Prediction of dissolved oxygen in water of aquaculture ship based on CNN-GRU hybrid model
-
摘要: 溶解氧 (Dissolved oxygen, DO) 是影响养殖工船水产品健康生长的重要因素,准确预测DO对提高水产品产量和品质具有重要意义。为提高DO预测精度,以卵形鲳鲹 (Trachinotus ovatus) 养殖试验采集的数据为样本,使用卷积神经网络 (Convolutional neural network, CNN) 和门控循环单元 (Gated recurrent unit, GRU) 方法建立养殖工船水体DO预测混合模型,通过Pearsons相关性分析,选用DO、温度、pH和循环水流量4个预测因子进行训练和校准,预测了DO含量。通过与CNN、GRU和长短期记忆 (Long short-term memory, LSTM) 模型进行对比,所建模型在各项评价指标中的性能均最优,其均方根误差 (Root mean square error, RMSE)、平均绝对误差 (Mean absolute error, MAE) 和决定系数R2分别为0.119、0.084和0.976。结果表明,所建模型的预测精度最高,可以满足养殖工船实际生产中对DO预测的需求,为养殖工船生产过程中DO的监控和预警提供参考。Abstract: Dissolved oxygen (DO) content is a critical factor that affects the healthy growth of aquatic products in aquaculture ships. Accurate prediction of DO content is necessary to improve aquatic production and quality. To increase the accuracy of DO prediction , based on the data collected from a Trachinotus ovatus culture experiment, we established a hybrid model for DO prediction in aquaculture ships by applying the convolutional neural network (CNN) and gated recurrent unit (GRU) methods. Based on Pearson correlation analysis, we selected four predictors, namely dissolved oxygen content, temperature, pH value and circulating water flow, which were trained and calibrated to predict the DO content. The model proposed in this paper outperformed CNN, GRU and long short-term memory (LSTM) models in all evaluation indexes, and its root mean square error (RMSE), mean absolute error (MAE) and determination coefficient R2 were 0.119, 0.084 and 0.976, respectively. The results indicate that the model proposed in this paper has the greatest prediction precision and can meet the demand for DO content prediction in actual production of aquaculture ships, which provides references for monitoring and early warning of DO content in the production process of aquaculture ships.
-
鱼类资源具有自我更新能力,捕捞并不是影响其资源变动的唯一原因。当气候和海洋环境发生剧烈变化时,鱼类资源丰度和空间分布也会随之变化[1]。全球变暖是当今主要环境问题之一,会引发高频率的极端天气、海水酸化和升温等海洋灾害现象[2],进而影响许多中上层鱼类的分布和丰度[3-4]。联合国政府间气候变化委员会 (Intergovernmental Panel on Climate Change, IPCC) 的主要任务之一便是对适应和减缓气候变化的可能对策进行评估,且评估结果已被大量运用于科研工作[5]。因此,明确海洋鱼类资源时空分布对未来气候变化的响应机制,对该种类的可持续利用具有重要意义。
