Screening of antagonistic bacteria against visceral white-spots disease of Larimichthys crocea and preliminary study on its biological characteristics
-
摘要: 为实现大黄鱼 (Larimichthys crocea) 内脏白点病的生物防控,推进水产养殖用药减量,从健康大黄鱼肠道中筛选出对其内脏白点病病原菌——杀香鱼假单胞菌 (Pseudomonas plecoglossicid) 有拮抗作用的益生菌。采用琼脂扩散法筛选菌株,通过生理生化特征以及分子生物学分析,对菌株进行鉴定,并评价其溶血性、药敏性、安全性、产酶能力及抗菌广谱性。从健康大黄鱼肠道中初步分离出37株潜在益生菌,通过拮抗试验筛选出3株具有拮抗效果的菌株,分别命名为P1-17、P2-33和P3-11。通过生理生化特性及16S rRNA 测序分析,菌株P1-17和P2-33鉴定为贝莱斯芽孢杆菌 (Bacillus velezensis),菌株P3-11鉴定为粪肠球菌 (Enterococcus faecalis);溶血性试验和药敏试验结果表明3株菌均无显著溶血圈,且所含耐药因子较少,不具备潜在致病性;人工回感试验证实,3株拮抗菌对健康大黄鱼无致病性;抗菌谱测定结果表明,2株芽孢杆菌对溶藻弧菌 (Vibrio alginolyticus)、哈维氏弧菌 (V. harveyi)、美人鱼发光杆菌 (Photobacterium damselae) 等多种水产病原菌具有拮抗效果,同时2株芽孢杆菌具有产淀粉酶和蛋白酶的能力;而该株粪肠球菌只对杀香鱼假单胞菌有拮抗作用。研究结果可为后续大黄鱼肠道益生菌的筛选和应用提供科学依据。Abstract: In order to achieve the biological prevention and control of visceral white-spots disease of Larimichthys crocea, and promote the reduction of drug use in aquaculture, we isolated and screened the probiotics with an antagonistic effect on Pseudomonas plecoglossicid, which is a pathogen of visceral white spot disease in L. crocea, from the intestine of healthy L. crocea. The strains were screened by agar diffusion method, identified by physiological and biochemical characteristics and molecular biology analysis, and evaluated for hemolysis, drug sensitivity, safety, enzyme production ability and broad-spectrum antibacterial activity. Thirty-seven strains of potential probiotics were isolated and the three most potent strains were further characterized for their probiotic potential, named as P1-17, P2-33 and P3-11. The three most promising isolates were identified by sequencing the 16S rRNA gene and physiological and biochemical characteristics. Strains P1-17 and P2-33 were identified as Bacillus velezensis and P3-11 was identified as Enterococcus faecalis. According to the hemolytic test and disk diffusion method, none of the three strains had sigificant hemolytic rings, containing few drug resistance factors, so they had no potential pathogenicity. The result from the artificial infection safety test confirmed that these three strains of antagonistic bacteria had no pathogenicity to healthy L. crocea. The results of the antimicrobial spectrum show that two strains of Bacillus had an antagonistic effect on common aquatic pathogens such as Vibrio alginolyticus, V. harveyi and Photobacterium damselae. Moreover, two strains of Bacillus could produce amylase and protease, while the strain of E. faecalis only had an antagonistic effect on P. plecoglossicida. The study provides a scientific basis for the subsequent screening and application of intestinal probiotics in L. crocea.
