在尾叉长误差函数模型上具有一致性,误差均值为2.1 cm (图8-c、8-d)。ARIS1800 length与鱼类尾叉长的误差较小,其用于鱼类尾叉长的估计精度更高。

    测量长度误差率 (测量误差相对鱼类实际长度的百分比) 随尾叉长的增大而减小,在较小体型鱼类中ARIS1800测量误差映像较大。鱼类目标全长误差率要高于尾叉长误差率 (图9),这也表明ARIS1800 length与鱼类尾叉长更接近。

    图  9  映像长度误差率
    Figure  9.  Error rate of image length

    ARIS1800 length与鱼类目标全长和尾叉长具有较强的线性关系 (R2>0.98,图10),鱼类全长修正模型为 $ {y}{1 = 1.099}\;{8}{x}{+1.779}\;{6} $,尾叉长修正模型为 $ {y}2 = 0.959\;{3}{x}{+0.352\;2} $;其中,$ {x} $为测量长度 (cm),$ {y}{1} $为鱼类全长 (cm),$ {y}{2} $为鱼类尾叉长 (cm)。修正模型样本点良好地分布在模型周围,样本点无偏离现象。

    图  10  鱼类映像长度与全长和尾叉长的线性模型
    Figure  10.  Linear model of fish image length, total length and fork length

    ARIS1800图像是连续发射和采集的图像,在一定时间内ARIS1800 length具有一定的波动性,这可能是鱼类目标边缘串扰效应造成的误差[32],这种串扰涉及延伸到相邻声呐波束中的声瓣,极大地模糊了鱼类目标的边缘,而在声呐相对较大的距离处检测到的目标中,边缘串扰效应会有所减弱。ARIS1800低频图像由差序发射的48束波成像,而高频图像由差序发射的96束波成像,图像分辨率提高,波束数的增加引起ARIS1800 length的微弱改善。同时,实验表明ARIS1800 length在不同的频率下具有稳定性 (表2),声呐频率改变对映像长度测量误差无显著性影响,但声呐高频测量精度略高于低频测量模式[26,31]

    ARIS1800具有沿96波束阵列水平面检测目标的最佳分辨率,但由于波束扩展,成像声呐的波束宽度进一步下降,比靠近声呐换能器的同一波束的宽度更大[31]。因此,在距传感器更远距离处检测到的物体中,预计会有更大的测量误差。本研究中,静态固定鱼实验结果与预想结果相同,但本实验仅验证了ARIS1800在0.7~4.0 m距离内的声呐测量精度,无法估计更远距离的测量精度。同时本研究在系留鱼的实验中发现探测距离对ARIS1800 length无显著影响,而先前DIDOSON映像长度研究中,同样也发现探测距离对DIDOSON映像长度并无显著影响,这两次研究对探测距离的判断具有一致性[2,31]。本研究针对近距离 (4.0 m) 的声呐测量精度进行了实验,为近距离的ARIS1800测量目标长度提供借鉴,而更远距离的ARIS1800探测精度还需进一步的实验探讨。

    ARIS1800测量鱼类长度误差除了声学测量所施加的技术限制外,鱼类游泳还表现出相当大的身体弯曲和波动[33]。例如鱼类尾巴摆动、鱼体自然拱起或改变运动方向等均会影响鱼类接受波束数量,这也可用来解释ARIS1800测量鱼类长度的误差,其中鱼类与扫描波束夹角φ对鱼体接收波束数量具有绝对控制,这被认为是成像声呐系统调查中的潜在误差来源。本研究通过声呐视场中系留鱼来分析 φ 带来的潜在影响。在所有不同夹角 φ 情况下,鱼类长度估计的准确性大多都被确定为负向偏差,即ARIS1800 length值低于鱼类目标FL值。当φ 为90°时,鱼体接收波束数量最多,理论上鱼类长度的测量具有最高精度,但就本次实验结果而言,测量精度未达到预期值。原因可能与此时鱼类尾巴和吻部波束回波信号形成的明亮光束有关,造成该区域边缘信号干扰大,导致尾巴失真和吻部模糊,影响操作员对ARIS1800 length的提取进而造成测量误差。当 $ \text{φ} $ 为0°时,此时鱼类目标ARIS1800 length误差最大 (图8),鱼体接收波束数达到自身的最小值,这与预期结果一致。此外,将本研究中使用ARIS1800关于 $ \text{φ} $ 对鱼类长度精度的分析与先前DIDSON成像声呐的测定结果进行比较,发现φ与声呐测量鱼类长度值均呈现正相关关系[29],由此可见,$ \text{φ} $ 是导致ARIS1800 length测量误差的主要因素。本文 $ \text{φ} $ 的计算方法简便但精度欠佳,无法准确地支持后续鱼类目标长度的测量修正。在今后研究中需要提出新的 $ \text{φ} $ 计算方法,进而对鱼类长度信息做出准确提取。$ \text{φ} $ 对鱼类长度测量误差的分析,可为今后ARIS1800探测鱼类目标提供理论依据,例如在河道测量鱼类长度时,由于鱼类多顺流或顶流游动[34],应设计ARIS1800垂直河流走向,确保鱼类目标接受相对自身较多的声呐波束。

    在验证鱼类波束面夹角 $ \text{φ} $ 对估计鱼类长度的影响中,分别对比分析了ARIS1800 length与鱼类目标TL和FL的测量误差,在所有不同夹角 $ \text{φ}\text{} $ 情况下反映出ARIS1800的尾叉长误差更小,这与鱼类吻部和尾部的结构特征相关:一方面,鱼类目标尾部声呐回波较弱,造成尾部声呐映像的缺失,另一方面,鱼类目标边缘串扰效应阻止了目标边界的测量,这很好地解释了ARIS1800图像鱼类目标长度与FL更接近,即在ARIS1800图像上使用FL的测量更为有效,这可为未来ARIS1800研究鱼类目标长度提供参考。同时本研究发现,鱼类目标ARIS1800 length与TL及FL均具有较强的线性关系,ARIS1800间接地提取鱼类目标TL和FL,进而可以对鱼类目标提取误差进行线性模型修正,这一结论与用DIDSON声呐图像研究大麻哈鱼测量长度与尾叉长的关系[2]一致。ARIS1800已被证明在鱼类目标长度研究中具有一定优势,但本研究实验鱼类样本数量偏少,存在一定的偶然误差,今后需不断对线性模型进行拟合,进一步提高ARIS1800测量鱼类长度的精度。