鲐鱼 (Scomber japonicus) 是大洋中上层鱼类,游泳能力强,每年进行长距离、大范围的产卵、索饵和季节性洄游,广泛分布于大西洋、印度洋和太平洋温带、亚热带海域[6-7]。鲐鱼经济价值极高,是我国及周边国家和地区的重要渔业对象,其资源衰退会对我国渔业经济造成负面影响[8]。20世纪80年代起,我国开始大规模捕捞鲐鱼,起初捕捞总量约为20万吨,随着捕捞技术进步和大规模商业捕捞的发展,2018年鲐鱼捕捞量已增加至43万吨[9-10]。东海是鲐鱼最重要的栖息地之一,也是我国最主要的作业渔场[11]。已有研究表明,鲐鱼栖息地受海面温度、海面高度、海水盐度和叶绿素浓度等环境因子影响[12],其中海水温度是最为重要的环境因子。当前对未来气候变化情境下鲐鱼的栖息地变动规律研究较少。因此,本文利用IPCC第六次评估报告中不同气候变化情境下的不同水层温度数据构建栖息地指数 (Habitat suitability index, HSI) 模型,对未来东海鲐鱼栖息地进行中长期预测分析,并探讨全球气候变化如何影响东海鲐鱼栖息地的时空分布,基于研究结果提出科学有效的渔业管理建议,为减缓气候变化对鲐鱼渔场的不利影响及其资源的可持续利用提供科学支撑。
1. 材料与方法
1.1 环境数据
IPCC第六次国际耦合模式比较计划 (Coupled Model Intercomparison Project Phase 6, CMIP6) 中情景模式比较计划 (ScenarioMIP) 是不同共享社会经济路径 (Shared socioeconomic pathways, SSP) 与辐射强迫 (Representative concentration pathway, RCP) 的矩形组合,为气候变化领域内的科学研究提供了大量的模拟数据[5]。其中,SSP126、SSP370和SSP585分别对应情景模式比较计划中的低排放情境、中等排放情境和高排放情境。已往研究表明,夏秋季鲐鱼主要栖息于0~50 m水层[13],水温是影响鲐鱼栖息地变动的主要环境因子[1]。Yu等[14]基于2.5、25和50 m水层海水温度数据构建了栖息地适宜指数模型。因此,本文选取CMIP6气候模式中SSP126、SSP370和SSP585情境下的2.5 m (Temp_2.5 m)、25 m (Temp_25 m) 和50 m (Temp_50 m) 水温数据来分析未来不同气候情境下东海鲐鱼栖息地的时空变化。海岸线数据来自于美国NOAA气候预报中心 (https://www.ngdc.noaa.gov/mgg/shorelines/data/gshhg/latest/)。环境数据来源于世界气候研究计划 (Word climate research program, WCRP) 数据库 (https://esgf-node.llnl.gov/search/cmip6/),水温数据单位为 ℃,时间覆盖2015—2100年的7—9月,共计258个月,数据范围为118°E—130°E、24°N—32°N,空间分辨率为50 km×50 km。环境数据时空分辨率与渔业数据保持一致并进行匹配处理。
1.2 环境因子的变动分析
以2015—2100年中每年7—9月的平均值表征每年鲐鱼渔场夏季水温。短期、中期和长期气候变化对应的时间段分别为2015—2020、2055—2060和2095—2100年。用Excel 2021软件对不同气候情境下2015—2100年水温的年际变化和短期、中期及长期的变化情况进行分析,同时计算不同气候情境下2100与2015年的水温差值,并利用Matlab R2021a软件绘制空间分布图。
1.3 鲐鱼栖息地的时空变化
基于Yu等[14]建立的最优权重HSI模型计算2015—2100年东海鲐鱼的HSI,HSI模型构建与验证方法如下[14]:利用2006—2014年的渔业与水温数据计算适宜性指数 (Suitability index, SI),以SI为基础建立单一环境因子SI模型。在此基础上,赋予不同水层以不同权重,综合2.5、25、50 m水深的SI模型建立HSI模型。对各权重方案结果进行比较,选取HSI最优模型,并用2015年数据进行验证,确保模型的预测精度。用Excel 2021软件对比分析不同气候情境下鲐鱼渔场内的平均HSI、适宜 (HSI>0.6) 与不适宜栖息地 (HSI<0.2) 面积比例,使用Matlab R2021a软件插值并绘制3种气候情境下短、中和长期HSI的空间分布图以厘清鲐鱼栖息地的时空变动规律;对比短、中和长期内东海鲐鱼正常和不适宜栖息地的面积比例变化情况。
计算未来气候情境下短、中和长期内东海鲐鱼的适宜栖息地重心,以探究其适宜栖息地的移动规律。基于单因子的SI模型[14],计算不同气候情境下2015—2020、2055—2060和2095—2100年各环境因子SI (≥0.6) 重心,以探究鲐鱼适宜栖息地的空间变化原因。其中,适宜栖息地及各环境因子SI重心计算公式如下:
$$ {\mathrm{L}\mathrm{O}\mathrm{N}\mathrm{G}}_{\mathrm{H}\mathrm{S}\mathrm{I}}=\frac{\sum ({\mathrm{L}\mathrm{o}\mathrm{n}}_{{ij}}\times {\mathrm{H}\mathrm{S}\mathrm{I}}_{{ij}})}{\sum {\mathrm{H}\mathrm{S}\mathrm{I}}_{{ij}}} $$ (1) $$ {\mathrm{L}\mathrm{A}\mathrm{T}\mathrm{G}}_{\mathrm{H}\mathrm{S}\mathrm{I}}=\frac{\sum ({\mathrm{L}\mathrm{a}\mathrm{t}}_{{ij}}\times {\mathrm{H}\mathrm{S}\mathrm{I}}_{{ij}})}{\sum {\mathrm{H}\mathrm{S}\mathrm{I}}_{{ij}}} $$ (2) $$ {\mathrm{L}\mathrm{O}\mathrm{N}\mathrm{G}}_{\mathrm{S}\mathrm{I}}=\frac{\sum ({\mathrm{L}\mathrm{o}\mathrm{n}}_{{ij}}\times {\mathrm{S}\mathrm{I}}_{{ij}})}{\sum {\mathrm{S}\mathrm{I}}_{{ij}}} $$ (3) $$ {\mathrm{L}\mathrm{A}\mathrm{T}\mathrm{G}}_{\mathrm{S}\mathrm{I}}=\frac{\sum ({\mathrm{L}\mathrm{a}\mathrm{t}}_{{ij}}\times {\mathrm{S}\mathrm{I}}_{{ij}})}{\sum {\mathrm{S}\mathrm{I}}_{{ij}}} $$ (4) 式中:LONGHSI、LATGHSI、LONGSI、LATGSI分别代表适宜栖息地经度与纬度重心和各环境因子SI经度与纬度重心;i、j分别代表经度和纬度。
2. 结果
2.1 未来气候情境下渔场内不同水层水温的时空变化
2015—2100年中国东海鲐鱼渔场内各水层水温在不同气候情境下呈不同的变化趋势 (图1)。在SSP126情境下,Temp_2.5 m、Temp_25 m和Temp_50 m整体呈稳定波动趋势。在SSP370和SSP585情境下,三者整体呈明显上升趋势。
不同气候情境下Temp_2.5 m、Temp_25 m和Temp_50 m在2015—2020、2055—2060和2095—2100年的变化趋势相似 (图2)。3个环境因子于SSP126情境下先上升后下降,整体呈较小幅度的上升,温差不超过0.5 ℃。后两个情境下3层水温均呈明显上升趋势。
对比3种气候情境下2015与2100年各水层水温的空间差值变化。在SSP126情境下,Temp_2.5 m、Temp_25 m和Temp_50 m负值分布的区域面积较大,空间上由西向东逐渐递减;正值均分布在西北区域。三者于另两个情境下空间变化差异较小,正值主要分布在渔场范围内 (图3)。
2.2 鲐鱼栖息地适宜性变化
2015—2100年东海鲐鱼渔场HSI和适宜栖息地面积比例在SSP126情境下呈下降趋势,但降幅较小;在SSP370和SSP585情境下整体呈明显下降趋势。而2015—2100年东海鲐鱼不适宜栖息地面积比例在SSP126、SSP370和SSP585情境下整体呈上升趋势 (图4)。
不同气候变化情境下的3个时期内,东海鲐鱼的适宜栖息地主要分布于122°E—126°E、28°N—30°N,不适宜栖息地主要分布在渔场中部水域。随时间推移,适宜栖息地面积和适宜性于SSP126情境下波动较小;于后两个情境下适宜栖息地面积缩小且适宜性下降,不适宜栖息地面积明显增加 (图5)。
东海鲐鱼正常栖息地面积与不适宜面积量化结果表明,不同气候情境下,东海鲐鱼正常栖息地面积小于不适宜面积。与2015—2020年相比,2055—2060和2095—2100年内各气候情境下的东海鲐鱼正常栖息地面积均缩小,不适宜栖息地面积均增加,且2095—2100年的变化趋势皆大于2055—2060年 (表1)。
表 1 不同气候情境的不同时间段内东海鲐鱼正常与不适宜栖息地面积变化Table 1. Changes of normal and unsuitable habitat area of S. japonicus in East China Sea in different time periods under different climatic conditions模态SSP 年份Year 渔场正常栖息地面积HS/% 面积增减ID_HS/% 渔场不适宜栖息地面积UNSH/% 面积增减ID_UNSH/% SSP126 2015—2020 24.38 — 32.80 — 2055—2060 21.70 −10.99 35.48 +8.17 2095—2100 21.33 −12.51 35.84 +9.27 SSP370 2015—2020 24.07 — 33.11 — 2055—2060 19.48 −19.07 37.70 +13.86 2095—2100 11.39 −52.68 45.79 +38.29 SSP585 2015—2020 24.18 — 32.99 — 2055—2060 18.16 −24.89 39.02 +18.28 2095—2100 7.45 −69.19 49.73 +50.74 注:HS代表渔场正常栖息地面积;ID_SH代表2055—2060和2095—2100年渔场正常栖息地面积相对于2015—2020年正常栖息地面积的增减;UNSH代表渔场不适宜栖息地面积;ID_UNSH代表2055—2060和2095—2100年渔场不适宜栖息地面积相对于2015—2020年不适宜栖息地面积的增减。 Note: HS represents the area of normal habitat of fishing ground; ID_SH represents the increase or decrease of the normal habitat area of the fishing ground during 2055–2060 and 2095–2100 compared with the normal habitat area during 2015–2020; UNSH represents the area of unsuitable habitat of fishing ground; ID_UNSH represents the increase or decrease of the area of unsuitable habitat of fishing ground during 2055–2060 and 2095–2100 compared with that during 2015–2020. 2.3 鲐鱼适宜栖息地重心空间变化
2015—2020、2055—2060和2095—2100年内鲐鱼适宜栖息地重心于SSP126、SSP370和SSP585情境下均呈不同程度的北移,适宜栖息地重心均在渔场北部区域。纬度方向上,SSP126和SSP370情境下,适宜栖息地重心均向北偏移;而在SSP585情境下,先向南再向北偏移。经度方向上,适宜栖息地重心于SSP126情境下先向东再向西偏移,整体呈向东移动趋势;而在SSP370和SSP585情境下,适宜栖息地重心向西移动 (图6)。
不同气候情境下各SI重心主要集中在123°E—127°E、27°N—31°N。纬度方向上,各SI重心于SSP370和SSP585情境下均向北移动;SI-Temp_2.5 m重心于SSP126情境下先向北再向南移动,但整体仍呈向北移动;后两者于SSP126情境下先向南再向北迁移。经度方向上,SI-Temp_2.5 m重心于SSP126情境下先向西再向东移动,另两个气候情境下均向西迁移;3种气候情境下,SI-Temp_25 m重心均先向东再向西迁移,但变化幅度较小;SSP126情境下,SI-Temp_50 m重心向东偏移,后两个气候情境下则与之相反 (图7)。
3. 讨论
3.1 未来水温变化对东海鲐鱼栖息地的影响
全球气候变暖造成海水酸化、海平面上升和极端气候事件,直接或间接地改变了海洋鱼类的生存环境,也给海洋生态系统造成了巨大冲击[15]。随着环境的改变,鱼类为了寻找更为适宜的生存环境,进行大规模迁移活动,其资源丰度和空间分布势必会发生显著变化。有研究指出,未来全球气候变化会使高纬度海域渔业捕捞潜力增加,而低纬度海域大幅减少[16]。本研究发现,未来气候变化中,SSP126情境下2015—2100年东海鲐鱼渔场内的Temp_2.5 m、Temp_25 m和Temp_50 m整体呈稳定波动趋势。在SSP370和SSP585情境下,鲐鱼渔场各水层温度均呈明显上升趋势 (图1)。2015—2100年东海鲐鱼渔场HSI和适宜栖息地面积比例在SSP126、SSP370和SSP585情境下整体呈下降趋势,下降幅度在后两个情境更大 (图4)。此外各环境因子适宜性指数重心变化结果表明,不同水层适宜的SI-Temp重心均分布在东海东北部海域,与不同气候变化情境下东海鲐鱼适宜栖息地重心变化结果一致,随着海水温度的不断升高,适宜栖息地重心逐渐北移 (图5—图7)。苏杭等[17]利用鲐鱼生产数据分析了SST上升不同情境下的渔场变动,发现未来东海鲐鱼潜在栖息地逐渐北移且面积缩小,与本文研究结果较为一致。