-
气候的变化、异常以及振荡驱动着海洋环境因子的变化,从而影响海洋生态系统的生命活动及过程[1]。厄尔尼诺南方涛动 (El Niño Southern Oscillation, ENSO) (包括厄尔尼诺和拉尼娜事件) 起源于赤道太平洋,是太平洋海域气候变化的最强信号,具有年际变动周期[2],其基本特征是西太平洋暖池的地带性位移以及大气对流,导致了整个太平洋海盆物理性质和生态系统的改变;具体表现为对各种海洋环境参数的影响,包括海表面温度 (Sea surface temperature, SST)、叶绿素a浓度 (Chl-a) 等,以及对由海洋顶级捕食者 (如金枪鱼) 共同构成的相互关联的海洋生态系统的影响[1,3-4]。
鲣 (Katsuwonus pelamis) 广泛分布于各大洋的热带、亚热带海域[5],中西太平洋热带海域是世界上最大的鲣渔场[6-7]。因而,研究中西太平洋鲣资源的时空分布对掌握渔业生产规律和开发鲣资源尤为重要。鲣种群按集群特点进行划分,可分为自由鱼群 (Free swimming school, FSC) (亦称起水群)、流木鱼群 (Log school) 以及鲸豚附随群 (Marine mammal associated school) 3类[8];流木鱼群中亦包括人工集鱼装置 (Fish aggregation device, FAD) 鱼群。自20世纪80年代以来,FAD开始被广泛运用于鲣的围网作业中,是一种高效的捕捞模式[9],但捕捞副渔获物 [非目标种类的幼年大眼金枪鱼 (Thunnus obesus) 以及黄鳍金枪鱼 (T. albacares)等] 严重的问题随之而来[10]。为此,中西太平洋海域的瑙鲁协定方 (Parties to nauru agreement, PNA) 制定了相关海洋管理政策以限制和减少FAD的使用[11]。相较于前者,自由鱼群的个体较大,偏好聚集于浅水层[12],且围网渔获物中兼捕物种少,但由于其高速游动的特性,捕捞难度较大[13]。因此,掌握围网鲣自由鱼群的时空分布特性,对于集中捕捉该种群以降低对漂浮物鱼群捕捉的依赖,从而并提高渔业生产效率具有积极作用,对保护金枪鱼的栖息环境与种群结构也具有重要意义[14]。
海洋鱼类资源的时空分布极易受海洋环境因子影响,掌握其时空分布有利于鱼类资源的合理开发和利用。鲣的分布模式受海表面温度影响显著[15],已有研究普遍发现鲣资源主要分布在海表温度28~30 ℃的海域[16-17],因而该温度区间可作为研究鲣资源时空分布变动的一项参考指标[18]。Lehodey等 [19]研究发现鲣作业渔场随暖池边缘(即与29 ℃等温线重合)发生了空间偏移。同时,气候变化在时空尺度上影响着海洋鱼类的分布模式,李政纬[17]指出,29 ℃等温线东界会受厄尔尼诺与南方涛动影响,进而影响鲣围网渔场的经向分布。受ENSO影响,鲣渔场与暖池的时空分布变动具有相同趋势[19-20]:即厄尔尼诺事件时,渔场重心随暖池东移;拉尼娜事件时,渔场重心随暖池西移[21]。因此,将暖池变动作为研究围网鲣自由鱼群时空分布的参考指标,能够探究鲣渔场的时空分布特性,更好地进行集中、高效的渔业生产活动,为其资源开发提供科学依据。已有研究仅对历史渔场重心与极端气候指标(如南方涛动指数、海表温异常指数)的关系进行了探讨[22-24],而忽略了暖池相关物理海洋指标空间变动而导致的渔场重心变化,其中包括暖池重心处多出现高产量的鲣围网渔场[25],以及暖池右边缘经向扩展而具有的潜在东部栖息地[26]。本研究以29 ℃等温线作为暖池边界,针对围网鲣自由鱼群的渔场重心与暖池相关指标进行相关性分析,并基于不同的气候模式下探究其时空分布变动之间的关系。
1. 材料与方法
1.1 数据来源
中西太平洋围网鲣渔业生产数据来源于中西太平洋渔业委员会 (Western and Central Fisheries Commission,WCPFC),数据包括作业日期、作业位置 (经纬度)、捕捞努力量、自由鱼群的渔获量等信息。其中时间跨度为1995—2019年,空间范围为120°E—150°W、20°S—20°N,空间分辨率为5°×5°,样本数共计7 721个。海洋环境数据为SST,来自哥伦比亚大学气候数据实验室网站 (http://iridl.ldeo.columbia.edu),空间分辨率为0.5º×0.5°,时间分辨率为月。同时选取1995—2019 年美国国家海洋与大气管理局气候预测中心 (https://origin.cpc.ncep.noaa.gov) 的Nino 3.4区域 (170°W—120°W、5°N—5°S) 的平均海温距平作为海洋尼诺指数 (OceanicNiño Index, ONI),其中ONI值介于 ±0.5为正常气候模式,大于0.5发生厄尔尼诺事件,小于 −0.5发生拉尼娜事件。
1.2 研究方法
1.2.1 重心计算
渔业研究中,资源丰度指数通常用于量化渔业中种群丰度的时空变化,如单位捕捞努力量渔获量 (Catch per unit effort, CPUE) 和渔获量[27]。由于现代商业渔业的复杂性,常用的CPUE可能无法作为所有物种资源丰度指数的合理表征[28],因此将二者均纳入考虑来量化围网鲣自由鱼群的时空分布,进而与暖池相关指标进行比较分析,为围网鲣自由鱼群的渔业生产和资源开发提供借鉴。渔获量大小常用于直接表示渔业的资源丰度,而CPUE大小常被认为与渔业资源丰度成正比[29],因而可作为表示其局部资源丰度的指标[30]。
