Effect of low temperature stress on antioxidant stress, apoptosis and histological structure of gills in cobia (Rachycentron canadum)
-
摘要: 军曹鱼 (Rachycentron canadum) 鳃组织对水温变化敏感。为探究低温胁迫对军曹鱼幼鱼鳃组织的影响,揭示该鱼应对低温胁迫的响应机制,实验设置2个低温胁迫组 (18 ℃、21 ℃) 和1个对照组 (28 ℃),比较分析鳃组织在胁迫后第0、第4和第7天的氧化应激状态、细胞凋亡和组织结构情况。结果显示,低温胁迫下鳃组织超氧化物歧化酶 (SOD)、过氧化氢酶 (CAT) 和谷胱甘肽过氧化物酶 (GSH-Px) 活性显著低于对照组 (P<0.05),丙二醛 (MDA) 浓度显著高于对照组 (P<0.05);低温胁迫组鳃组织凋亡相关基因bax、caspase-9、caspase-3、p53和mdm2表达量在第4和第7天时相较于对照组显著升高 (P<0.05),bcl-2基因表达量显著降低 (P<0.05);TUNEL检测显示低温组鳃组织细胞凋亡率升高;组织学分析表明低温胁迫下鳃组织出现了不同程度的鳃小片排列紊乱、基部增生、融合,上皮细胞和泌氯细胞空泡化等现象。研究表明,低温胁迫抑制了军曹鱼幼鱼的鳃组织抗氧化酶活性,造成氧化损伤,进一步诱导细胞凋亡,破坏鳃组织结构完整性。Abstract: The gill tissue of cobia (Rachycentron canadum) is sensitive to water temperature changes. In order to investigate the effect of low temperature stress on juvenile cobia, and reveal its response mechanism to low temperature stress, we designed two low temperature groups (18 ℃ and 21 ℃) and one control group (28 ℃), to analyze the antioxidant responses, expression of apoptosis-related genes and histological structure of the gills on 0, 4th and 7th day after the stress. The results show that the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in the low-temperature groups were significantly lower than those in the control group (P<0.05), while the malondialdehyde (MDA) mass concentration in the low-temperature groups was significantly higher than that in the control group (P<0.05). The expression of apoptosis-related genes bax, caspase-9, caspase-3, p53 and mdm2 increased significantly in the low-temperature groups, while the expression of Bcl-2 decreased significantly on 4th and 7th day (P<0.05). The TUNEL results reveal that low-temperature treatment increased the cell apoptosis rate of the gills, and caused lesions including fusion of secondary lamellae, necrosis of epithelial cell and hyperplasia of chloride cells. The results indicate that low-temperature stress causes oxidative stress, induces apoptosis and damages the structural integrity of the gills, which suggests that normal physiological functions of juvenile cobia can be affected by low temperature significantly.
-
Keywords:
- Rachycentron canadum /
- Low temperature stress /
- Gill /
- Antioxidant enzyme /
- Apoptosis /
- Organization structure
-
止血敷料常用于伤口的基础治疗,以达到快速止血的目的。然而传统的止血敷料存在很多问题,例如材料来源单一、止血时间较长、易粘连伤口、体内降解性较差、力学性能较差等,已不能满足伤者们的紧急医疗需求[1]。因此,针对传统医用敷料的局限性,开发一种具有良好机械性能、保水性能和止血性能的新型可吸收医用敷料,成为目前生物医学材料领域研究的热点和难点之一[2]。目前,常用的止血材料包含以下几种:1) 沸石类敷料,具有多孔结构,能够迅速吸收血液中的水分促进凝血,但容易引发炎症反应;2) 氧化纤维素类敷料,通过羧基与血红蛋白中的铁离子形成凝胶状物质进行止血,但在过程中产生的酸性环境会引起神经损伤;3) 明胶、胶原和多糖类敷料,生物相容性较高,具有较高的止血活性,是目前研究的热点,但单独使用时存在机械性能较差、易脱落等缺点。因此,本研究考虑将不同的天然高分子材料进行共混交联,改善单一材料的局限性,并发挥其在止血性能中的复配协同作用[3]。