水温是影响鲐鱼生长、洄游和产卵的重要环境因子[18];既可以直接影响鲐鱼生长速率、繁殖和洄游等生活史过程,也可以通过影响浮游生物、小型鱼类等饵料生物和天敌的空间分布和密度变化进而使鲐鱼资源量发生时空变动[19]。鲐鱼具有垂直洄游的特性[20],其栖息地不仅受到海流、叶绿素浓度和海表面盐度等环境因子的影响,垂直水温也是影响其栖息地分布的重要因素[21]。大多数预测鲐鱼栖息地的模型使用的环境变量均为海表温度[17]、海表盐度[22]、净初级生产力[23]和海表高度[24]等。然而,均未考虑到垂直水温分布的差异。因此,本文采取2.5、25 和50 m水层温度作为鲐鱼渔场时空分布变化和未来气候变动的重要链接,来分析鲐鱼渔场变化对气候的响应规律。在2015—2020、2055—2060和2095—2100年内,相同气候情境下不同水层适宜的SI-Temp变化趋势不尽相同 (图7),结合2100与2015年Temp_2.5 m、Temp_25 m、Temp_50 m水层温度差值空间分布分析发现,2.5 m水温是影响夏秋季东海鲐鱼栖息地潜在分布与变化较为关键的因子。Yu等[14]利用基于权重的AMM模型分析了不同水层温度的贡献值,同样发现2.5 m水层温度是鲐鱼栖息地形成的关键环境因子。
3.2 未来海流变化对东海鲐鱼栖息地空间分布的影响机理
海流与气候变化关系密切,气候变化会引起海洋温度和风场强度及运动轨迹的变化,从而驱动海流发生变动[25]。何越[26]利用IPCC第五次评估报告中RCP4.5和RCP8.5情境下环境数据研究发现,未来气候变化情况下太平洋北赤道流和南赤道流均有不同程度减弱,北太平洋黑潮也有相同的变化趋势。海流的改变会破坏原来海域内的水文动态平衡从而改变海洋生物的栖息地适宜性[27-28]。未来气候变化短、中、长时期内,东海鲐鱼适宜栖息地在SSP126、SSP370和SSP585情境下主要分布在122°E—126°E、28°N—30°N海域内,随时间的推移适宜栖息地面积减小且向北部移动 (图5、图6)。东海沿岸鲐鱼渔场主要受台湾暖流、沿岸水、东海混合水团的影响,台湾东北部鲐鱼围网渔场受黑潮和中国大陆沿岸水影响[29]。李宜锴等[10]通过作业次数在SST上的分布情况得出7—9月鲐鱼适宜生长的 SST 范围为25~28 ℃。而本研究中3种情境下Temp_2.5 m的温度均大于28 ℃,可能是温度过高导致鲐鱼适宜栖息地面积减小。黑潮流经海域是鲐鱼产卵洄游索饵的重要场所[30],此区域的环境变化会使鲐鱼幼鱼丰度、空间分布和肥满度等变化较大[31-33]。黑潮是北太平洋副热带环流的强风力驱动西边界流之一,由于全球变暖,副热带环流增强并向高纬度地区移动[34]。未来气候条件下黑潮移动可能会导致鲐鱼栖息地向北移动。
3.3 气候变化下鲐鱼资源对应的管理策略
本研究结果认为未来气候变化3种情境下,鲐鱼适宜栖息地面积缩减,渔业资源可能面临衰退。鲐鱼是r-对策者 (有利于增加内禀增长率的选择),具有生命周期短、出生率高和适应性强等特点。鲐鱼资源在过度捕捞或遭受气候变化等负面影响时,可以采取科学的管理措施减缓负面影响使资源得到一定程度的恢复。因此,为实现东海鲐鱼渔业可持续发展,本文提出下列基于适应和减缓未来气候变化影响的渔业科学管理措施[35]:1) 对东海鲐鱼最大渔获量进行限制。全球变化引起东海鲐鱼适宜栖息地面积减少,对资源生物量产生负面影响。各国应采用不同类型的管理方法 (监测、预防原则和适应性管理) 来控制渔获限制,利用历年渔获数据结合气候因子评估东海鲐鱼渔场的最大可持续产量,制定各国最大渔获量。2)构建预警模式和预防性管理措施。全球气候变化对海洋鱼类产生长时间、不稳定的影响。因此,需要研发新型渔业模式对海上气候变化进行监测和预警。还可以在岸上储存设施足够的船舶和安全设施,有助于防止极端事件(如气旋、风暴、飓风等)造成的损失。3) 加强鲐鱼资源评估和预测能力,构建新型渔场预测模型。未来气候条件下东海鲐鱼资源量的时空分布是不稳定的,需要将多种环境数据结合起来进行分析以增强预测鱼汛的准确性,减少捕捞所需要的成本。本研究中,未来气候变化会导致鲐鱼适宜栖息地向北偏移,因此,可能需要制定新的禁渔区以增强东海鲐鱼种群的恢复。
目前国内对于未来气候情境下东海鲐鱼时空分布关系的研究较少,本文从新的角度探讨鲐鱼资源与垂向水温的关系,分析2015—2100年7—9月未来气候变化情境下水温与鲐鱼渔场时空分布的关系。但本研究仅对水温单一因子进行研究,而在实际的海洋生态系统中,鲐鱼资源受多种环境因子影响。此外,目前建立栖息地模型所用到的遥感数据精度有限,在准确性和代表性上有一定欠缺。因此,在今后的研究中,要结合其他环境因子如海表高度、盐度、叶绿素浓度等,进行综合考量和分析,还要考虑到不同时间尺度气候变化的影响,并探索是否还有未曾发现的潜在环境影响因子。还可尝试分析各环境因子对鲐鱼的影响程度,从而更精确地建立栖息地预测模型,优化模型参数,有助于掌握东海鲐鱼的资源现状,为鲐鱼渔业的开发和管理提供依据。
-
表 1 水质传感器规格
Table 1 Water quality sensor specification
水质参数
Parameter of water quality测量范围
Range of measurement精度
Precision分辨率
Resolution ratio型号
Model品牌
Brand溶解氧质量浓度 DO/(mg·L−1) 0~20 ±2% (满量程百分比) LDO II 哈希 Hach 温度 Temperature/℃ 0~50 ±0.5 0.1 ℃ MPS-400 凯米斯 Chemins pH 0~14 ±0.1 0.01 MPS-400 凯米斯 Chemins 盐度 Salinity/‰ 0~100 ±3.5% (满量程百分比) 0.1‰ MPS-400 凯米斯 Chemins 表 2 4 种预测模型的超参数设置