本研究对1995—2019年间的渔场重心进行分析计算,作为研究其渔场时空分布变化的描述标准,通过使用渔场重心法来描述中西太平洋围网鲣自由鱼群 (以下简称自由鱼群) 的时空分布变化,环境因子SST的重心计算同理。由于鲣渔场与暖池变动间多为经向变化,因而仅对经向维度进行考虑,渔场重心计算范围与原始数据的空间范围 (120°E—150°W、20°S—20°N) 一致,同时为更准确地说明中西太平洋暖池的重心变化,在计算各项指标的重心时,本研究中的海域范围聚焦于110°E—80°W、45°S—45°N,公式如下[31]:
$$ {G}_{{\rm{CPUE}}}=\frac{\sum _{i}^{n}({{{E}}}_{i}\times {{{L}}}_{i})}{\sum _{i}^{n}{{{E}}}_{i}} $$ (1) $$ {G}_{{\rm{Catch}}}=\frac{\sum _{i}^{n}({{{C}}}_{i}\times {{{L}}}_{i})}{\sum _{i}^{n}{{{C}}}_{i}} $$ (2) $$ {G}_{{\rm{SST}}}=\frac{\sum _{i}^{n}({{{S}}}_{i}\times {{{L}}}_{i})}{\sum _{i}^{n}{{{S}}}_{i}} $$ (3) 式中:GCPUE、GCatch分别为自由鱼群渔场两种资源丰度指标的重心经度 (以下简称CPUE重心和Catch重心);GSST为 SST重心的经度 (以下简称暖池重心经度);
$ {{E}}_{i} $ 为单位捕捞努力量渔获量;$ {{C}}_{i} $ 为捕捞产量渔获重心;$ i $ 表示经度,$ {{L}}_{i} $ 为第$ i $ 经度的重心经度;Si为第i经度的温度重心。暖池的右边缘通过自中西太平洋西部海盆起选取连续的29 ℃等温线右边缘的经度,记作RSST。
1.2.2 统计方法
采用皮尔森相关性分析[32],对暖池指标 (暖池重心经度、暖池右边缘经度) 与渔场资源丰度重心经度以及气候环境指标ONI指数进行相关性分析。相关性在0.1~0.3为弱相关性,0.3~0.5间为中度相关性,大于0.5为强相关性;P<0.05表示相关,P<0.01为显著相关,P<0.001为极显著相关,P>0.05则表示相关性不显著。
1.2.3 不同气候模式下鲣资源空间分布
建立不同气候模式 (正常气候模式、厄尔尼诺年份、拉尼娜年份等) 下自由鱼群与暖池间的时空分布图,进一步说明不同气候模式下二者之间的空间相对位置及关系。
2. 结果
2.1 气候变化下暖池指标与鲣资源重心的关系
通过ONI指数对气候变化进行量化,并且采用皮尔森检验对暖池相关指标重心及右边缘、渔场资源丰度重心以及ONI指数进行相关性检验,发现其在统计学上均呈极显著相关性 (图1)。结果显示,渔场资源丰度重心指标,包括渔获量经向重心GCatch与单位捕捞努力量渔获量经向重心GCPUE,二者与暖池经向重心呈中度相关性,其中GCPUE的相关性值略高于GCatch。而在与暖池右边缘进行相关性检验时,GCatch与GCPUE同其呈弱相关性,GCPUE表现仍稍高于GCatch。在渔场资源丰度重心指标与海洋尼诺指数的相关性检验上,GCatch、GCPUE与之均呈中度相关性,此时GCatch表现略高于GCPUE。除主要研究渔场经向重心外,将暖池指标与海洋尼诺指数进行相关性检验,结果表明暖池经向重心GSST和暖池右边缘RSST与之呈强相关性,其中GSST与之相关性值达0.79,RSST为0.68。所有指标间的P均小于0.001,表现为极显著相关性。
资源丰度的表征在渔业研究中尤为重要[28],经皮尔森相关性检验得出,CPUE与暖池指标间在相关性表现上相较Catch更优。此外,CPUE的计算避免了直接使用渔获量,而未纳入捕捞努力量的影响[33];因此,可选用CPUE作为围网鲣自由鱼群与暖池指标关系研究的资源丰度指标。
2.2 暖池指标与鲣资源重心的年际变化趋势
将各项指标的经向变化随年月变化进行对比,探究在不同气候条件下,渔场重心经向与暖池指标变动的时空分布变化 (图2)。结果表明,渔场重心指标间的经向年际变化基本一致,GCPUE与暖池指标的相关性表现优于GCatch,因而以下研究均以GCPUE的经向变动进行探究。各项重心经向指标大多集中分布于140°E 以东、180°以西海域,其中GCPUE与GSST主要分布在160°E经线两端,而RSST大多分布在180°以东 (图2-a)。GCPUE、GSST与RSST随海洋尼诺指数的变动而发生变化 (图2-b)。多数情况下,当发生厄尔尼诺事件 (ONI>0.5)时,GCPUE与GSST东移越过160°E,同时RSST向东移动,如1997年的6—10月等;发生拉尼娜事件 (ONI<−0.5)时,GCPUE 与GSST则分布在160°E以西海域,同时RSST向西移动,如1995年8月—1996年3月等。暖池指标GSST与RSST间的经向变动关系随时间变化基本呈相同趋势。
GCPUE与GSST在经向上的变动趋势不完全相同。1995年1—4月、2003年1—4月、2007年1—5月和2016年1—5月等均为GSST在GCPUE以东,且经向变动趋势显著相反,而此时均为由发生厄尔尼诺事件向正常气候模式 (−0.5<ONI<0.5) 转变的月份。当GSST在GCPUE以西且经向变动趋势相反时,如1998年6—12月、1999年5—12月和a2010年6—12月等,此时正发生强烈的拉尼娜事件,受厄尔尼诺事件影响,GSST多位于GCPUE以东,但此时经向的变动趋势基本相同,如1997年6月—1998年4月、2015年6—12月等。GCPUE与RSST之间关系和GSST一致。
2.3 不同气候模式下自由鱼群的分布