    本文探讨了ARIS1800测量鱼类长度的误差及修正,总结和归纳了当前成像声呐在水下鱼类测量中的应用,提出关于鱼类长度测量的精度问题,并依据影响鱼类长度测量的不同因素组织实验,通过客观评价与定量评估,分析了各因素对ARIS1800 length测量误差的影响程度以及误差修正模型。本研究发现,鱼类与扫面波束夹角是造成长度测量误差的主要因素,夹角为0°时,测量误差最大。探测距离对鱼类映像长度的测量误差影响并不显著,实验中测量误差最大值为6.2 cm。鱼类映像长度与其尾叉长接近,测量中误差均值为2.1 cm。鱼类映像长度与全长、尾叉长的修正模型拟合度R2分别为0.995 1和0.990 5,可用于纠正长度测量错误,提高成像声呐测量精度。

    未来利用成像声呐测量鱼类目标长度的研究中,将进一步开展如下工作:1) 研究声呐映像长度与鱼类目标与声呐波束夹角、探测距离之间的关系,建立精确的测量长度改正模型。2) 综合多种因素对长度测量的影响,优化修正模型,不断提高鱼类长度测量精度。3) 开展鱼类长度自动提取方法研究。目前鱼类长度提取通常是基于声呐软件人工提取的,这种方法需要操作者具备丰富的理论和经验,极大地限制了鱼类长度提取的效率。鱼类目标由特殊像素点有规则地排列组成,准确地提取鱼类目标像素点是提取鱼类长度的关键;因此,需进一步研究鱼类目标像素点和鱼类长度的层次关联关系。

  • 图  1   不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹肝脏 HE 染色切片 (400×,红圈代表细胞质空泡化现象)

    Figure  1.   Hematoxylin-eosin (HE) stained liver sections of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements (400×, red circles represent cytoplasmic vacuolization)

    图  2   不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹的血清总蛋白、白蛋白、球蛋白和尿素氮浓度

    注:方柱上不同字母表示具有显著性差异 (P<0.05)。

    Figure  2.   Contents of serum total protein, albumin, globulin and blood urea nitrogen of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements

    Note: Different letters on the bars are significantly different (P<0.05).

    图  3   不同发酵棉籽粉替代水平下卵形鲳鲹的肠道菌群物种多样性指标

    Figure  3.   Species diversity indexes of intestinal flora of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements

    图  4   不同发酵棉籽粉替代水平下卵形鲳鲹的肠道菌群组成 (门水平)

    Figure  4.   Relative abundance of intestinal flora of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements (Phylum level)

    图  5   不同发酵棉籽粉替代水平下卵形鲳鲹肠道菌群组成 (属水平)

    Figure  5.   Relative abundance of intestinal flora of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements (Genus level)

    图  6   摄食全鱼粉蛋白饲料和全棉籽粉蛋白饲料的卵形鲳鲹肠道菌群功能预测 (KEGG L2)

    Figure  6.   Prediction of intestinal flora function of juvenile T. ovatus fed with reference and experimental diets containing 100% FCSM replacement (KEGG L2)

    表  1   实验饲料组成及营养组成 (干物质)

    Table  1   Formulation and proximate composition of reference and experimental diets (Dry mass) %