Table 2 Hyperparameter setting of four prediction models
模型 Model 参数 Paramenter 卷积神经网络 CNN 卷积核个数:3
卷积核大小:32长短期记忆 LSTM 隐藏层个数:128
全连接层神经元个数:128门控循环单元 GRU 隐藏层个数:128
全连接层神经元个数:128卷积神经网络-门控循环单元
CNN-GRU卷积核个数:3
卷积核大小:32
GRU隐藏层个数:128
全连接层神经元个数:128表 3 4 种模型的预测性能
Table 3 Predictive performance of four models
模型
Model均方根误差
RMSE/
(mg·L−1)平均绝对误差
MAE/
(mg·L−1)决定性
系数
R2卷积神经网络 CNN 0.173 0.132 0.945 长短期记忆 LSTM 0.143 0.120 0.956 门控循环单元 GRU 0.138 0.114 0.966 卷积神经网络-门控
循环单元 CNN-GRU0.119 0.084 0.976 -
[1] 刘敏. 大型养殖工船运营实践与展望[J]. 船舶工程, 2021, 43(4): 18-23. [2] 崔铭超, 鲍旭腾, 王庆伟. 我国深远海养殖设施装备发展研究[J]. 船舶工程, 2021, 43(4): 31-38. [3] AHMED N, TURCHINI G M. Recirculating aquaculture systems (RAS): environmental solution and climate change adaptation[J]. J Clean, 2021, 297: 126604. doi: 10.1016/j.jclepro.2021.126604
[4] SAMARAS A, TSOUKALI P, KATSIKA L, et al. Chronic impact of exposure to low dissolved oxygen on the physiology of Dicentrarchus labrax and Sparus aurata and its effects on the acute stress response[J]. Aquaculture, 2023, 562: 738830. doi: 10.1016/j.aquaculture.2022.738830
[5] JIANG X Y, DONG S L, LIU R X. Effects of temperature, dissolved oxygen, and their interaction on the growth performance and condition of rainbow trout (Oncorhynchus mykiss)[J]. J Therm Biol, 2021, 98: 102928. doi: 10.1016/j.jtherbio.2021.102928
[6] NEILAN R M, ROSE K. Simulating the effects of fluctuating dissolved oxygen on growth, reproduction, and survival of fish and shrimp[J]. J Theor Biol, 2014, 343: 54-68. doi: 10.1016/j.jtbi.2013.11.004
[7] LIU Y Q, ZHANG Q, SONG L H, et al. Attention-based recurrent neural networks for accurate short-term and long-term dissolved oxygen prediction[J]. Comput Electron Agric, 2019, 165: 104964. doi: 10.1016/j.compag.2019.104964
[8] 杨争光, 范良忠. 基于MEC-BP神经网络在水产养殖水质预测中的应用[J]. 计算机与现代化, 2015(6): 32-36. doi: 10.3969/j.issn.1006-2475.2015.06.007 [9] 汤铠源. 基于 HDE 算法的 FA-BP 神经网络溶解氧浓度预测控制研究[D]. 马鞍山: 安徽工业大学, 2019: 48-55. [10] YANG Y T, TAI H J, LI D L. Real-time optimized prediction model for dissolved oxygen in crab aquaculture ponds using back propagation neural network[J]. Sens Lett, 2014, 12(3/4): 723-729.