为探明上述不同气候模式下,自由鱼群与暖池间的时空分布关系,选取其中个别月建立时空分布 (图3)。拉尼娜事件选取2010年的11—12月,正常气候模式选取2013年11—12月,厄尔尼诺事件选取2015年11—12月,而厄尔尼诺事件转变为正常年份事件的特殊气候模式选取2016年4—5月。
图 3 不同气候模式下CPUE与暖池的时空分布注:a、b为拉尼娜气候模式;c、d为正常气候模式;e、f为厄尔尼诺气候模式;g、h为厄尔尼诺气候模式向正常气候模式转变。Figure 3. Spatial-temporal distribution of CPUE and warm pool under different climate modesNote: (a) and (b) are the La Niña climate modes; (c) and (d) are the normal climate modes; (e) and (f) are the El Niño climate modes; (g) and (h) are the climate modes shifting from the El Niño to the normal.与ENSO相关的指标的位移发生在整个中西太平洋,发生拉尼娜事件时 (2010年11—12月),暖池面积最小,右边缘东部抵达距离最短,接近于180°经线,此时CPUE的分布均位于180°经线以西,且集中于太平洋西部美拉尼西亚群岛海域。当正常年份时 (2013年11—12月),暖池右边缘的位置相较拉尼娜事件时向东偏移,CPUE越过180°以东且少量分布。发生厄尔尼诺事件时 (2015年11—12月),CPUE的分布随暖池右边缘位置的东移而向东扩展。此外,一个特殊的气候模式变化应当被纳入考虑,即厄尔尼诺事件转变为正常年份事件 (2016年4—5月),此时暖池右边缘向西收缩,但CPUE的分布仍向东扩展,而相较于厄尔尼诺事件时在热带海域的均匀分布,此时仅在180°以东少量分布,且CPUE的大小和数量均下降。在所有的气候模式下,暖池右边缘均位于自由鱼群以东位置,自由鱼群基本均匀分布于暖池范围内,也同样说明了二者之间的紧密联系。
3. 讨论
不同类型的ENSO事件通过驱动暖池的空间位移从而改变区域内的海洋环境因子,进一步驱动海洋生态系统及其内部物种资源的响应[34]。 位于中西太平洋的暖池是ENSO的基本构成要素[15],其表面积及位置随ENSO事件的变化而改变[13,35];即厄尔尼诺事件时,暖池的面积增大,东移到达太平洋中部海域;拉尼娜事件时,暖池的面积减小,西移到西太平洋海盆区域。从暖池指标(本研究中指暖池重心与暖池右边缘)的时空变化入手,可为研究围网鲣自由群对ENSO事件的响应提供依据。鲣的资源丰度以及空间分布受海洋环境因子影响[36],而海表温度对鲣资源状态的时空分布具有更显著的影响[37],在本研究中具体表现为资源丰度的大小及重心的空间分布随29 ℃海表温度场的影响而变化。由于ENSO驱动海表温度变化,受其影响,具有高度洄游的鲣自由鱼群会在沿海生态系统和公海海域之间移动[38]。Williams和Ruaia[39]指出,ENSO事件对鲣围网活动空间分布的影响表现为,在厄尔尼诺年份,捕捞活动通常进一步向东扩展,在拉尼娜期间,捕捞活动向西部地区收缩,与本研究的发现(图3)基本一致。捕捞作业活动的变动同暖池变动规律相同,而渔场重心可以表征捕捞作业活动空间的集中分布程度,但渔场重心与暖池间的协同关系也存在着特异性。受ENSO影响,暖池重心的空间变异程度 (变异系数Coefficient of variation,CV= 5.012) 要强于渔场重心 (CV = 2.523)的变化 (图2),即表现为厄尔尼诺事件时暖池重心位于渔场重心东部,而当拉尼娜事件时暖池重心位于渔场重心西部。这可能是由于受捕捞作业方式影响,围网鲣自由鱼群的渔场重心相较于暖池受气候以及环境变化影响小[40]。此外,自由鱼群多是体型较大的成年鲣,需寻求适宜的温度环境作为首选栖息地和合适的产卵地,厄尔尼诺事件会导致海表温度升高,温跃层变浅(温跃层是富含营养物质的混合层上下界之间交换的障碍),营养物质更容易向混合层转移,从而促使深层营养盐在海表扩散,形成具有良好饵料的栖息环境[41]。然而强烈厄尔尼诺事件时,温度过高导致暖池的长距离东扩,抑制了鲣在热带中西太平洋的产卵活动[21];但并未导致渔场范围相应东扩,反而此时在太平洋中部的岛国 (如基里巴斯群岛) 的围网渔获量更高,分布更集中。
而对于厄尔尼诺转变为正常年份这一特殊气候模式的变化,即暖池重心与渔场重心的变化趋势显著相反 (暖池重心向西移动而渔场重心仍向东),可能由于暖池场的西移,导致了适宜的温度范围增大,以便于鲣适宜栖息地的形成。陈洋洋和陈新军 [23]研究得出,Nino3.4海区指数对CPUE的影响滞后0~2个月,这可能也是造成渔场重心和暖池重心之间变化不同步的原因。此外,暖池的东扩也与温跃层变浅,以及更强于平时的西太平洋信风有关,从而导致赤道西太平洋的初级生产力增加[42]。因此,位于140°E—160°E的所罗门群岛和巴布亚新几内亚的资源丰度在厄尔尼诺现象结束后有所增加,以应对鲣捕捞量的增加以及栖息地收缩的现象,这也进一步解释了渔场重心与暖池重心之间变化的不同步。
本研究对围网鲣自由鱼群的渔场指标,以及暖池指标在不同气候模式下的时空分布变化进行探究发现,通过研究暖池重心的变化可以很好地探索及预测渔场重心变化的规律。而通过构建暖池场与自由鱼群资源丰度的时空分布关系发现,暖池右边缘的范围能够很好地与自由鱼群的空间分布联系起来,可为商业性捕捞围网鲣自由鱼群提供渔场边界的指示,也可为今后研究鲣渔场的分布范围提供一项有利参考。