    原料 Ingredient发酵棉籽粉替代鱼粉比例 Proportion of FCSM replacement
    0%25%50%75%100%
    鱼粉 Fish meal 35.00 26.25 17.50 8.75 0.00
    发酵棉籽粉 Fermented cottonseed meal 0.00 11.47 22.94 34.41 45.00
    大豆浓缩蛋白 Soy protein Conc 13.00 13.00 13.00 13.00 13.00
    鸡肉粉 Chicken meal 5.00 5.00 5.00 5.00 5.00
    赖氨酸 L-Lysine 0.00 0.21 0.42 0.63 0.85
    蛋氨酸 DL-methionine 0.00 0.10 0.19 0.29 0.39
    高筋面粉 Gluten flour 20.00 20.00 20.00 20.00 20.00
    诱食剂 Attractant 0.30 0.30 0.30 0.30 0.30
    卵磷脂 Lecithin 2.50 2.50 2.50 2.50 2.50
    鱼油 Fish oil 6.00 6.50 7.00 7.50 8.00
    维生素和矿物质预混料
    Vitamin and mineral premix
    2.00 2.00 2.00 2.00 2.00
    氯化胆碱 Choline chloride 0.50 0.50 0.50 0.50 0.50
    磷酸二氢钙 Ca(H2PO4)2 2.00 2.00 2.00 2.00 2.00
    维生素 Vitamin C 0.50 0.50 0.50 0.50 0.50
    骨粉 Bone meal 13.20 9.67 6.15 2.62 0
    营养成分分析 (干基) Analyzed proximate composition (Dry basis)
     水分 Moisture 9.5±0.2 8.3±0.1 10.4±0.1 11.0±0.1 9.9±0.1
     粗蛋白 Crude protein 40.6±0.3 41.6±0.3 43.3±0.3 44.6±0.1 44.9±0.1
     粗脂肪 Crude lipid 9.7±0.1 9.7±0.2 9.8±0.1 9.8±0.15 9.8±0.1
     粗纤维 Crude fiber 0.33 1.62 2.91 4.20 5.39
     灰分 Ash 21.4±0.1 18.1±0.2 14.2±0.1 10.9±0.1 8.6±0.1
     游离棉酚质量分数
     Free gossypol mass fraction/(mg·kg−1)
    0 29.93 59.85 89.78 119.70
    注:① 水分7.1% (质量分数,后同)、粗蛋白68.0%、粗脂肪8.0%、粗纤维0.2%、灰分16.4%;② 水分7.2%、粗蛋白59.7%、粗脂肪1.7%、粗纤维11.4%、灰分6.6%;③ 水分9.0%、粗蛋白65.0%、粗脂肪0.5%、粗纤维0.1%、灰分2.6%;④ 水分9.0%、粗蛋白65.0%、粗脂肪5.0%、粗纤维2.6%、灰分12.1%;⑤ 水分9.7%、粗蛋白16.4%、粗脂肪1.0%、粗纤维0.6%、灰分1.5%;⑥ 诱食剂为二甲基-β-丙酸噻亭(Dimethyl-β-propiothetin , DMPT)、甘氨酸、牛磺酸等比例混合;⑦ 维生素和矿物质预混料物质质量分数 (mg·kg−1):维生素A乙酸酯150 000 IU,维生素D3 75 000 IU,dl-α-生育酚乙酸酯2 500,亚硫酸氢烟酰胺甲萘醌250,硝酸硫铵 (维生素B1) 320,核黄素 (维生素B2) 700,盐酸吡哆醇 (维生素B6) 500,氰钴胺 (维生素B12) 4,肌醇4 000,L-抗坏血酸-2-磷酸酯5 500,烟酰胺3 800,D-泛酸钙1 600,叶酸80,D-生物素4,铜 (甘氨酸铜络合物) 200,一水硫酸亚铁1 800,硫酸锰450,硫酸锌5 500,碘酸钙100,亚硒酸钠15,硫酸钴50,乙氧基喹啉0~300,二丁基羟基甲苯0~750。 Note: ① Moisture 7.1% (Mass fraction, the same below), crude protein 68.0%, crude lipid 8.0%, crude fiber 0.2%, ash 16.4%; ② Moisture 7.2%, crude protein 59.7%, crude lipid 1.7%, crude fiber 11.4%, ash 6.6%; ③ Moisture 9.0%, crude protein 65.0%, crude lipid 0.5%, crude fiber 0.1%, ash 2.6%; ④ Moisture 9.0%, crude protein 65.0%, crude lipid 5.0%, crude fiber 2.6%, ash 12.1%; ⑤ Moisture 9.7%, crude protein 16.4%, crude lipid 1.0%, crude fiber 0.6%, ash 1.5%; ⑥ The palatability enhancer is a mixture of dimethyl-β-propionate, glycine and taurine; ⑦ Composition of vitamin and mineral premixa (mg·kg−1): Retinyl acetate 150 000 IU, Vitamin D3 75 000 IU, dl-α-tocopherol acetate 2 500 mg, Menadione nicotinamide bisulfite 250, Vitamin B1 320, Riboflavin (Vitamin B2) 700, Vitamin B6 500, Vitamin B12 4, Inositol 4 000, Cholinesalicylate 5 500, Nicotinamide 3 800, D-calcium pantothenate 1 600, Folic acid 80, D-biotin 4, Copper (Copperdiglycinate) 200, Ferrous sulfate monohydrate 1 800, Manganese (II) sulfate monohydrate 450, Zinc (Zinc sulfate monohydrate) 5 500, Iodine (calcium iodate) 100, Selenium (Sodium selenite) 15, Cobalt (Cobalt sulfate hydrate) 50, Ethoxyquin 0–300, Dibutylhydroxytoluene 0–750.
    下载: 导出CSV

    表  2   不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹幼鱼的存活、生长和饲料利用性能

    Table  2   Survival, growth and feed utilization of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements

    指标
    Index
    发酵棉籽粉替代鱼粉水平 Replacement of fish meal by FCSM单因素方差分析
    ANOVA
    (P>F)
    线性趋势
    Linear
    trend
    (P>F)
    二次趋势
    Quadratic
    trend
    (P>F)
    0% (对照组
    Control)
    25%50%75%100%
    成活率 Survival/% 85.00±5.09b 80.00±6.94ab 85.00±6.31b 72.50±5.34ab 63.33±2.72a 0.061 0.010 0.210
    终末质量 FBW/g 42.34±3.92 40.78±2.62 39.87±1.49 39.14±3.80 35.08±1.38 0.487 0.095 0.648
    体质量增长率 WGR/% 239.8±31.9 226.7±20.0 217.6±10.2 212.81±29.4 181.07±12.7 0.471 0.087 0.692
    摄食率 FR/(%·d−1) 3.15±0.03 3.27±0.10 3.21±0.04 3.29±0.08 3.31±0.14 0.659 0.203 0.856
    饲料利用率 FE 0.64±0.06b 0.59±0.07ab 0.61±0.01ab 0.54±0.06ab 0.45±0.05a 0.116 0.016 0.348
    蛋白沉积率 PR/% 28.32±1.75b 27.12±2.86ab 26.21±1.64ab 21.94±3.14ab 17.17±1.78a 0.020 0.002 0.225
    脂肪沉积率 LR/% 76.79±9.80c 67.04±4.14bc 64.41±1.43bc 48.73±4.11ab 25.50±4.63a 0.000 0.000 0.079
    注:同行不同上标字母表示差异显著 (P<0.05),F代表显著性概率。后表同此。 Note: Values with different letters within the same row are significantly different (P<0.05). F represents the probability of significance. The same case in the following tables.
    下载: 导出CSV

    表  3   不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹鱼体的营养组成 (湿基)

    Table  3   Proximate composition of juvenile T. ovatus fed with reference and experimental diets                 containing different FCSM replacements (wet basis)              %