明胶作为一种可吸收的天然生物材料,因具有生物相容性、生物降解性、低免疫原性而受到广泛关注[4]。明胶具有良好的止血活性,能够吸收大量血液,并能激活血小板的附着和凝血因子释放,封闭创面伤口实现快速止血[5]。目前,牛或猪来源的明胶止血海绵已应用于外科手术之中[6]。太平洋鳕 (Gadus macrocephalus) 是世界上重要的经济鱼类,从鳕鱼皮副产物中提取明胶可以避免陆地源疾病和宗教的影响,避免资源浪费和环境污染。但纯明胶海绵存在机械性能较差、易破损、难止住大伤口出血等缺点,所以要获得高性能的明胶止血产品,需将其与其他类型的止血材料复配进行改性[7-9]。褐藻来源的海藻酸钠是一种由β-1,4-d-甘露糖醛酸和α-1,4-d-古洛糖醛酸构成的天然线性共聚物[10],具有生物降解性好、生物相容性高和易于进行化学改性的优点,且具有止血活性以及易于形成凝胶的性质,可以作为明胶复配的良好选择[11]。已研究开发出明胶海藻酸钠水凝胶支架用于骨组织缺损修复[12]和细胞迁移[13],但对其复合材料的止血效果尚未探究。
本研究将鳕鱼皮源明胶与海藻酸钠进行共混并交联,制备出一种具有良好机械性能和止血活性的可吸收型复合止血敷料。通过测定该复合止血敷料的力学性能、结构特征等指标从而确定其制备的最佳工艺条件,并评价了该敷料的止血性能、生物相容性,初步探究了其止血机制,为新型止血医用材料的开发提供重要参考及理论依据。
1. 材料与方法
1.1 材料
太平洋鳕冷冻鱼皮由青岛浩源有限公司提供;戊二醛和十二烷基硫酸钠 (SDS) 购自Sigma有限公司;其他试剂均为分析纯,购自国药化学试剂有限公司。
市售鳕鱼皮明胶购自青岛东易科技有限公司;市售明胶海绵购自江西祥恩医疗科技发展有限公司;活化部分凝血酶时间 (Activated partial thromboplastin time, APTT)、凝血酶原时间 (Prothrombin time, PT) 和凝血酶时间 (Thrombin time, TT) 检测试剂盒,血栓烷素B2 (TXB2)、血小板第四因子 (PF4) 和P-选择素检测试剂盒购自南京建成生物工程研究所;Wistar大鼠 (210±10) g购自山东鲁抗医学质量检验中心实验动物中心。
1.2 鳕鱼皮明胶的制备
太平洋鳕鱼皮明胶的制备参考Hou等[14]的方法。解冻清洗后的小块鳕鱼皮经0.1 mol·L−1的氢氧化钠 (NaOH) 溶液 (质量体积比1∶25) 和0.1 mol·L−1的盐酸 (HCl) 溶液 (质量体积比1∶25) 浸泡处理后,冲洗至中性。将充分溶胀的鱼皮放入锥形瓶中,在55 ℃的条件下水浴摇床振荡提取4 h。提取液经过滤、旋转蒸发后冻干得到鳕鱼皮明胶。
1.3 聚丙烯酰胺凝胶电泳 (SDS-PAGE)
采用Laemmli[15]的方法配置7.5%分离胶和5%浓缩胶,电泳采用直流恒压电源,电压100 V,跑至距离胶边缘约1 cm处。将胶置于考马斯亮蓝R-250中染色10~15 min,随后用脱色液脱色过夜。
1.4 医用复合止血海绵的制备
将1、5、10、15、20 mg·mL−1的明胶溶液按体积比15∶8与海藻酸钠溶液混合,在混合溶液中加入戊二醛溶液作为交联剂,于4 ℃静置24 h进行交联。真空脱气15~30 min后,溶液倒入不锈钢平板中,于−40 ℃下预冻12 h,冷冻干燥后得到鳕鱼皮明胶复合止血敷料。
1.5 理化特征
1.5.1 吸水性
将敷料剪成1.0 cm3的立方块,准确称量记为w0。室温条件下,浸没于蒸馏水中充分吸水,随后用镊子将其轻轻提出水面,放置在滤网中除去表面多余的水,再次精确称量记为w1。3次测量,取平均值。吸水倍数的计算公式为[16]:
$$ \mathrm{吸}\mathrm{水}\mathrm{倍}\mathrm{数}=\frac{{{w}}_{1}-{{w}}_{0}}{{{w}}_{0}} $$ (1) 式中:w0为海绵干质量 (g);w1为海绵湿质量 (g)。
1.5.2 持水力
在测定吸水率的基础上,将膨胀状态下的海绵进行离心。离心后海绵的质量为w2。持水力计算公式为[17]:
$$ \mathrm{持}\mathrm{水}\mathrm{力}=\frac{{{w}}_{2}-{{w}}_{0}}{{{w}}_{1}-{{w}}_{0}}\times 100{\text{%}} $$ (2) 式中:w0为海绵的干质量(g);w1为海绵的湿质量(g);w2为排水后海绵的质量 (g)。
1.5.3 交联度
取敷料3~5 mg加入1 mL 碳酸氢钠 (NaHCO3) 溶液和1 mL 三硝基苯磺酸 (TNBS) 溶液 (5 mg·mL−1),40 ℃反应2 h。随后加入3 mL 6 mol·L−1 的HCl溶液,60 ℃反应90 min。溶液经去离子水稀释至5 mL,测定其在345 nm处的吸光值。吸光值与游离氨基数存在以下关系[18]:
$$ \left[{{\rm{NH}}}_{2}\right]=\frac{A\times V}{\epsilon \times l\times m} $$ (3) 式中:[NH2]为赖氨酸侧链ε-氨基含量;A为吸光度;V为溶液体积(mL);ε=14.600;l为路径长度 (cm);m为样品的质量 (mg)。
根据以下公式计算交联度 (%):
$$ \mathrm{交}\mathrm{联}\mathrm{度}=\frac{{\left[{{\rm{NH}}}_{2}\right]}_{{\rm{n}}}-{\left[{{\rm{NH}}}_{2}\right]}_{{\rm{m}}}}{{\left[{{\rm{NH}}}_{2}\right]}_{{\rm{n}}}}\times 100{\text{%}} $$ (4) 式中:[NH2]为游离氨基质量摩尔浓度 (mol·g−1),下标m和n分别表示交联和无交联样品。
1.5.4 机械试验
将制备好的敷料剪成适当大小,两端固定在拉力机上,初始距离为15 mm,测试速度为60 mm·s−1,力度为300 N[19]。每组样品平行测试9次。
抗张强度 (MPa)的计算公式为:
$$ \mathrm{抗}\mathrm{张}\mathrm{强}\mathrm{度}=\frac{{F}_{\max}}{S} $$ (5) 式中:Fmax为样品断裂瞬间的最大张力 (N);S为样品的横截面积 (mm2)。
