Cloning and expression analysis of SERCA gene of Sipunculus nudus in oocytes
-
摘要: 细胞内钙离子 (Ca2+) 浓度的变化是介导卵母细胞成熟的重要因素。肌质网/内质网Ca2+-ATP酶 (Sarco/endoplasmic reticulum calcium adenosine triphosphatase, SERCA) 属P型ATP酶家族成员,是细胞内Ca2+转运的重要调控蛋白。前期转录组分析显示,光裸星虫 (Sipunculus nudus) SERCA (Sn-SERCA) 的表达量在卵母细胞发育过程中差异显著,为进一步研究SERCA在卵母细胞不同发育阶段中的作用,利用RACE技术得到Sn-SERCA cDNA全长,采用实时荧光定量PCR检测Sn-SERCA在各卵母细胞发育时期的相对表达量。结果表明,Sn-SERCA全长为3 840 bp,5'非编码区 (UTR) 为196 bp,3'UTR为581 bp,开放阅读框3 060 bp,编码1 020 个氨基酸,Sn-SERCA具有P型ATP酶家族进行催化反应所需的两个保守基序“TGES”和“DKTGT”。多序列比对、Motif分析及三级结构预测结果显示SERCA同源蛋白具有较高保守性。系统进化树分析表明Sn-SERCA与粉正蚓 (Lumbricus rubellus)、鸭嘴海豆芽 (Lingula anatine) 等无脊椎动物同源蛋白序列聚为一支。荧光定量结果显示:卵母细胞在体腔液中发育时,Sn-SERCA在卵黄旺盛合成后期高表达;当卵母细胞进入肾管后,Sn-SERCA的表达量大幅上升,显著高于其他时期 (P<0.05)。结合前期卵母细胞发育的超微结构观察,研究结果表明Sn-SERCA在光裸星虫卵母细胞的卵黄积累和生发泡破裂发生过程中起重要作用。Abstract: The change of intracellular calcium (Ca2+) concentration is an important factor in oocyte maturation. As a member of the P-type ATPase family and a crucial regulator of intracellular calcium transport, sarco/endoplasmic reticulum calcium adenosine triphosphatase (SERCA) is a key enzyme. To investigate the function of SERCA in the development of the oocytes of Sipunculus nudus, we obtained the full length of S. nudus SERCA (Sn-SERCA) cDNA by using RACE technique, and determined the Sn-SERCA relative expression level in different oocyte developmental periods by using real-time fluorescence quantitative PCR (qRT-PCR). The results indicate that the overall length of the Sn-SERCA was 3 840 bp, the 5'UTR was 196 bp, the 3'UTR was 581 bp, and the open reading frame was 3 060 bp, encoding 1 020 amino acids. Sn-SERCA had TGES and DKTGT which were the P-type ATPase family's two conserved motifs and were necessary for catalytic reactions. According to multiple sequence alignment, motif analysis, and predictions of tertiary structures, the SERCA homologous proteins exhibited great conservatism. The phylogenetic tree analysis shows that the Sn-SERCA formed a broad branch with homologous protein sequences from invertebrates such as Lumbricus rubellus and Lingula anatine. The result of qRT-PCR demonstrates that the Sn-SERCA was significantly expressed in the late yolk vigorous synthesis period and had the maximum value during coelomic fluid development. When the oocytes moved to the nephridioduct, the Sn-SERCA expression was considerably higher than that at other time (P<0.05). The variable expression of Sn-SERCA in different periods of oocyte development suggests that Sn-SERCA is crucial in the development and germinal vesicle breakdown in S. nudus oocytes.
-
Keywords:
- Sipunculus nudus /
- SERCA gene /
- Oocytes /
- Expression analysis
-