    指标
    Index
    发酵棉籽粉替代鱼粉水平 Replacement of fish meal by FCSM单因素
    方差分析
    ANOVA
    (P>F)
    线性趋势
    Linear
    trend
    (P>F)
    二次趋势
    Quadratic
    trend
    (P>F)
    0% (对照组
    Control)
    25%50%75%100%
    水分质量分数
    Mass fraction of moisture/%
    65.93±0.67a 66.37±0.32ab 67.13±0.19ab 68.30±0.54bc 70.26±0.58c 0.000 0.000 0.083
    粗蛋白质量分数
    Mass fraction of crude protein/%
    18.00±0.35 18.43±0.22 18.34±0.55 18.25±0.36 17.72±0.31 0.673 0.542 0.189
    粗脂肪质量分数
    Mass fraction of crude lipid/%
    10.31±0.53c 9.72±0.25bc 9.42±0.09bc 8.48±0.35b 6.57±0.25a 0.000 0.000 0.017
    灰分质量分数
    Mass fraction of ash/%
    4.30±0.17 4.21±0.05 4.43±0.13 4.25±0.06 4.65±0.17 0.162 0.089 0.256
    下载: 导出CSV

    表  4   不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹鱼体的形体指标

    Table  4   Physical indexes of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements

    指标
    Index
    发酵棉籽粉替代鱼粉水平 Replacement of fish meal by FCSM单因素方差分析
    ANOVA
    (P>F)
    线性趋势
    Linear trend
    (P>F)
    二次趋势
    Quadratic trend
    (P>F)
    0% (对照组 Control)25%50%75%100%
    肝体比 HIS/% 1.39±0.13b 0.91±0.05a 1.02±0.05a 1.14±0.08ab 1.06±0.04a 0.002 0.083 0.007
    脏体比 VSI/% 6.34±0.16 6.21±0.14 5.80±0.41 6.31±0.16 6.44±0.19 0.388 0.686 0.124
    肥满度 CF/(g·cm−3) 3.09±0.06 3.11±0.06 3.09±0.05 3.18±0.05 3.04±0.05 0.395 0.837 0.241
    下载: 导出CSV

    表  5   不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹的肠道消化酶活性和肝脏抗氧化酶活性

    Table  5   Digestive enzyme activities and hepatic antioxidant enzyme activities of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements

    指标     
    Index     
    发酵棉籽粉替代鱼粉水平 Replacement of fish meal by FCSM单因素
    方差分析
    ANOVA
    (P>F)
    线性趋势
    Linear
    trend
    (P>F)
    二次趋势
    Quadratic
    trend
    (P>F)
    0%
    (对照组 Control)
    25%50%75%100%
    胃蛋白酶活性
    Pepsin activity/(U·mg−1)
    71.73±6.91 60.93±6.15 62.17±4.13 62.08±5.94 58.18±4.95 0.518 0.133 0.637
    肠道胰蛋白酶活性
    Intestinal trypsin activity/(U·mg−1)
    2 119.7±392.6 1 902.7±619.7 1 606.1±223.0 1 705.5±390.6 1 482.0±232.6 0.700 0.193 0.760
    肠道α-淀粉酶活性
    Intestine α-amylase activity /(U·mg−1)
    1.53±0.17 1.39±0.24 1.36±0.13 0.97±0.21 0.98±0.13 0.123 0.015 0.944
    肠道脂肪酶活性
    Intestinal lipase activity/(U·g−1)
    1.40±0.06a 1.73±0.08b 1.60±0.02ab 1.54±0.03ab 1.73±0.11b 0.018 0.026 0.536
    肝脏超氧化物歧化酶活性
    T-SOD of liver/(U·mg−1)
    444.86±33.68 432.68±29.54 445.68±17.98 484.21±37.00 450.95±13.16 0.794 0.540 0.802
    肝脏过氧化氢酶活性
    CAT of liver/(U·mg−1)
    39.59±7.73 46.32±6.51 41.83±3.32 50.94±4.31 48.02±0.49 0.494 0.174 0.792
    肝脏总抗氧化能力
    T-AOC of liver/(mmol·g−1)
    0.33±0.03 0.20±0.02 0.25±0.02 0.24±0.01 0.25±0.04 0.063 0.125 0.061
    下载: 导出CSV
  • [1]

    FAO. The state of the world fisheries and aquaculture [M]. Rome: Food and Agricultural Organization of the United Nations, 2022: 1-3.

    [2]

    WU G Y. Recent advances in animal nutrition and metabolism [M]. Berlin: Springer Cham, 2022: 237-261.

    [3]

    BRITTEN G L, DUARTE C M, WORM B. Recovery of assessed global fish stocks remains uncertain[J]. Proc Natl Acad Sci USA, 2021, 118(31): e2108532118. doi: 10.1073/pnas.2108532118

    [4]

    COTTRELL R S, BLANCHARD J L, HALPERN B S, et al. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030[J]. Nat Food, 2020, 1: 301-308. doi: 10.1038/s43016-020-0078-x

    [5]

    KHAN M A, WAHID A, AHMAD M, et al. Cotton production and uses [M]. Berlin: Springer, 2020: 978-981.

    [6]

    WANG J, CLARK G, JU M, et al. Effects of replacing menhaden fishmeal with cottonseed flour on growth performance, feed utilization and body composition of juvenile red drum Sciaenops ocellatus[J]. Aquaculture, 2020, 523: 735217. doi: 10.1016/j.aquaculture.2020.735217

    [7] 余忠丽, 恽辉, 王俊青, 等. 一种酶解发酵生产棉籽蛋白的方法: CN112219934B [P]. 2021-07-16.
    [8]

    LIM S J, LEE K J. A microbial fermentation of soybean and cottonseed meal increases antioxidant activity and gossypol detoxification in diets for Nile tilapia, Oreochromis niloticus[J]. J World Aquac Soc, 2011, 42(4): 494-503. doi: 10.1111/j.1749-7345.2011.00491.x

    [9] 孙宏, 叶有标, 姚晓红, 等. 发酵棉籽粕部分替代鱼粉对黑鲷幼鱼生长性能, 体成分及血浆生化指标的影响[J]. 动物营养学报, 2014, 26(5): 1238-1245. doi: 10.3969/j.issn.1006-267x.2014.05.014
    [10]