断裂伸长率的计算公式为:
$$ \mathrm{断}\mathrm{裂}\mathrm{伸}\mathrm{长}\mathrm{率}\hspace{0.25em}=\frac{\Delta L}{L}\times 100{\text{%}} $$ (6) 式中:ΔL为样品断裂时延伸的位移 (mm);L为标距 (mm)。
1.6 体内止血评价
1.6.1 股动脉模型
大鼠麻醉后,暴露其右侧股动脉并于相同位置处切开,然后迅速将复合止血敷料覆盖在出血部位,施加连续压力,每15 s观察1次。以无菌纱布和市售明胶海绵作为对照,分别记录止血时间。
1.6.2 肝损伤模型
麻醉大鼠后,打开腹腔,暴露出肝脏中叶,从肝脏尖端1 cm处进行切割,制备肝脏出血模型。其余操作同上,分别记录止血时间。
1.6.3 尾部模型
大鼠的尾部用75%乙醇消毒,在尾部的1/3处拉直并切割。其余操作同上,分别记录止血时间。
1.7 APTT、PT、TT分析和TXB2、PF4、P-选择素检测
APTT、PT、TT分析分别按照相应检测试剂盒的说明书测定。血小板活化因子检测按照TXB2、PF4和P-选择素检测试剂盒的说明书测定。
1.8 生物相容性评价
参考GB/T 16886.11—2011《医疗器械生物学评价 第11部分:全身毒性试验》进行全身急性毒性试验;参考GB/T 16886.10—2017《医疗器械生物学评价 第10部分:刺激与皮肤致敏试验》进行刺激性试验;参考GB/T 16886.4—2016《医疗器械生物学评价 第4部分:与血液相互作用试验选择》进行溶血试验。
1.9 统计分析
数据采用单因素方差分析 (One-way ANOVA) 进行处理,并采用独立样本t检验进行分析。数值数据用“平均值±标准差(
$\overline { X}\pm { \rm {SD}} $ )”表示,P<0.05表示差异有统计学意义。2. 结果与分析
2.1 SDS-PAGE图谱分析
采用SDS-PAGE对自提鳕鱼皮明胶样品和市售明胶的亚基成分进行了分析。自提鳕鱼皮明胶由3条α链 (α1,α2和α3) 和1条β链构成,与斑点叉尾鮰 (Ictalurus punctatus) 和胡鲶 (Clarias gariepinus) 皮中提取的明胶结构类似[20-21],具有典型的Ⅰ型胶原蛋白电泳条带特征 (图1) 。α链分子量在100~135 kD,由于α1和α3分子量十分接近,所以在SDS-PAGE凝胶上形成一个难以区分的条带。自提鳕鱼皮明胶β链的分子量约为245 kD,但在市售明胶的电泳图谱中没有观察到清晰的条带。根据SDS-PAGE结果推断出鳕鱼皮明胶是由Ⅰ型胶原蛋白变性得到的,与市售明胶对比,自提鳕鱼皮明胶样品条带清晰,几乎没有降解,可以作为医用止血敷料的主要材料。
2.2 不同明胶浓度对止血敷料理化表征的影响
不同明胶浓度对复合止血敷料理化性能的影响见表1。随着明胶浓度的增加,复合敷料的抗张强度从 (0.010 0±0.003 7) MPa提高至 (0.085 9±0.003 6) MPa,断裂伸长率从 (7.54±0.37)%下降到 (1.36±0.30)%。明胶质量浓度超过10 mg·mL−1时,其抗张强度间无明显差异 (P>0.05),而断裂伸长率则随着明胶浓度的增大而逐渐减小,说明随着明胶浓度的增大,复合止血敷料的脆性和硬度增加,导致延伸性受到较大影响。如果敷料的机械强度较差则不能抗击血液冲击,容易造成二次出血,因此机械强度是衡量敷料质量的一个重要指标。
表 1 不同明胶浓度对复合止血敷料理化性能的影响Table 1. Physical and chemical properties of composite hemostatic sponge with different gelatin concentration明胶质量浓度
Gelatin mass concentration/
(mg·mL−1)抗张强度
Tensile
strength/MPa断裂伸长率
Elongation at
break/%吸水倍数
Water absorption
ratio持水率
Water retention
ratio/%交联度
Degree of
crosslinking/%1 0.010 0±0.003 7a 7.54±0.37a 25.47±0.14a 21.00±0.20a 88.90±0.50a 5 0.037 2±0.004 2b 7.43±1.31a 31.82±0.80b 28.03±1.03b 63.13±0.63b 10 0.082 3±0.002 2c 6.81±0.21a 49.20±2.24c 30.49±2.18b 56.68±0.33c 15 0.085 9±0.003 6c 3.49±0.72b 38.15±2.24d 37.35±2.37c 43.36±2.86d 20 0.079 5±0.005 6c 1.36±0.30c 23.89±0.34a 37.99±0.30c 44.45±0.57d 注:同列字母不同者表示显著差异 (P<0.05)。 Note: Values with different letters within the same column have significant difference (P<0.05). 因为敷料需要吸收大量的伤口渗出物,防止细菌入侵伤口,因此吸水性和持水性是其理化性质的重要指标。吸水性的变化趋势与抗张强度相同,明胶质量浓度为10 mg·mL−1时,取得最大倍数 (49.20±2.24),高于王运智[22]通过冷冻干燥法和自组装法得到的鱼皮胶原止血海绵的吸水倍数 (33.6和11.9)。明胶海绵的高吸水性使其在应用时可吸附大量血液,从而对渗血表面造成局部压迫,达到止血目的。持水性则随着明胶浓度的增加从 (21.00±0.20)% 升至 (37.99±0.30)%。当明胶质量浓度低于10 mg·mL−1时,敷料微观结构比较松散,吸水后无法保持较为完整的形状。当明胶质量浓度为20 mg·mL−1时,敷料结构过于紧密,孔隙较小,导致吸水性能下降但持水率较高。