本研究对不同资源丰度指标对围网鲣自由鱼群的表征的影响进行了研究,但选取的均为名义上的资源丰度指标 (名义的CPUE),而未对CPUE进行标准化 (以消除人为捕捞等因素对资源丰度的影响),可能会造成研究结果具有一定误差。且仅研究了自由鱼群对暖池指标的响应关系,未与由人工集鱼装置捕捞获得的流木鱼群进行对比。在未来研究中,将对不同集群种类的鲣对暖池响应的差异性进行更细致的研究,以期为中西太平洋的鲣围网作业提供更丰富详尽的科学依据。
-
图 3 基于菌株P1-17、P2-33及相关菌株16S rRNA基因序列的系统发育树
注:括号中的序号代表菌株的GenBank登录号;分支点上的数字代表bootstrap值;标尺刻度代表碱基替代率。图4同此。
Figure 3. Phylogenetic tree based on 16S rRNA sequences of Strains P1-17, P2-33 and other related strains
Note: The sequence number in the brackets is the GenBank accession number of the strain; the numbers at the node are the bootstrap values; the scale bar indicates nucleotide substitution ratio. The same case in Fig. 4.
表 1 菌株P1-17、P2-33、P3-11的生理生化特征
Table 1 Physiological and biochemical characteristics of Strains P1-17, P2-33 and P3-11
鉴定项目
Tested item菌株 Strain P1-17 P2-33 P3-11 蛋白胨水 peptone water + + + 蔗糖 Sucrose − − + 甘露糖 Mannose − − − 阿拉伯糖 Pectinose + + + 乳糖 Lactose − − − 葡萄糖氧化发酵试验 OF − − − 邻硝基苯-半乳糖苷酶
o-nitrophenyl-galactosidase− − − 柠檬酸盐 Citrate − − − 硫化氢 H2S − − − 尿素酶 Urease − − − VP试验 Voges-Proskauer test + + + 明胶液化 Gelatin Liquefaction + + + 吲哚试验 Indole test − − + 葡萄糖 Glucose − − + 甘露醇 Mannitol − − + 肌醇 Inositol − − + 山梨醇 Sorbitol − − + 鼠李糖 Rhamnose − − − 密二糖 Melibiose − − − 苦杏仁苷 Amygdalin − − + 氧化酶试验 OX − − − 注:+. 阳性;−. 阴性。 Note: +. Positive; –. Negative. 表 2 菌株P1-17、P2-33 和 P3-11的药敏特性
Table 2 Antibiotic sensitivity of Strains P1-17, P2-33 and P3-11
抗菌药物种类
Type of Antibacterial药物名称
Drug纸片含药量
Drug content抑菌圈直径/敏感性
Diameter of inhibition zone (mm)/SusceptibilityP1-17 P2-33 P3-11 青霉素类
Penicillins氨苄西林 Ampicillin 10 μg·片−1 27.41/S 22.34/S 14.56/R 青霉素 Penicillin 10 μg·片−1 32.65/S 27.54/S 21.37/S 阿莫西林 Amoxicillin 20 μg·片−1 28.57/S 18.26/S 16.22/I 新生霉素 Neomycin 30 μg·片−1 28.57/S 28.57/S 17.30/S 头孢菌素类
Cephalosporins头孢噻肟 Cefotaxime 30 μg·片−1 37.58/S 31.48/S 0/R 头孢曲松 Ceftriaxone 30 μg·片−1 37.45/S 33.56/S 0/R 喹诺酮类
Quinolones诺氟沙星 Norfloxacin 10 μg·片−1 32.36/S 31.43/S 19/S 依诺沙星 Enoxacin 10 μg·片−1 32.54/S 31.64/S 22/S 环丙沙星 Ciprofloxacin 5 μg·片−1 41.05/S 36.55/S 24/S 氧氟沙星 Ofloxacin 5 μg·片−1 41.24/S 39.15/S 25/S 左氧氟沙 Levofloxacin 5 μg·片−1 39.04/S 38.86/S 19/S 恩诺沙星 Enrofloxacine 10 μg·片−1 40.32/S 36.58/S 24/I 洛美沙星 Lomefloxacin 10 μg·片−1 40.27/S 38.36/S 21/S 磺胺类
Sulfonamides磺胺异恶唑 Sulfisoxazole 300 μg·片−1 20.34/S 18.87/S 0/R 复方新诺明 Cotrimoxazole 25 μg·片−1 34.66/S 32.78/S 0/R 四环素类
Tetracyclines四环素 Tetracycline 30 μg·片−1 25.16/S 23.36/S 15/I 多西环素 Doxycycline 30 μg·片−1 33.27/S 33.27/S 26/S 大环内酯类