[11] 袁红春, 潘金晶. 改进递归最小二乘RBF神经网络溶解氧预测[J]. 传感器与微系统, 2016, 35(10): 20-23. doi: 10.13873/J.1000-9787(2016)10-0020-04 [12] 刘晨, 李莎, 丛孙丽, 等. 基于EEMD和萤火虫算法优化SVM的溶解氧预测[J]. 计算机仿真, 2021, 38(1): 359-365. [13] 施珮, 匡亮, 袁永明, 等. 基于改进极限学习机的水体溶解氧预测方法[J]. 农业工程学报, 2020, 36(19): 225-232. doi: 10.11975/j.issn.1002-6819.2020.19.026 [14] GUO J J, DONG J Q, ZHOU B, et al. A hybrid model for the prediction of dissolved oxygen in seabass farming[J]. Comput Electron Agric, 2022, 198: 106971. doi: 10.1016/j.compag.2022.106971
[15] 孙龙清, 吴雨寒, 孙希蓓, 等. 基于IBAS和LSTM网络的池塘水溶解氧含量预测[J]. 农业机械学报, 2021, 52(S1): 252-260. [16] ZHANG K Y, CHEN J L, ZHANG T C, et al. A compact convolutional neural network augmented with multiscale feature extraction of acquired monitoring data for mechanical intelligent fault diagnosis[J]. J Manuf Syst, 2020, 55: 273-284. doi: 10.1016/j.jmsy.2020.04.016
[17] BHANDARI H N, RIMAL B, POKHREL N R, et al. Predicting stock market index using LSTM[J]. Mach Learn Appl, 2022, 9: 100320.
[18] 庞传军, 张波, 余建明. 基于LSTM循环神经网络的短期电力负荷预测[J]. 电力工程技术, 2021, 40(1): 175-180. [19] ZARZYCKI K, ŁAWRYŃCZUK M. Advanced predictive control for GRU and LSTM networks[J]. Inf Sci, 2022, 616: 229-254. doi: 10.1016/j.ins.2022.10.078
[20] AYZEL G, HEISTERMANN M. The effect of calibration data length on the performance of a conceptual hydrological model versus LSTM and GRU: a case study for six basins from the CAMELS dataset[J]. Comput Geosci, 2021, 149: 104708. doi: 10.1016/j.cageo.2021.104708
[21] OZDEMIR A C, BULUŞ K, ZOR K. Medium- to long-term nickel price forecasting using LSTM and GRU networks[J]. Resour Policy, 2022, 78: 102906. doi: 10.1016/j.resourpol.2022.102906
[22] DEY P, CHAULYA S K, KUMAR S. Hybrid CNN-LSTM and IoT-based coal mine hazards monitoring and prediction system[J]. Process Saf Environ Prot, 2021, 152: 249-263. doi: 10.1016/j.psep.2021.06.005
[23] ATILA O, ŞENGÜR A. Attention guided 3D CNN-LSTM model for accurate speech based emotion recognition[J]. Appl Acoust, 2021, 182: 108260. doi: 10.1016/j.apacoust.2021.108260
[24] REN J, YU Z P, GAO G L, et al. A CNN-LSTM-LightGBM based short-term wind power prediction method based on attention mechanism[J]. Energy Rep, 2022, 8: 437-443.