戊二醛可以与明胶中赖氨酸和羟基赖氨酸残基的自由氨基反应形成席夫碱型化合物,还可以与海藻酸钠阴离子结构表面的羟基发生交联反应。交联度随着明胶浓度的增大而减小,明胶质量浓度超过10 mg·mL−1时变化不大 (P>0.05)。这说明在明胶浓度较低时,暴露出的交联位点能够完全被戊二醛利用,随着明胶浓度的增加,所能交联的位点是有限的,所以交联度逐渐趋于稳定。
综上所述,明胶质量浓度为10 mg·mL−1时,医用复合止血敷料具有良好的物理性能,有利于快速吸收渗出物和血浆,加速凝血过程。
2.3 大鼠股动脉模型、肝损伤模型及尾部模型的止血效果
断尾止血实验过程见图2-a。与自然止血组的 (485±11) s相比,实验组和市售明胶海绵组均能明显缩短断尾止血所用时间(P<0.01),且实验组止血时间要短于市售明胶海绵组(P<0.05)。肝创面模型的实验过程见图2-b,止血指标的结果表明(图2-d),实验组止血时间为 (108±4) s,短于罗非鱼 (Oreochromis mossambicus) 鱼皮胶原海绵 (131 s)[22]。股动脉模型的实验过程见图2-c,切开动脉,立刻有大量血液涌出且压力较大,对止血敷料的要求较高,自然止血组无法在一定时间完成止血。实验组的止血时间为 (64±9) s,明显优于市售明胶海绵组的 (87±9) s (P<0.01),说明实验组对出血量大、压力强的动脉出血有一定的控制作用。
结果表明,明胶复合止血敷料的吸水性和多孔结构有利于血液的吸收,同时明胶与海藻酸钠起到了复配协同止血效果[23]。Wang等[24]制备了含海藻酸钙多孔微球的壳聚糖复合海绵,与纯壳聚糖和凝胶海绵相比,可以缩短止血时间、减少失血量。因此,将海藻酸钠共混到明胶中,可促进血小板黏附和各种凝血因子的活化[25]。复合止血敷料在吸收组织渗出液后转变为凝胶形态,可以持续为伤口提供潮湿环境,促进伤口愈合。
2.4 APTT、PT、TT分析和血小板活性因子检测
APTT是内源凝血系统较为敏感和最为常用的筛选指标,PT测定是外源性凝血系统的筛选实验,TT是指在血浆中加入标准化的凝血酶后血液凝固的时间。因此,试验采用APTT、PT和TT分析方法探讨明胶复合止血敷料诱导的凝血途径。与阴性对照组相比,实验组在第5、第15、第30和第60 分钟4个不同浸提时间点的APTT均有极显著降低(P<0.01,图3-a),说明内源性凝血系统是明胶复合止血敷料的主要凝血途径。据报道,海藻酸钠的凝胶网络结构可以为血细胞提供支持,吸收大量的血液,激活伤口附近的凝血因子,诱导凝血的内部通路[25]。复合止血敷料和市售明胶海绵对PT无显著影响 (图3-b),表明它不刺激外源性的凝血途径。明胶复合止血敷料和市售明胶海绵在第5、第15和第60分钟时TT显著降低(P<0.01,图3-c),通过缩短凝血接触活化时间实现快速止血。Li等[26]证实,明胶微球能有效诱导红细胞聚集,改善凝血时间。Zhang等[27]发现壳聚糖/硅藻-生物硅复合海绵通过激活内源性凝血途径加速了凝血。因此,明胶复合止血敷料可激活内源性凝血途径和共同凝血途径,缩短血液凝固接触活化时间,活化Ⅷ、Ⅻ、Ⅺ等凝血因子,达到快速止血的目的。
对血小板活性因子TXB2、PF4和P-选择素的含量进行测定,可以判定明胶复合止血敷料对血小板黏附、聚集和活化等生理功能的作用,结果见图3-d—3-f。与对照组相比,其他各组均能显著增加血小板活性因子的释放量 (P<0.05),从而快速有效激活血小板。此外,浸提时间的长短并不影响血小板活性因子的释放。
综上所述,复合止血敷料在两方面表现出有效的止血能力:1) 复合止血敷料具有适当尺寸和分布均匀的三维网络多孔结构,使其具有快速的液体吸收性和良好的机械性能;2) 明胶海藻酸钠复合敷料能够激发内源性凝血途径和共同凝血途径,加速各种凝血因子的释放从而加速凝血[28]。
2.5 生物相容性评价
急性全身毒性试验是生物安全评价的一个重要指标,通常用于评价生物医学材料或其浸出液对人体的影响[29]。对大鼠注射后的日常活动、存活状况和中毒情况进行观察,发现实验组及阴性对照组的大鼠在观察期72 h内,无任何中毒症状发生,而阳性对照组则在注射后随即出现明显的震颤和惊厥反应,活动量和爬行速度明显下降。注射后72 h内各组大鼠的平均体质量见表2,实验组和阴性对照组的大鼠体质量变化均呈稳步增长趋势,说明制备的鳕鱼皮明胶复合止血敷料无急性毒性,符合医用材料全身急性毒性的评价标准。
表 2 急性全身毒性试验、皮肤刺激试验和溶血试验结果Table 2. Results of acute systemic toxicity assay, dermal irritation test and hemolysis ratio实验组
Experimental group阴性对照组
Negative control group阳性对照组
Positive control group急性毒性试验 Acute systemic toxicity assay 第0小时体质量 Body mass at 0th hour/kg 0.167 7±0.008 2 0.174 0±0.004 6 0.185 3±0.005 0 第24小时体质量 Body mass at 24th hour/kg 0.172 8±0.007 4 0.177 9±0.009 7 0.186 2±0.004 2 第48小时体质量 Body mass at 48th hour/kg 0.184 3±0.008 3 0.182 9±0.004 9 0.178 5±0.007 4 第72小时体质量 Body mass at 72nd hour/kg 0.183 9±0.009 8 0.182 7±0.013 7 0.179 8±0.007 5 皮肤刺激试验 Dermal irritation test 第24小时红斑总数 Sum of erythema at 24th hour/个 4 0 第48小时红斑总数 Sum of erythema at 48th hour/个 0 0 第72小时红斑总数 Sum of erythema at 72nd hour/个 0 0 原发性刺激指数 Primary irritation index PII 0.22 0 溶血试验 Hemolysis test 溶血率 Hemolysis ratio/% 1.51±0.30 0.00 100.00 采用皮肤刺激试验和皮内刺激试验评价明胶医用敷料的刺激效果。相较于b处阳性对照组出现严重的皮肤变红以及组织肿胀等刺激现象,a、d处的实验组浸提液并未引起任何的皮肤刺激问题,注射后72 h内皮肤状态均表现良好,与c处的阴性对照组结果一致,说明鳕鱼皮明胶复合止血敷料对皮肤无潜在刺激作用 (图4)。受损皮肤刺激实验的结果见表2,实验组部分大鼠出现轻微红斑,但24 h后消失。复合止血敷料的原发性刺激指数 (PII) 为0.22,小于0.5,属于极轻微刺激性,制备的明胶复合止血敷料符合生物材料单次接触皮肤试验标准。