    SUN H, TANG J W, YAO X H, et al. Effects of replacement of fish meal with fermented cottonseed meal on growth performance, body composition and haemolymph indexes of Pacific white shrimp, Litopenaeus vannamei Boone, 1931[J]. Aquac Res, 2016, 47(8): 2623-2632. doi: 10.1111/are.12711

    [11]

    LIU B, GUO H Y, ZHU K C, et al. Growth, physiological, and molecular responses of golden pompano Trachinotus ovatus (Linnaeus, 1758) reared at different salinities[J]. Fish Physiol Biochem, 2019, 45: 1879-1893. doi: 10.1007/s10695-019-00684-9

    [12]

    XUN P W, ZHOU C P, HUANG X L, et al. Effects of dietary sodium acetate on growth performance, fillet quality, plasma biochemistry, and immune function of juvenile golden pompano (Trachinotus ovatus)[J]. Aquac Nutr, 2022, 2022: 1-11.

    [13] 农业农村部渔业渔政管理局, 全球水产技术推广总站, 中国水产学会. 2022中国渔业统计年鉴 [M]. 北京: 中国农业出版社, 2022: 22.
    [14]

    WANG F, HAN H, WANG Y, et al. Growth, feed utilization and body composition of juvenile golden pompano Trachinotus ovatus fed at different dietary protein and lipid levels[J]. Aquac Nutr, 2013, 19(3): 360-367. doi: 10.1111/j.1365-2095.2012.00964.x

    [15]

    ZHOU C P, HUANG Z, LIN H Z, et al. Effects of dietary leucine on glucose metabolism, lipogenesis and insulin pathway in juvenile golden pompano Trachinotus ovatus[J]. Aquac Rep, 2021, 19: 100626. doi: 10.1016/j.aqrep.2021.100626

    [16]

    LIU K, LIU H, CHI S Y, et al. Effects of different dietary lipid sources on growth performance, body composition and lipid metabolism-related enzymes and genes of juvenile golden pompano, Trachinotus ovatus[J]. Aquac Res, 2018, 49(2): 717-725. doi: 10.1111/are.13502

    [17]

    LI M M, ZHANG M, MA Y C, et al. Dietary supplementation with n-3 high unsaturated fatty acids decreases serum lipid levels and improves flesh quality in the marine teleost golden pompano Trachinotus ovatus[J]. Aquaculture, 2020, 516: 734632. doi: 10.1016/j.aquaculture.2019.734632

    [18]

    FANG H H, ZHAO W, XIE J J, et al. Effects of dietary lipid levels on growth performance, hepatic health, lipid metabolism and intestinal microbiota on Trachinotus ovatus[J]. Aquac Nutr, 2021, 27(5): 1554-1568. doi: 10.1111/anu.13296

    [19]

    ZHOU C P, GE X P, LIN H Z, et al. Effect of dietary carbohydrate on non-specific immune response, hepatic antioxidative abilities and disease resistance of juvenile golden pompano (Trachinotus ovatus)[J]. Fish Shellfish Immunol, 2014, 41(2): 183-190. doi: 10.1016/j.fsi.2014.08.024

    [20]

    XUN P W, LIN H Z, WANG R X, et al. Effects of dietary vitamin B1 on growth performance, intestinal digestion and absorption, intestinal microflora and immune response of juvenile golden pompano (Trachinotus ovatus)[J]. Aquaculture, 2019, 506: 75-83. doi: 10.1016/j.aquaculture.2019.03.017

    [21]

    WANG J, GATLIN III D M, LI L H, et al. Dietary chromium polynicotinate improves growth performance and feed utilization of juvenile golden pompano (Trachinotus ovatus) with starch as the carbohydrate[J]. Aquaculture, 2019, 505: 405-411. doi: 10.1016/j.aquaculture.2019.02.060

    [22]

    TAN X H, SUN Z Z, HUANG Z, et al. Effects of dietary hawthorn extract on growth performance, immune responses, growth-and immune-related genes expression of juvenile golden pompano (Trachinotus ovatus) and its susceptibility to Vibrio harveyi infection[J]. Fish Shellfish Immunol, 2017, 70: 656-664. doi: 10.1016/j.fsi.2017.09.041

    [23] 马学坤. 卵形鲳鲹幼鱼对饲料中蛋白能量比和几种必需氨基酸需求的研究[D]. 青岛: 中国海洋大学, 2013: 26.
    [24]

    HARDY R W. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal[J]. Aquac Res, 2010, 41(5): 770-776. doi: 10.1111/j.1365-2109.2009.02349.x

    [25]

    National Research Council. Nutrient requirements of fish and shrimp [M]. Now York: National Academies Press, 2011: 238.

    [26]

    WILSON R P, ROBINSON E H, POE W E. Apparent and true availability of amino acids from common feed ingredients for channel catfish[J]. J Nutr, 1981, 111(5): 923-929. doi: 10.1093/jn/111.5.923

    [27]

    ZHAO W, LIU Z L, NIU J. Growth performance, intestinal histomorphology, body composition, hematological and antioxidant parameters of Oncorhynchus mykiss were not detrimentally affected by replacement of fish meal with concentrated dephenolization cottonseed protein[J]. Aquac Rep, 2021, 19: 100557. doi: 10.1016/j.aqrep.2020.100557

    [28]

    XU X Y, YANG H, ZHANG C Y, et al. Effects of replacing fishmeal with cottonseed protein concentrate on growth performance, flesh quality and gossypol deposition of largemouth bass (Micropterus salmoides)[J]. Aquaculture, 2022, 548: 737551. doi: 10.1016/j.aquaculture.2021.737551

    [29]

    LIU H, DONG X H, TAN B P, et al. Effects of fish meal replacement by low-gossypol cottonseed meal on growth performance, digestive enzyme activity, intestine histology and inflammatory gene expression of silver sillago (Sillago sihama Forsskál) (1775)[J]. Aquac Nutr, 2020, 26(5): 1724-1735. doi: 10.1111/anu.13123