[25] ARASH M, HAMID T, BEHNAM M L, et al. Hybrid CNN-LSTM approaches for identification of type and locations of transmission line faults[J]. Int J Electr Power Energy Syst, 2022, 135: 107563. doi: 10.1016/j.ijepes.2021.107563
[26] 贾睿, 杨国华, 郑豪丰, 等. 基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J]. 中国电力, 2022, 55(5): 47-56. [27] 高震宇. 基于深度卷积神经网络的图像分类方法研究及应用[D]. 合肥: 中国科学技术大学, 2018: 4-5. [28] 王锦涛, 文晓涛, 何易龙, 等. 基于CNN-GRU神经网络的测井曲线预测方法[J]. 石油物探, 2022, 61(2): 276-285. [29] ARUNKUMAR K E, KALAGA D V, KUMAR C M S, et al. Comparative analysis of Gated Recurrent Units (GRU), long short-term memory (LSTM) cells, autoregressive integrated moving average (ARIMA), seasonal autoregressive integrated moving average (SARIMA) for forecasting COVID-19 trends[J]. Alex Eng J, 2022, 61(10): 7585-7603. doi: 10.1016/j.aej.2022.01.011
[30] CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. Arxiv Org, 2014. DOI: 10.48550/arXiv.1412.3555.
[31] GAO S, HUANG Y F, ZHANG S, et al. Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation[J]. J Hydrol, 2020, 589: 125188. doi: 10.1016/j.jhydrol.2020.125188
[32] CAMASTRA F, CAPONE V, CIARAMELLA A, et al. Prediction of environmental missing data time series by Support Vector Machine Regression and Correlation Dimension estimation[J]. Environ Model Softw, 2022, 150: 105343. doi: 10.1016/j.envsoft.2022.105343
[33] CAO X K, REN N, TIAN G L, et al. A three-dimensional prediction method of dissolved oxygen in pond culture based on Attention-GRU-GBRT[J]. Comput Electron Agric, 2021, 181: 105955. doi: 10.1016/j.compag.2020.105955
-
期刊类型引用(6)
1. 袁华荣,章守宇,林军,冯雪,汪振华,佟飞,王凯,陈钰祥,陈丕茂. 海洋牧场人工鱼礁生境营造的生态学理论框架探索. 水产学报. 2025(01): 3-26 . 百度学术
2. 赵继升,曹锦超,崔煜杰,赵芬芳. 人工鱼礁群与风机基础联合水动力特征的数值模拟. 渔业现代化. 2025(01): 25-35 . 百度学术
3. 郭聪聪,杨訸晴,胡慧琴,张勤旭,张明亮,李金金. 人工鱼礁投放对小窑湾海域水动力及水体交换影响的数值模拟. 海洋渔业. 2024(02): 174-185 . 百度学术
4. 岳英洁,贺志鹏,冷星,于冬. 莱州湾芙蓉岛西侧人工鱼礁建设对周边海域潮流场和水交换的影响研究. 海洋渔业. 2022(01): 9-17 . 百度学术
5. 王清夷,王煜嘉,张明亮. 大连大长山岛海域人工鱼礁投放对水动力影响的三维数值模拟. 渔业研究. 2022(05): 415-425 . 百度学术
6. 张敏,陈钰祥,罗军,曾学智. 珠江河口枯季咸潮上溯特征与机制分析. 海洋预报. 2021(05): 8-16 . 百度学术
其他类型引用(4)