溶血率是血液与材料相互作用的体外评价标准[30]。GB/T 16886指出材料与血液接触时红细胞的破裂率不宜过高,即溶血率低于5%的材料才具备良好的血液相容性。本实验测定的鳕鱼皮明胶复合止血敷料的溶血率为1.51%,低于5% (表2),符合国家生物材料评价规定的安全范围。
生物材料进入临床的必要评价是生物安全性评价,综上所述,鳕鱼皮明胶复合止血敷料符合国家医疗器械相关标准,为其临床应用提供了安全性理论依据。
3. 结论
本文以鳕鱼皮为原料提取明胶,并通过SDS-PAGE对其亚基结构进行研究。在交联剂作用下将鳕鱼皮明胶与海藻酸钠进行复配,冷冻干燥得到复合止血敷料。该复合敷料具有良好的机械性能、吸水性、持水性和均一的多孔网络结构,符合伤口海绵的要求。明胶复合止血敷料可以明显缩短APTT和TT,激活内源性凝血途径和共同凝血途径,还可以明显增加TXB2、PF4和P-选择素的释放量,通过激活血小板来加速凝血过程。此外,一系列的生物相容性实验表明,复合止血敷料无全身急性毒性,不会引起红斑、水肿等皮肤刺激现象,溶血率为1.51%,符合国家医疗器械标准 (<5%)。因此,鳕鱼皮源明胶复合止血敷料可作为一种新型可吸收医用敷料应用于组织工程之中。
-
图 3 低温胁迫下军曹鱼幼鱼鳃组织细胞凋亡情况
注:a—c分别表示28 ℃(对照组)在第0、第4和第7 天时鳃组织细胞凋亡图;d—e分别表示21 ℃胁迫第0、第4和第7 天时鳃组织细胞凋亡图;g—i分别表示18 ℃胁迫第0、第4和第7 天时鳃组织细胞凋亡图;红色箭头表示凋亡,标尺=100 μm。
Figure 3. Apoptosis of gill of R. canadum at low temperature stress
Note: a−c. Apoptosis of the gill at 28 ℃ on 0, 4th and 7th day (Control group); d−e. Apoptosis of the gill at 21 ℃ on 0, 4th and 7th day; g−i. Apoptosis of the gill at 18 ℃ on 0, 4th and 7th day. The red arrows indicate apoptotic cells; bar=100 μm.
图 4 低温胁迫对军曹鱼幼鱼鳃组织结构的影响
注:a—c. 分别表示为28 ℃ (对照组) 在第0、第4和第7 天鳃组织显微结构图;d—e. 分别表示为21 ℃胁迫第0、第4和第7 天鳃组织显微结构图;g—i. 分别表示为18 ℃胁迫第0、第4和第7 天鳃组织显微结构图;标尺=50 μm。
Figure 4. Histopathological features in gill tissue of R. canadum after exposure to low temperature stress
Note: a–c. Microscopical gill structure at 28 ℃ on 0, 4th and 7th day (Control group); d–e. Microscopical gill structure at 21 ℃ on 0, 4th and 7th day; g–i. Microscopical gill structure of at 18 ℃ at 0, 4th and 7th day; bar=50 μm.
表 1 引物序列
Table 1 Primer sequence
引物
Primer引物序列 (5'—3')
Primer sequence (5'−3')基因序列
Accession No.caspase-9-F GTGGAGCTCCTGCTGTTCAT OP546050 caspase-9-R ACGGGCTGGCATCCATTTTA caspase-3-F ACCAGACAGTGGACCAGATAA OP546051 caspase-3-R GTGGAGAAGGCATAAAGGAAG bcl-2-F CCACCACGGCGAAGAGAAGATT OP546048 bcl-2-R CTGCGGTGTCATCTCCTCCTTG p53-F GAGACCTTCAGGAAGTACCAGC OP546053 p53-R TCTCCGGTTTGTCCTTGTTGG bax-F GCAGAGTGGTCGCACTGTTCT OP546049 bax-R AATGCCCTCCCAGCCTCCTT mdm2-F ATCCTCGCAAGAGGTTGGTG OP546052 mdm2-R TCCACAGAGGAAAGCGTCAC β-actin-F AGGGAAATTGTGCGTGAC EU266 539.1 β-actin-R AGGCAGCTCGTAGCTCTT -
[1] IONA A, THEODOROU A, SOFIANOS S, et al. Mediterranean Sea climatic indices: monitoring long-term variability and climate changes[J]. Earth Syst Sci Data, 2018, 10(4): 1829-1842. doi: 10.5194/essd-10-1829-2018
[2] LAZOGLOU G, ANAGNOSTOPOULOU C, TOLIKA K, et al. A review of statistical methods to analyze extreme precipitation and temperature events in the Mediterranean region[J]. Theor Appl Climatol, 2019, 136(1): 99-117.