    [30]

    BU X Y, CHEN A J, LIAN X Q, et al. An evaluation of replacing fish meal with cottonseed meal in the diet of juvenile Ussuri catfish Pseudobagrus ussuriensis: growth, antioxidant capacity, nonspecific immunity and resistance to Aeromonas hydrophila[J]. Aquaculture, 2017, 479: 829-837. doi: 10.1016/j.aquaculture.2017.07.032

    [31]

    XIE S C, ZHOU Q C, ZHANG X S, et al. Effect of dietary replacement of fish meal with low-gossypol cottonseed protein concentrate on growth performance and expressions of genes related to protein metabolism for swimming crab (Portunus trituberculatus)[J]. Aquaculture, 2022, 549: 737820. doi: 10.1016/j.aquaculture.2021.737820

    [32]

    LI M H, ROBINSON E H. Use of cottonseed meal in aquatic animal diets: a review[J]. N Am J Aquac, 2006, 68(1): 14-22. doi: 10.1577/A05-028.1

    [33]

    ROMANO G B, SCHEFFLER J A. Lowering seed gossypol content in glanded cotton (Gossypium hirsutum L.) lines[J]. Plant breed, 2008, 127(6): 619-624. doi: 10.1111/j.1439-0523.2008.01545.x

    [34]

    GAYLORD T G, GATLIN III D M. Determination of digestibility coefficients of various feedstuffs for red drum (Sciaenops ocellatus)[J]. Aquaculture, 1996, 139(3/4): 303-314. doi: 10.1016/0044-8486(95)01175-7

    [35] 王开卓. 棉酚对草鱼肠道结构和免疫屏障的作用及其机制 [D]. 雅安: 四川农业大学, 2019: 1-2.
    [36]

    GONZÁLEZ-PEÑA M C, GOMES S Z, MOREIRA G S. Effects of dietary fiber on growth and gastric emptying time of the freshwater prawn Macrobrachiurn rosenbergii (de Man, 1879)[J]. J World Aquac Soc, 2002, 33(4): 441-447. doi: 10.1111/j.1749-7345.2002.tb00023.x

    [37]

    DIAS J, HUELVAN C, DINIS M T, et al. Influence of dietary bulk agents (silica, cellulose and a natural zeolite) on protein digestibility, growth, feed intake and feed transit time in European seabass (Dicentrarchus labrax) juveniles[J]. Aquat Living Resour, 1998, 11(4): 219-226. doi: 10.1016/S0990-7440(98)89004-9

    [38]

    LIU C, ZHAO L P, SHEN Y Q. A systematic review of advances in intestinal microflora of fish [J]. Fish Physiol Biochem, 2021, 47: 2041-2053.

    [39] 兰鲲鹏, 吴光德, 王珺, 等. 饲料中添加菊粉对卵形鲳鲹幼鱼存活、生长和肠道菌群的影响[J]. 南方水产科学, 2022, 18(5): 55-65. doi: 10.12131/20220082
    [40]

    SUN Y G, ZHANG S S, NIE Q X, et al. Gut firmicutes: relationship with dietary fiber and role in host homeostasis [J]. Crit Rev Food Sci Nutr, 2022: 1-16. DOI: 10.1080/10408398.2022.2098249.

    [41]

    THOMAS F, HEHEMANN J H, REBUFFET E, et al. Environmental and gut bacteroidetes: the food connection[J]. Front Microbiol, 2011, 2: 93.

    [42]

    MENETREY Q, SORLIN P, JUMAS-BILAK E, et al. Achromobacter xylosoxidans and Stenotrophomonas maltophilia: emerging pathogens well-armed for life in the cystic fibrosis patients' lung[J]. Genes, 2021, 12(5): 610. doi: 10.3390/genes12050610

    [43]

    YIN Z Q, LIU X B, QIAN C Q, et al. Pan-genome analysis of Delftia tsuruhatensis reveals important traits concerning the genetic diversity, pathogenicity, and biotechnological properties of the species[J]. Microbiol Spectr, 2022, 10(2): e02072-21.

    [44]

    LIU L, FENG Y, WEI L, et al. Genome-based taxonomy of brevundimonas with reporting Brevundimonas huaxiensis sp. nov[J]. Microbiol Spectr, 2021, 9(1): e00111-21.

    [45]

    SINGH S, SAHU C, PATEL S S, et al. Pandoraea apista bacteremia in a COVID-positive man: a rare coinfection case report from North India[J]. J Lab Phys, 2021, 13(2): 192-194.

    [46]

    ZHANG Z S, WANG X M, HAN S W, et al. Effect of two seaweed polysaccharides on intestinal microbiota in mice evaluated by illumina PE250 sequencing[J]. Int J Biol Macromol, 2018, 112: 796-802. doi: 10.1016/j.ijbiomac.2018.01.192

    [47]

    LI W J, ZHANG L, WU H X, et al. Intestinal microbiota mediates gossypol-induced intestinal inflammation, oxidative stress, and apoptosis in fish[J]. J Agric Food Chem, 2022, 70(22): 6688-6697. doi: 10.1021/acs.jafc.2c01263

    [48]

    WANG M M, WICHIENCHOT S, HE X W, et al. In vitro colonic fermentation of dietary fibers: fermentation rate, short-chain fatty acid production and changes in microbiota[J]. Trends Food Sci Technol, 2019, 88: 1-9. doi: 10.1016/j.jpgs.2019.03.005

    [49]

    ATSUMI S, HANAI T, LIAO J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels[J]. Nature, 2008, 451(7174): 86-89. doi: 10.1038/nature06450

    [50]

    XU Y Q, ZHU Y, LI X T, et al. Dynamic balancing of intestinal short-chain fatty acids: the crucial role of bacterial metabolism[J]. Trends Food Sci Tech, 2020, 100: 118-130. doi: 10.1016/j.jpgs.2020.02.026

    [51]

    KONDO T, KISHI M, FUSHIMI T, et al. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation[J]. J Agric Food Chem, 2009, 57(13): 5982-5986. doi: 10.1021/jf900470c

    [52]

    de VADDER F, KOVATCHEVA-DATCHARY P, GONCALVES D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J]. Cell, 2014, 156(1/2): 84-96.