Macrolides阿奇霉素 Azithromycin 15 μg·片−1 30.26/S 27.67/S 13/R 罗红霉素 Roxithromycin 15 μg·片−1 37.57/S 33.35/S 14/R 氨基苷类
Aminoglycosides链霉素 Streptomycin 10 μg·片−1 26.26/S 25.86/S 0/R 卡那霉素 Kanamycin 30 μg·片−1 35.06/S 34.89/S 0/R 丁胺卡那 Amikacin 30 μg·片−1 37.34/S 31.57/S 0/R 庆大霉素 Gentamycin 10 μg·片−1 34.36/S 31.68/S 0/R 妥布霉素 Tobramycin 10 μg·片−1 36.02/S 34.08/S 0/R 氯霉素类
Chloramphenicol氯霉素 Chloramphenicol 30 μg·片−1 35.24/S 35.24/S 18/I 氟苯尼考 Florfenicol 30 μg·片−1 38.31/S 33.65/S 22/S 肽类抗生素
Peptides万古霉素 Vancomycin 30 μg·片−1 30.10/S 28.35/S 20/S 多黏菌素 B Polymyxin B 300 IU 17.28/S 14.07/S 0/R 多烯类抗真菌抗生素
Polyeneantifungal制霉菌素 Nystatin 100 μg·片−1 10.57/R 11.21/R 0/R 注:S. 高度敏感;I. 中度敏感;R. 耐药。 Note: S. Sensitive; I. Intermediate sensitive; R. Resistance. 表 3 拮抗菌株产酶能力
Table 3 Enzyme production ability of antagonistic strains
菌株名称
Strain水解圈直径/菌落直径
Dh/Dc蛋白酶
Protease脂肪酶
Lipase淀粉酶
AmylaseP1-17 4.23 0 4.20 P2-33 3.82 0 4.46 P3-11 0 0 0 表 4 分离菌株对杀香鱼假单胞菌的拮抗试验
Table 4 Antagonism test of isolated strains against P. plecoglossicida
菌株
Strain抑菌圈直径 Diameter of inhibition zone/mm P1-17 P2-33 P3-11 杀香鱼假单胞菌 1303001 P. plecoglossicida 1303001 10.24±0.41 9.86±0.35 12.57±0.64 杀香鱼假单胞菌 1303002 P. plecoglossicida 1303002 10.53±0.72 10.18±1.14 12.6±0.83 杀香鱼假单胞菌 1306002 P. plecoglossicida 1306002 9.76±0.47 9.58±0.34 11.47±0.54 杀香鱼假单胞菌 202010001 P. plecoglossicida 202010001 10.43±1.40 9.76±0.65 11.85±1.21 杀香鱼假单胞菌 202010002 P. plecoglossicida 202010002 9.45±1.52 9.25±0.74 10.68±0.36 杀香鱼假单胞菌 202105001 P. plecoglossicida 202105001 9.18±0.64 8.74±1.32 10.46±0.54 杀香鱼假单胞菌 202105002 P. plecoglossicida 202105002 10.65±0.22 9.65±0.83 12.34±1.12 杀香鱼假单胞菌 202105003 P. plecoglossicida 202105003 9.34±0.72 9.05±0.63 11.38±1.43 表 5 拮抗菌对其他致病菌的拮抗试验
Table 5 Antagonism test of antagonistic bacteria against other pathogenic bacteria
菌株
Strain抑菌圈直径 Diameter of inhibition zone/mm P1-17 P2-33 P3-11 溶藻弧菌 Vibrio alginolyticus 10.39±0.67 7.78±0.56 0 哈维氏弧菌 V. harveyi 10.65±1.54 10.34±1.56 0 副溶血弧菌 V. parahaemolyticus 11.57±0.34 11.25±0.42 0 美人鱼发光杆菌 Photobacterium damselae 15.13±0.24 14.96±0.53 0 嗜水气单胞菌 Aeromonas hydrophila 19.64±1.56 16.85±0.37 0 迟缓爱德华氏菌 Edwardsiella tarda 21.85±0.24 20.83±0.46 0 注:“0”表示无拮抗作用。 Note: "0" indicates no antagonism. -
[1] 刘家富. 大黄鱼养殖与生物学[M]. 厦门: 厦门大学出版社, 2013: 1-6. [2] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021: 44, 48. [3] ZHOU Q J, WANG J, MAO Y, et al. Molecular structure, expression and antibacterial characterization of a novel antimicrobial peptide NK-lysin from the large yellow croaker (Larimichthys crocea)[J]. Aquaculture, 2019, 500: 315-321. doi: 10.1016/j.aquaculture.2018.10.012