[3] PHROMPANYA P, PANASE P, SAENPHET S, et al. Histopathology and oxidative stress responses of Nile tilapia Oreochromis niloticus exposed to temperature shocks[J]. Fish Sci, 2021, 87(4): 491-502. doi: 10.1007/s12562-021-01511-y
[4] XU Z H, REGENSTEIN J M, XIE D, et al. The oxidative stress and antioxidant responses of Litopenaeus vannamei to low temperature and air exposure[J]. Fish Shellfish Immunol, 2018, 72: 564-571. doi: 10.1016/j.fsi.2017.11.016
[5] YANG S Y, YAN T, ZHAO L W, et al. Effects of temperature on activities of antioxidant enzymes and Na+/K+-ATPase, and hormone levels in Schizothorax prenanti[J]. J Therm Biol, 2018, 72: 155-160. doi: 10.1016/j.jtherbio.2018.02.005
[6] BIRBEN E, SAHINER U M, SACKESEN C, et al. Oxidative stress and antioxidant defense[J]. World Allergy Organ J, 2012, 5(1): 9-19. doi: 10.1097/WOX.0b013e3182439613
[7] CAO L, HUANG W, SHAN X J, et al. Tissue-specific accumulation of cadmium and its effects on antioxidative responses in Japanese flounder juveniles[J]. Environ Toxicol Pharmacol, 2012, 33(1): 16-25. doi: 10.1016/j.etap.2011.10.003
[8] JOY S, ALIKUNJU A P, JOSE J, et al. Oxidative stress and antioxidant defense responses of Etroplus suratensis to acute temperature fluctuations[J]. J Therm Biol, 2017, 70: 20-26. doi: 10.1016/j.jtherbio.2017.10.010
[9] JIN S R, WANG L, LI X X, et al. Integrating antioxidant responses and oxidative stress of ornamental discus (Symphysodon spp.) to decreased temperatures: evidence for species-specific thermal resistance[J]. Aquaculture, 2021, 535: 736375. doi: 10.1016/j.aquaculture.2021.736375
[10] SIES H. Oxidative stress: oxidants and antioxidants[J]. Exp Physiol, 1997, 82(2): 291-295. doi: 10.1113/expphysiol.1997.sp004024
[11] ZHANG X J, NIU Y G, ZHANG H Y, et al. The effect of long-term cold acclimation on redox state and antioxidant defense in the high-altitude frog, Nanorana pleskei[J]. J Therm Biol, 2021, 99: 103008. doi: 10.1016/j.jtherbio.2021.103008
[12] COIMBRA-COSTA D, ALVA N, DURAN M, et al. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain[J]. Redox Biol, 2017, 12: 216-225. doi: 10.1016/j.redox.2017.02.014
[13] ZHA J M, HONG X S, RAO H O, et al. Benzo (a) pyrene-induced a mitochondria-independent apoptosis of liver in juvenile Chinese rare minnows (Gobiocypris rarus)[J]. Environ Pollut, 2017, 231: 191-199. doi: 10.1016/j.envpol.2017.08.005
[14] WANG J, WANG Q, LIU N, et al. Hydrogen peroxide leads to cell damage and apoptosis in the gill of the freshwater crab Sinopotamon henanense (Crustacea, Decapoda)[J]. Hydrobiologia, 2014, 741(1): 13-21. doi: 10.1007/s10750-013-1760-x
[15] 郭梓沣, 孙斌斌, 柯文杰, 等. 病原诱导水产动物细胞凋亡途径研究进展[J]. 水产科技报, 2022, 49(3): 164-170. doi: 10.7541/2021.2019.212 [16] JIN Y X, LEE J Y, CHOI S H, et al. Heat shock induces apoptosis related gene expression and apoptosis in porcine parthenotes developing in vitro[J]. Anim Reprod Sci, 2007, 100(1/2): 118-127.
[17] ZHANG H, HUANG H, ZHENG P, et al. The alleviative effect of thyroid hormone on cold stress-induced apoptosis via HSP70 and mitochondrial apoptosis signal pathway in bovine Sertoli cells[J]. Cryobiology, 2022, 105: 63-70. doi: 10.1016/j.cryobiol.2021.11.181
[18] CHENG C H, YANG F F, LIAO S A, et al. High temperature induces apoptosis and oxidative stress in pufferfish (Takifugu obscurus) blood cells[J]. J Therm Biol, 2015, 53: 172-179. doi: 10.1016/j.jtherbio.2015.08.002
[19] TASSABEHJI N M, VANLANDINGHAM J W, LEVENSON C W. Copper alters the conformation and transcriptional activity of the tumor suppressor protein p53 in human Hep G2 cells[J]. Exp Biol Med (Maywood), 2005, 230(10): 699-708. doi: 10.1177/153537020523001002
[20] ELABD H, WANG H P, SHAHEEN A, et al. Anti-oxidative effects of some dietary supplements on yellow perch (Perca flavescens) exposed to different physical stressors[J]. Aquac Rep, 2017, 8: 21-30. doi: 10.1016/j.aqrep.2017.09.002
[21] ZHANG M , HU J B, ZHU J J, et al. Transcriptome, antioxidant enzymes and histological analysis reveal molecular mechanisms responsive to long-term cold stress in silver pomfret (Pampus argenteus)[J]. Fish Shellfish Immunol, 2022, 121: 351-361. doi: 10.1016/j.fsi.2022.01.017
[22] SABER H T. Histological adaptation to thermal changes in gills of common carp fishes Cyprinus carpio L.[J]. Rafidain J Sci, 2011, 22(1): 46-55. doi: 10.33899/rjs.2011.32464
[23] WANG Z, DONG Z D, YANG Y T, et al. Histology, physiology, and glucose and lipid metabolism of Lateolabrax maculatus under low temperature stress[J]. J Therm Biol, 2022, 104: 103161. doi: 10.1016/j.jtherbio.2021.103161
[24] NIE M M, HU J W, LU Y L, et al. Cold effect analysis and screening of SNPs associated with cold-tolerance in the olive flounder Paralichthys olivaceus[J]. J Appl Ichthyol, 2019, 35(4): 924-932.