    [53]

    GE H F, LI X F, WEISZMANN J, et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids[J]. Endocrinology, 2008, 149(9): 4519-4126. doi: 10.1210/en.2008-0059

    [54]

    HONG Y H, NISHIMURA Y, HISHIKAWA D, et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43[J]. Endocrinology, 2005, 146(12): 5092-5099. doi: 10.1210/en.2005-0545

    [55]

    SAHURI-ARISOYLU M, BRODY L P, PARKINSON J R, et al. Reprogramming of hepatic fat accumulation and 'browning' of adipose tissue by the short-chain fatty acid acetate[J]. Int J Obes, 2016, 40(6): 955-963. doi: 10.1038/ijo.2016.23

    [56]

    JIA Y M, HONG J, LI H F, et al. Butyrate stimulates adipose lipolysis and mitochondrial oxidative phosphorylation through histone hyperacetylation-associated β3-adrenergic receptor activation in high-fat diet-induced obese mice[J]. Exp Physiol, 2017, 102(2): 273-281. doi: 10.1113/EP086114

    [57]

    GAO Z G, YIN J, ZHANG J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice[J]. Diabetes, 2009, 58(7): 1509-1517. doi: 10.2337/db08-1637

    [58] 荀鹏伟. 卵形鲳鲹饲料脂肪需求量及短链脂肪酸的营养功能研究 [D]. 上海: 上海海洋大学, 2022: 105.
    [59]

    DU Z Y, TURCHINI G M. Are we actually measuring growth? An appeal to use a more comprehensive growth index system for advancing aquaculture research[J]. Rev Aquac, 2022, 14(2): 525-527. doi: 10.1111/raq.12604

    [60]

    DENG J M, MAI K S, CHEN L Q, et al. Effects of replacing soybean meal with rubber seed meal on growth, antioxidant capacity, non-specific immune response, and resistance to Aeromonas hydrophila in tilapia (Oreochromis niloticus×O. aureus)[J]. Fish Shellfish Immunol, 2015, 44(2): 436-444. doi: 10.1016/j.fsi.2015.03.018

    [61]

    DODOU K. Investigations on gossypol: past and present developments[J]. Expert Opin Investig Drugs, 2005, 14(11): 1419-1434. doi: 10.1517/13543784.14.11.1419

    [62]

    LIN Q R, LI C G, ZHA Q B, et al. Gossypol induces pyroptosis in mouse macrophages via a non-canonical inflammasome pathway[J]. Toxicol Appl Pharmacol, 2016, 292: 56-64. doi: 10.1016/j.taap.2015.12.027

    [63]

    HE X, WU C Y, CUI Y H, et al. The aldehyde group of gossypol induces mitochondrial apoptosis via ROS-SIRT1-p53-PUMA pathway in male germline stem cell[J]. Oncotarget, 2017, 8(59): 100128-100140. doi: 10.18632/oncotarget.22044

    [64]

    JIANG J, YE W, LIN Y C. Gossypol inhibits the growth of MAT-LyLu prostate cancer cells by modulation of TGFβ/Akt signaling[J]. Int J Mol Med, 2009, 24(1): 69-75.

    [65]

    ZHANG M C, LIU H P, GUO R B, et al. Molecular mechanism of gossypol-induced cell growth inhibition and cell death of HT-29 human colon carcinoma cells[J]. Biochem Pharmacol, 2003, 66(1): 93-103. doi: 10.1016/S0006-2952(03)00248-X

    [66]

    LIU Y L, LU Q S, XI L W, et al. Effects of replacement of dietary fishmeal by cottonseed protein concentrate on growth performance, liver health, and intestinal histology of largemouth bass (Micropterus salmoides)[J]. Front Physiol, 2021, 12: 2308.

    [67]

    BIAN F, ZHOU H G, WANG C, et al. Effects of replacing fishmeal with different cottonseed meals on growth, feed utilization, haematological indexes, intestinal and liver morphology of juvenile turbot (Scophthalmus maximus L.)[J]. Aquac Nutr, 2017, 23(6): 1429-1439. doi: 10.1111/anu.12518

    [68]

    TRIPATHI A, DEBELIUS J, BRENNER D A, et al. The gut-liver axis and the intersection with the microbiome[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(7): 397-411. doi: 10.1038/s41575-018-0011-z

  • 期刊类型引用(29)