[4] 许斌福, 程海华, 池洪树, 等. 大黄鱼内脏白点病的病原分析与鉴定[J]. 福建农业学报, 2015, 30(7): 631-635. doi: 10.3969/j.issn.1008-0384.2015.07.002 [5] ZHANG J T, ZHOU S M, AN S W, et al. Visceral granulomas in farmed large yellow croaker, Larimichthys crocea (Richardson), caused by a bacterial pathogen, Pseudomonas plecoglossicida[J]. J Fish Dis, 2014, 37(2): 113-121. doi: 10.1111/jfd.12075
[6] LI C W, WANG S L, REN Q L, et al. An outbreak of visceral white nodules disease caused by Pseudomonas plecoglossicida at a water temperature of 12° C in cultured large yellow croaker (Larimichthys crocea) in China[J]. J Fish Dis, 2020, 43(11): 1353-1361. doi: 10.1111/jfd.13206
[7] 刘亚楠, 习丙文, 梁利国, 等. 水产动物病原菌拮抗菌的研究进展[J]. 江苏农业科学, 2013, 41(5): 208-212. doi: 10.3969/j.issn.1002-1302.2013.05.079 [8] 任竹玲. 罗非鱼舒伯特气单胞菌疾病及其益生菌防治研究[D]. 海口: 海南大学, 2020: 16-17. [9] KUEBUTORNYE F K A, ABARIKE E D, LU Y, et al. Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture[J]. Fish Physiol Biochem, 2020, 46(3): 819-841. doi: 10.1007/s10695-019-00754-y
[10] 赵龙妹, 聂利芳. 鸡源产蛋白酶乳酸菌的筛选与鉴定[J]. 黑龙江畜牧兽医, 2020(10): 89-93, 98, 151-152. [11] 柯轲, 方端, 高福, 等. 凝结芽孢杆菌在动物饲料中的应用[J]. 中国微生态学杂志, 2022, 34(8): 988-993. doi: 10.13381/j.cnki.cjm.202208023 [12] OLSSON J C, WESTERDAHL A, CONWAY P L, et al. Intestinal colonization potential ofturbot (Scophthalmus maximus) and dab (Limanda limanda) associated bacteria with inhibitory effects against Vibrio anguillarum[J]. Appl Environ Microbiol, 1992, 58(2): 551-556. doi: 10.1128/aem.58.2.551-556.1992
[13] WANG W W, WU S G, ZOU H, et al. Characterization of cellulose-decomposing bacteria in the intestine of grass carp, Ctenopharyngodon idella (Val.)[J]. Acta Hydrobiologica Sinica, 2014, 38(2): 291-297.
[14] 王凌利, 杨亲, 祝瑶, 等. 猪链球菌细菌素的筛选及理化特性分析[J]. 中国预防兽医学报, 2022, 44(4): 363-368. [15] 布坎南R E, 吉本斯N E. 伯杰细菌鉴定手册[M]. 北京: 科学出版社, 1984: 729-731. [16] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册 [M]. 北京: 科学出版社, 2001: 25-26. [17] MUKHERJEE A, CHANDRA G, GHOSH K. Single or conjoint application of autochthonous Bacillus strains as potential probiotics: effects on growth, feed utilization, immunity and disease resistance in Rohu, Labeo rohita (Hamilton)[J]. Aquaculture, 2019, 512: 734302. doi: 10.1016/j.aquaculture.2019.734302
[18] PENNSYLVANIA U. Clinical and Laboratory Standards Institute[J]. Zambia, 2021, 35(3): 44-106.