[25] 王维政, 曾泽乾, 黄建盛, 等. 低氧胁迫对军曹鱼幼鱼抗氧化、免疫能力及能量代谢的影响[J]. 广东海洋大学学报, 2020, 40(5): 12-18. doi: 10.3969/j.issn.1673-9159.2020.05.002 [26] BENETTI D D, SUAREZ J, CAMPERIO J, et al. A review on cobia, Rachycentron canadum, aquaculture[J]. J World Aquac Soc, 2021, 52(3): 691-709. doi: 10.1111/jwas.12810
[27] 石琼, 张勇, 范明君. 中国经济鱼类志[M]. 武汉: 华中科技大学出版社, 2015: 277-278. [28] 李豫, 黄建盛, 陈有铭, 等. 低温胁迫对军曹鱼幼鱼血清生化指标、肝脏抗氧化酶活性及凋亡相关基因表达量的影响[J]. 广东海洋大学学报, 2022, 42(5): 1-9. doi: 10.3969/j.issn.1673-9159.2022.05.001 [29] 蔡润佳, 张静, 黄建盛, 等. 低温胁迫对军曹鱼幼鱼脂代谢相关生理生化的影响[J]. 广东海洋大学学报, 2021, 41(3): 123-130. doi: 10.3969/j.issn.1673-9159.2021.03.016 [30] ABOKA E R, JIAN Z, SHENGMING S, et al. Histopathological changes in gills, liver, and kidney tissues of bighead carp (Aristichthys nobilis) due to the effects of acute high-temperature stress[J]. Isr J Aquac, 2017, 69(1). DOI: 10.46989/001c.21062.
[31] MATEY V, RICHARDS J G, WANG Y, et al. The effect of hypoxia on gill morphology and ionoregulatory status in the Lake Qinghai scaleless carp, Gymnocypris przewalskii[J]. J Exp Biol, 2008, 211(7): 1063-1074. doi: 10.1242/jeb.010181
[32] HWANG P P, LEE T H, LIN L Y. Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms[J]. Am J Physiol Regul Integr Comp Physiol, 2011, 301(1): R28-R47. doi: 10.1152/ajpregu.00047.2011
[33] ISLAM M A, UDDIN M H, UDDIN M J, et al. Temperature changes influenced the growth performance and physiological functions of Thai pangas Pangasianodon hypophthalmus[J]. Aquac Rep, 2019, 13: 100179. doi: 10.1016/j.aqrep.2019.100179
[34] WEN B, JIN S R, CHEN Z Z, et al. Physiological responses to cold stress in the gills of discus fish (Symphysodon aequifasciatus) revealed by conventional biochemical assays and GC-TOF-MS metabolomics[J]. Sci Total Environ, 2018, 640: 1372-1381.
[35] WANG J, REN R, YAO C L. Oxidative stress responses of Mytilus galloprovincialis to acute cold and heat during air exposure[J]. J Molluscan Stud, 2018, 84(3): 285-292. doi: 10.1093/mollus/eyy027
[36] MENG X L, LIU P, LI J, et al. Physiological responses of swimming crab Portunus trituberculatus under cold acclimation: antioxidant defense and heat shock proteins[J]. Aquaculture, 2014, 434: 11-17. doi: 10.1016/j.aquaculture.2014.07.021
[37] 龙勇, 葛国栋, 李西西, 等. 鱼类低温应激反应的调控机制[J]. 水生生物学报, 2021, 45(6): 1405-1414. [38] ROSSI A, BACCHETTA C, CAZENAVE J. Effect of thermal stress on metabolic and oxidative stress biomarkers of Hoplosternum littorale (Teleostei, Callichthyidae)[J]. Ecol Indic, 2017, 79: 361-370. doi: 10.1016/j.ecolind.2017.04.042
[39] LUSHCHAK V I. Environmentally induced oxidative stress in aquatic animals[J]. Aquat Toxicol, 2011, 101(1): 13-30. doi: 10.1016/j.aquatox.2010.10.006
[40] LACY B, RAHMAN M S, RAHMAN M S. Potential mechanisms of Na+/K+-ATPase attenuation by heat and pesticides co-exposure in goldfish: role of cellular apoptosis, oxidative/nitrative stress, and antioxidants in gills[J]. Environ Sci Pollut Res, 2022, 29: 57376-57394. doi: 10.1007/s11356-022-19779-7
[41] WEN P J, WEI X M, LIANG G Q, et al. Long-term exposure to low level of fluoride induces apoptosis via p53 pathway in lymphocytes of aluminum smelter workers[J]. Environ Sci Pollut Res, 2019, 26(3): 2671-2680. doi: 10.1007/s11356-018-3726-z
[42] MARTÍNEZ-MORENTIN L, MARTÍNEZ L, PILOTO S, et al. Cardiac deficiency of single cytochrome oxidase assembly factor scox induces p53-dependent apoptosis in a Drosophila cardiomyopathy model[J]. Hum Mol Genet, 2015, 24(13): 3608-3622. doi: 10.1093/hmg/ddv106
[43] LIN T, MAK N K, YANG M S. MAPK regulate p53-dependent cell death induced by benzo[a]pyrene: involvement of p53 phosphorylation and acetylation[J]. Toxicology, 2008, 247(2): 145-153.