    1. 罗金萍,刘培敏,高权新. 罗氏沼虾良种选育研究进展. 生物资源. 2023(01): 16-27 . 百度学术
    2. 庄振俊,唐美君,张冬冬,陈文彬,罗明,成永旭,吴旭干,陈晓武. 中华绒螯蟹“长荡湖1号”连续3个世代的遗传多样性分析. 水生生物学报. 2023(09): 1523-1533 . 百度学术
    3. 邹利,王金龙,李传武,王冬武,曾春芳,刘明求,刘丽,谢敏,曾鸣. 稻田适养品种呆鲤的遗传多样性分析. 水产科学. 2023(05): 795-804 . 百度学术
    4. 李喜莲,顾志敏,慎佩晶,徐洋,张宇飞,高强,程海华,陈雪峰. 基于RNA-seq技术的罗氏沼虾(Macrobrachium rosenbergii)不同组织转录组比较分析. 海洋与湖沼. 2021(01): 231-241 . 百度学术
    5. 林明辉,朱华平,苏换换,樊佳佳,池金泉,马冬梅. 3个尖塘鳢引进群体繁育后代的遗传多样性分析. 南方农业学报. 2021(01): 213-220 . 百度学术
    6. 许珊华,章嘉淇,卢婷,符圆,唐潇,唐琼英,夏正龙,蔡缪荧,高权新,李景芬,杨国梁. 基于微卫星标记的不同种质资源罗氏沼虾遗传多样性研究. 江苏农业科学. 2021(06): 45-51 . 百度学术
    7. 唐芳,温贝妮,刘红. 不同凡纳滨对虾养殖群体的微卫星遗传多样性分析. 南方农业学报. 2021(04): 1108-1115 . 百度学术
    8. 苏钰玲,李敏,杨永春,刘佳豪,李振海,阮惠婷,戴嘉格,刘丽,邹柯姝. 南方拟微卫星标记筛选及遗传多样性分析. 水产科学. 2020(02): 224-233 . 百度学术
    9. 周晓敏,戴习林. 罗氏沼虾SNP标记筛选及不同群体的遗传多样性. 水产学报. 2020(08): 1249-1263 . 百度学术
    10. 唐琼英,谢巨洪,夏正龙,蔡缪荧,吴云明,白鹿淮,杜厚宽,李景芬,杨国梁. 罗氏沼虾不同育种群体遗传多样性研究. 水生生物学报. 2020(05): 1097-1104 . 百度学术
    11. 李景芬,夏正龙,栾生,蔡缪荧,罗坤,唐琼英,高权新,孔杰,杨国梁. 五个罗氏沼虾群体遗传多样性的微卫星分析. 水生生物学报. 2020(06): 1208-1214 . 百度学术
    12. 申淑慧,戴习林. 基于生长和抗逆功能基因SNP分子标记的凡纳滨对虾野生及选育群体遗传多样性分析. 南方农业学报. 2020(11): 2836-2845 . 百度学术
    13. 王林龙,张秀梅,王展,宋娜,高天翔. 青岛近岸金乌贼繁殖群体形态特征及遗传分化. 中国水产科学. 2019(02): 342-352 . 百度学术
    14. 孙成飞,谢汶峰,胡婕,董浚键,田园园,吴灶和,叶星. 大口黑鲈3个养殖群体的遗传多样性分析. 南方水产科学. 2019(02): 64-71 . 本站查看
    15. 吕敏,黄光华,李旻,杨琼,卢小花,甘晖,阮志德,黄立斌,杨彦豪,卢天和,马华威. 异型雄性罗氏沼虾遗传多样性的微卫星分析. 水产科学. 2019(03): 355-360 . 百度学术
    16. 段永楠,刘奕,胡隐昌,刘超,宋红梅,汪学杰,孙金辉,牟希东. 美丽硬仆骨舌鱼全基因组微卫星分布规律特征. 中国农学通报. 2019(23): 152-158 . 百度学术
    17. 赵彦花,区又君,温久福,李加儿,周慧. 基于微卫星标记的黄唇鱼遗传多样性研究. 南方水产科学. 2019(04): 127-132 . 本站查看
    18. 樊佳佳,白俊杰,李胜杰,马冬梅,姜鹏. 驯食配合饲料的大口黑鲈3个选育世代的遗传多样性分析. 渔业科学进展. 2019(04): 57-64 . 百度学术
    19. 赵彦花,区又君,温久福,李加儿,周慧. 基于转录组测序技术的黄唇鱼SSR分子标记筛选. 南方农业学报. 2019(09): 2078-2087 . 百度学术
    20. 宋丹丹,王龙,魏红静,史文竞,朱传坤. 克氏原螯虾微卫星文库构建及多态性分析. 水产科学. 2019(06): 819-826 . 百度学术
    21. 陈静,宋光同,何吉祥,黄龙,吴本丽,汪翔,武松. 安徽省10个日本沼虾群体遗传多样性微卫星分析. 淡水渔业. 2018(03): 7-12 . 百度学术
    22. 王传聪,唐修阳,项杰,欧江涛. 罗氏沼虾转录组SSR标记信息分析. 江苏农业科学. 2018(22): 56-59 . 百度学术
    23. Zhu Bing,Fan Jiajia,Bai Junjie,Jiang Peng. Comparative Analysis of Microsatellite DNA Polymorphism in Gold Grass Carp and Four Grass Carp Populations from China. Animal Husbandry and Feed Science. 2017(06): 379-383+397 . 必应学术
    24. 袁锐,张朝晖,陈辉,方苹,陈静,刘训猛,吴亚锋,王晶晶. 罗氏沼虾“铁壳”现象及其防控研究进展. 水产科学. 2017(03): 383-390 . 百度学术
    25. 陈静,何吉祥,黄龙,吴本丽,孙和权,宋光同,陈贵生,王晓健. 3个中华鳖群体遗传多样性的微卫星标记分析. 广东农业科学. 2017(07): 141-146 . 百度学术
    26. 武小斌,穆淑梅,赵玲玉,康现江,薛建民. 日本沼虾(Macrobrachium nipponense)4个野生群体遗传多样性微卫星分析. 河北大学学报(自然科学版). 2017(02): 161-168 . 百度学术
    27. 朱冰,樊佳佳,白俊杰,姜鹏. 金草鱼与中国4个草鱼群体的微卫星多态性比较分析. 南方水产科学. 2017(02): 51-58 . 本站查看
    28. 刘磊,彭士明,高权新,张晨捷,施兆鸿. 基于银鲳RNA-seq数据中SSR标记的信息分析. 安徽农业科学. 2016(28): 102-105 . 百度学术
    29. 钟丹丹,林勇,宾石玉,余艳玲,陈忠,曾兰,杜雪松,张永德. 两个罗氏沼虾种群的遗传多样性研究. 广东农业科学. 2015(24): 140-145 . 百度学术

    其他类型引用(17)

图(6)  /  表(5)
计量
  • 文章访问数:  500
  • HTML全文浏览量:  140
  • PDF下载量:  88
  • 被引次数: 46
出版历程
  • 收稿日期:  2023-03-06
  • 修回日期:  2023-04-22
  • 录用日期:  2023-04-24
  • 网络出版日期:  2023-04-27
  • 刊出日期:  2023-08-04

目录

/

返回文章
返回