[19] 孟小亮. 黄颡鱼肠道益生菌的筛选及其应用研究[D]. 武汉: 华中农业大学, 2010: 12-17. [20] 夏京津, 陈建武, 宋怿, 等. 解淀粉芽孢杆菌HE活性成分鉴定及抗菌特性分析[J]. 南方水产科学, 2019, 15(3): 41-49. doi: 10.12131/20190054 [21] XU B H, YE Z W, ZHENG Q W, et al. Isolation and characterization of cyclic lipopeptides with broad-spectrum antimicrobial activity from Bacillus siamensis JFL15[J]. 3 Biotech, 2018, 8(10): 1-10.
[22] LI X X, GAO X J, ZHANG S M, et al. Characterization of a Bacillus velezensis with antibacterial activity and inhibitory effect on common aquatic pathogens[J]. Aquaculture, 2020, 523: 735165. doi: 10.1016/j.aquaculture.2020.735165
[23] 刘婷, 尹启蒙, 周滟晴, 等. 一株副溶血性弧菌拮抗菌的筛选、鉴定及其抑菌物质特性研究[J]. 食品与发酵工业, 2022, 48(1): 76-83. [24] 徐春霞. 网箱养殖大黄鱼内脏白点病病原菌分离鉴定及致病性研究[J]. 水产科学, 2021, 40(5): 670-678. [25] 王娟, 封永辉, 蔡立胜, 等. 来自大黄鱼 (Pseudosciaena crocea) 肠道的弧菌拮抗菌的筛选与鉴定[J]. 海洋与湖沼, 2010, 41(5): 707-713. doi: 10.11693/hyhz201005007007 [26] 王梦霞, 朱晓玲, 王君如, 等. 大黄鱼病原哈维氏弧菌 (Vibrio harveyi) 拮抗菌的筛选及益生菌特征的分析[J]. 饲料工业, 2015, 36(2): 52-58. [27] 傅超英, 王建平, 孙琛, 等. 大黄鱼主要致病菌拮抗菌株的分离鉴定、抑菌谱及安全性分析[J]. 生物技术通报, 2019, 35(1): 67-75. doi: 10.13560/j.cnki.biotech.bull.1985.2018-0565 [28] HUYBEN D, NYMAN A, VIDAKOVIĆ A, et al. Effects of dietary inclusion of the yeasts Saccharomyces cerevisiae and Wickerhamomyces anomalus on gut microbiota of rainbow trout[J]. Aquaculture, 2017, 473: 528-537. doi: 10.1016/j.aquaculture.2017.03.024
[29] LIU Q, WEN L, PAN X H, et al. Dietary supplementation of Bacillus subtilis and Enterococcus faecalis can effectively improve the growth performance, immunity, and resistance of tilapia against Streptococcus agalactiae[J]. Aquac Nutr, 2021, 27: 1160-1172. doi: 10.1111/anu.13256
[30] 王金燕, 李彬, 王印庚, 等. 刺参养殖池塘一株贝莱斯芽孢杆菌的分离及其生理特性[J]. 中国水产科学, 2018, 25(3): 567-575. [31] 任津莹, 陈鹏. 一株贝莱斯芽孢杆菌的分离鉴定及其生物学特性研究[J]. 饲料研究, 2022, 45(2): 79-82. doi: 10.13557/j.cnki.issn1002-2813.2022.02.017 [32] KANG M R, SU X, YUN L L, et al. Evaluation of probiotic characteristics and whole genome analysis of Bacillus velezensis R-71003 isolated from the intestine of common carp (Cyprinus carpio L.) for its use as a probiotic in aquaculture[J]. Aquac Rep, 2022, 25: 101254. doi: 10.1016/j.aqrep.2022.101254
[33] ZHANG D F, XIONG X L, WANG Y J, et al. Bacillus velezensis WLYS23 strain possesses antagonistic activity against hybrid snakehead bacterial pathogens[J]. J Appl Microbiol, 2021, 131(6): 3056-3068. doi: 10.1111/jam.15162
-
期刊类型引用(2)
1. 巫旗生,宁岳,祁剑飞,郭香,罗辉玉,曾志南,葛辉. 和蔼巴非蛤人工育苗及稚贝培育技术. 福建农业科技. 2024(10): 9-14 . 百度学术
2. 杨凌,刘一鸣,徐炳杰,王超奇,吴韬,邢清淦,裴琨,韦朝民,曾尚伟,潘英. 钝缀锦蛤在北海、防城港、钦州海区的中培与养成实验. 南方水产科学. 2023(06): 38-50 . 本站查看
其他类型引用(1)