[44] 刘林, 赵群芬, 金凯星, 等. 纳米氧化锌对斑马鱼肝脏的毒性效应[J]. 环境科学, 2015, 36(10): 3884-3891. doi: 10.13227/j.hjkx.2015.10.044 [45] 陈小雁, 熊真真, 尤姗姗, 等. FLASH 结合 p53 并增强其转录活性[J]. 中国生物化学与分子生物学报, 2021, 37(10): 1345-1356. [46] 刘明丽, 杨文意, 王金凤, 等. 低温胁迫下鱼类鳃中RPL11/MDM2/P53信号通路相关基因及蛋白表达差异分析[J]. 大连海洋大学学报, 2021, 36(1): 51-56. doi: 10.16535/j.cnki.dlhyxb.2020-008 [47] ZHANG Y, LI Q, SHU Y M, et al. Induction of apoptosis in S180 tumour bearing mice by polysaccharide from Lentinus edodes via mitochondria apoptotic pathway[J]. J Funct Foods, 2015, 15: 151-159. doi: 10.1016/j.jff.2015.03.025
[48] JIAO W Y, HAN Q, XU Y, et al. Impaired immune function and structural integrity in the gills of common carp (Cyprinus carpio L.) caused by chlorpyrifos exposure: through oxidative stress and apoptosis[J]. Fish Shellfish Immunol, 2019, 86: 239-245. doi: 10.1016/j.fsi.2018.08.060
[49] TANG J, ZHANG Z X, MIAO J J, et al. Effects of benzo[a]pyrene exposure on oxidative stress and apoptosis of gill cells of Chlamys farreri in vitro[J]. Environ Toxicol Pharmacol, 2022, 93: 103867. doi: 10.1016/j.etap.2022.103867
[50] CHENG C H, YE C X, GUO Z X, et al. Immune and physiological responses of pufferfish (Takifugu obscurus) under cold stress[J]. Fish Shellfish Immunol, 2017, 64: 137-145. doi: 10.1016/j.fsi.2017.03.003
[51] 胡玲红, 王映, 王化敏, 等. 不同温度胁迫对青鳉鳃凋亡的影响[J]. 大连海洋大学学报, 2021, 36(6): 929-936. doi: 10.16535/j.cnki.dlhyxb.2021-053 [52] LIU Y F, MA D Y, XIAO Z Z, et al. Histological change and heat shock protein 70 expression in different tissues of Japanese flounder Paralichthys olivaceus in response to elevated temperature[J]. Chin J Oceanol Limnol, 2015, 33(1): 11-19. doi: 10.1007/s00343-015-4028-7
[53] MOHAMAD S, LIEW H J, ZAINUDDIN R A, et al. High environmental temperature and low pH stress alter the gill phenotypic plasticity of Hoven's carp Leptobarbus hoevenii[J]. J Fish Biol, 2021, 99(1): 206-218. doi: 10.1111/jfb.14712
[54] ZHENG X, FENG L, JIANG W D, et al. The regulatory effects of pyridoxine deficiency on the grass carp (Ctenopharyngodon idella) gill barriers immunity, apoptosis, antioxidant, and tight junction challenged with Flavobacterium columnar[J]. Fish Shellfish Immunol, 2020, 105: 209-223. doi: 10.1016/j.fsi.2020.07.036
[55] 罗胜玉. 低温胁迫对黄姑鱼生理生化指标和Hsp70基因表达模式的影响[D]. 舟山: 浙江海洋大学, 2016: 7-11. [56] DASH G, YONZONE P, CHANDA M, et al. Histopathological changes in Labeo rohita (Hamilton) fingerlings to various acclimation temperatures[J]. Chronicles Young Scientists, 2011, 2(1): 29-36. doi: 10.4103/2229-5186.79347
[57] 区又君, 刘奇奇, 温久福, 等. 急性低温胁迫对四指马鲅幼鱼肝脏、肌肉以及鳃组织结构的影响[J]. 生态科学, 2018, 37(5): 53-59. doi: 10.14108/j.cnki.1008-8873.2018.05.008 [58] GIBBONS T C, MCBRYAN T L, SCHULTE P M. Interactive effects of salinity and temperature acclimation on gill morphology and gene expression in threespine stickleback[J]. Comp Biochem Physiol A, 2018, 221: 55-62. doi: 10.1016/j.cbpa.2018.03.013
[59] 王萌, 潘阳阳, 岳亚辉, 等. 5种非甾体类抗炎药对小鼠的肝损伤作用[J]. 西北农林科技大学学报(自然科学版), 2021, 49(8): 9-16. doi: 10.13207/j.cnki.jnwafu.2021.08.002 [60] HUANG C, FENG L, LIU X A, et al. The toxic effects and potential mechanisms of deoxynivalenol on the structural integrity of fish gill: oxidative damage, apoptosis and tight junctions disruption[J]. Toxicon, 2020, 174: 32-42. doi: 10.1016/j.toxicon.2019.12.151
[61] ZHANG W X, XIA S L, ZHU J, et al. Growth performance, physiological response and histology changes of juvenile blunt snout bream, Megalobrama amblycephala exposed to chronic ammonia[J]. Aquaculture, 2019, 506: 424-436. doi: 10.1016/j.aquaculture.2019.03.072
[62] DUTRA F M, RÖNNAU M, SPONCHIADO D, et al. Histological alterations in gills of Macrobrachium amazonicum juveniles exposed to ammonia and nitrite[J]. Aquat Toxicol, 2017, 187: 115-123. doi: 10.1016/j.aquatox.2017.04.003
[63] 卢其西, 林勇, 宾石玉, 等. 罗非鱼6个家系的低温耐寒测定分析[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 104-109. doi: 10.16088/j.issn.1001-6600.2011.02.016 [64] 胡玉珍. 低温选择大黄鱼子代SSR分析及越冬季节生理生化指标变化[D]. 宁波: 宁波大学, 2011: 9-18. [65] 唐扬, 孟小菲, 沈瑞福, 等. 凡纳滨对虾家系选育的研究与应用[J]. 水产科学, 2018, 37(4): 555-563. doi: 10.16378/j.cnki.1003-1111.2018.04.020 [66] ANGILLETTA M J, NIEWIAROWSKI P H, NAVAS C A. The evolution of thermal physiology in ectotherms[J]. J Therm Biol, 2002, 27(4): 249-268. doi: 10.1016/S0306-4565(01)00094-8
-
期刊类型引用(2)
1. 孔令霞,桑琳. 化学交联法制备的妇科专用敷料抗菌止血性能研究. 粘接. 2024(04): 105-108 . 百度学术
2. 沈家成,秦政,周祖浩,许瑞波,刘强,李正夫,李姣姣. 鱼皮中胶原蛋白的药用价值研究进展. 食品与发酵工业. 2023(23): 347-354 . 百度学术
其他类型引用(2)