鮸α-葡萄糖苷酶抑制活性肽的制备、分离及理化特性研究

Preparation, separation and physicochemical properties of α-glucosidase inhibitory peptides from Miichthys miiuy

  • 摘要: 为实现鮸 (Miichthys miiuy) 加工副产物的高值化利用,选用鮸加工副产物鱼碎肉作为原料,以α-葡萄糖苷酶 (α-glucosidase) 抑制率为评价指标,通过单因素实验和响应面法优化α-葡萄糖苷酶抑制肽的制备工艺条件,确定胰酶的最佳酶解条件为:时间4.8 h,加酶量0.21%,pH 8.5,料液比1∶2 (mV),温度46 ℃。在此基础上,分析了酶解产物体外模拟胃肠液消化前后其抑制活性的变化,绘制酶抑制动力学曲线,并采用SephadexG-25对酶解物进行分离,测定酶解物的相对分子质量分布及氨基酸组成。结果表明:活性肽经体外模拟胃肠液消化后α-葡萄糖苷酶抑制率提高至61.97%;其对α-葡萄糖苷酶抑制作用为混合型抑制;酶解物的相对分子质量集中分布在3 kD以下 (占91.85%) ;经G-25分离,F4组分对α-葡萄糖苷酶抑制率为58.05%,其<1 kD的肽组分占78.28%;酶解物中天冬氨酸、谷氨酸、精氨酸、酪氨酸、缬氨酸、丙氨酸、亮氨酸和赖氨酸等相对含量较高。

     

    Abstract: In order to achieve the high-value utilization of Miichthys miiuy processing by-products, taking α-glucosidase inhibition rate as an index, we carried out a single factor experiment and applied the response surface methodology to optimize the preparation process of α-glucosidase inhibitory peptides from minced fish muscle of M. miiuy processing by-products. The optimal enzymatic hydrolysis conditions with trypsin were as follows: hydrolysis time 4.8 h, enzyme dosage 0.21%, hydrolysis pH 8.5, material-liquid ratio 1∶2 (m/V), hydrolysis temperature 46 ℃. On this basis, we analyzed the inhibitory activity of the enzymatic hydrolysates before and after the simulated gastrointestinal digestion in vitro, and drew the kinetic curve of enzyme inhibition. Then we separated the enzymatic hydrolysate by SephadexG-25 so as to investigate the molecular weight distribution and amino acid composition of the enzymatic hydrolysates. The results show that the α-glucosidase inhibitory rate increased to 61.79% after that the α-glucosidase inhibitory peptide was simulated gastrointestinal digestion in vitro. Its inhibition type on α-glucosidase was mixed type inhibition. The molecular mass of the enzymatic hydrolysate was concentrated below 3 kD, accounting for 91.85%. After the separation by G-25, the α-glucosidase inhibition rate of F4 fraction was 58.05%. In Group F4, 78.28% of peptides were less than 1 kD. The amino acid analysis shows that the enzymatic hydrolysate was rich in Asp, Glu, Arg, Tyr, Val, Ala, Leu and Lys.

     

/

返回文章
返回