气候变化正改变着海洋生态系统固有的自然过程,使其面临不可逆的生态转型风险,进而威胁到人类的生存环境及社会经济的可持续发展[1]。鱼类群落在海洋生态系统的功能中发挥着重要的生态作用,为探索海洋生态系统演变规律提供依据[2]。鱼类群落结构对气候变化的响应机理研究,对合理开发利用渔业资源和制定科学的管理养护措施均有重要意义。气候变化通过影响鱼类生理和行为,改变其生长、繁殖能力和分布,从而对鱼类群落格局产生间接影响,比如群落结构演替[3]、物种多样性变化[4]和栖息地改变[5]等。随着全球气候变化的加剧,极端天气气候事件呈现增多增强的趋势[6]。厄尔尼诺-南方涛动 (ENSO) 为全球气候年际变化的主要来源,由赤道太平洋中东部异常变暖阶段的厄尔尼诺和随后异常变冷阶段的拉尼娜组成,涉及了整个热带太平洋地区,引起全球大气的不规则波动。拉尼娜事件的强度与持续时间,会对渔业资源产生不同的影响[7]。有研究表明,拉尼娜事件增加了东太平洋海域生产力水平及叶绿素a浓度,使得茎柔鱼 (Dosidicus gigas) 适宜栖息地扩张,资源密度增加;智利竹荚鱼 (Trachurus murphyi) 的竞争物种及其捕食者数量的大幅增加,栖息空间、饵料等种间竞争上升,导致该物种资源量减少[8]。此外,墨西哥太平洋近海岸水域鱼类种类数和生物多样性在拉尼娜事件期间显著增加[9];拉尼娜事件通过影响巴西南部的降水改变河口盐度,从而改变帕图斯潟湖河口生境鱼类的补充和迁移,导致其河口鱼类群落结构发生变化[10];拉尼娜事件期间日本鲐 (Scomber japonicus) 的洄游路线也因温度的变化而发生改变,导致其资源分布不均匀,对东海不同区域鲐鱼资源均产生不利影响[11]。综上所述,拉尼娜事件引起海表水温、盐度、溶解氧以及局部海域上升流发生变动,进而影响鱼类的生活史和多样性,导致不同海域鱼类群落结构的演替。近60年来,拉尼娜事件通常2~7年发生一次,共发生了17次,持续时间介于6~12个月[12]。而南海处于热带海洋和大气相互作用敏感的区域,拉尼娜事件对南海海平面高度、海表温度、初级生产力以及海洋环流等均产生了较大影响[12-14]。
北部湾位于中国南海西北部,生物多样性丰富,是我国传统的海洋渔场。现阶段北部湾海域在鱼类群落方面的研究主要包括局部海域鱼类的多样性[15]、主要经济鱼类的生长和死亡参数[16]、环境变化对北部湾鱼类多样性的影响[17]、渔业资源状况[18]以及鱼类群落结构的季节变化[19]等。20世纪60—90年代,由于过度捕捞导致渔业资源衰退,鱼类群落组成已发生较大变化[20]。研究表明,由于捕捞造成衰退的生态系统将会增大气候变化带来的影响[21]。尽管对北部湾海域的环境因子和生物群落的关系有一定研究[15,17],但鱼类群落对极端气候事件的响应尚不明确。
本研究主要以2006年7月和2008年7月 (伏季休渔期间) 在北部湾开展的底拖网渔业资源调查数据,分析了2007—2008年中强拉尼娜事件前后鱼类生物多样性、分布状况、优势种变化、群落结构空间格局的变动,为北部湾科学应对气候变化和渔业资源合理开发利用提供基础调查资料。
1. 材料与方法
1.1 数据来源
1.1.1 调查数据
本研究所用渔业资源数据来自中国水产科学研究院南海水产研究所海上调查数据,在北部湾海域 (106.75°—109.5° E, 17.5°—21.25° N) 布设了52个调查站位 (图1),沿水深梯度进行设站采样 (北部湾沿岸站点C1—C22共22个,中南部站点S1—S30共30个),调查时间为2006年7月和2008年7月,调查的站位数一致。选择7月休渔期阶段的渔获数据,以降低捕捞带来的影响,主要考虑拉尼娜事件导致的变化。调查船为441 kW的钢质渔船“北渔60011”,底拖网网具规格为80.4 m×60.54 m (37.70 m),网囊网目为40 mm,每站拖网1 h,平均拖速3.4 kn。按GB/T 12763.6—2007《海洋调查规范》进行样品采集与分析。渔获物鉴定到种,现场进行生物学测定,获取每个物种的体长、体质量等基础生物学特征数据。
1.1.2 环境数据
通过美国海洋和大气局 (NOAA) 气候预报中心网站 (http://www.cpc.ncep.noaa.gov/) 获得北部湾海域2006—2009年月平均海表温度 (SST) 数据,空间分辨率为4 km,空间范围为106.75°E—109.5°E、17.5°N—21.25°N。
1.2 研究方法
1.2.1 优势度
相对重要性指数 (Index of relative importance,IRI)[22]计算公式为:
$$ \mathrm{IRI}=(N+W) \times F $$ (1) 式中:N为某一物种尾数占总尾数的百分比;W为该物种生物量占总生物量的百分比;F为相应物种出现的站位数占调查总站数的百分比。优势种定义标准:IRI≥1 000为优势种;100≤IRI<1 000为重要种;10≤IRI<100为常见种;1≤IRI<10为一般种;IRI<1为少有种[23]。
1.2.2 生物多样性
Margalef 丰富度指数 (D')[24]计算公式为:
$$ D{{{\text{'}}}} = (S - 1)/\ln R $$ (2) 式中:S为样本中物种总数;R为个体总数。
Shannon多样性指数 (H')[25]计算公式为:
$$ H{{{\text{'}}}} = - \sum\nolimits_{i = 1}^S {P_i\ln P_i} $$ (3) 式中:Pi为第i种鱼类的生物量占比。H' 越高,物种多样性越高。
Pielou均匀度指数 (E1)[26]计算公式为:
$$ {E_1} = H{{{\text{'}}}}/\ln S $$ (4) 式中:S为样本中物种总数;H'为Shannon多样性指数;E1代表鱼类的生物量分布,当一个样本的所有物种都同样丰富时,它达到最大值。
Hill's多样性指数 (NA)[27]计算公式为:
$$ \mathop N\nolimits_A = {\sum\nolimits_{{\text{i}} = 1}^S {\left( {P_i} \right)} ^{1/(1 - A)}} $$ (5) 式中:NA为多样性的第A“阶”,来衡量物种间比例丰度 (Pi) 的分布程度。当A=0时,N0=S,S为物种总数,采用相对独立于样本量的Margalef指数与捕获的物种数量相互验证[28];当A=1时,
$ {N_1} = {{\rm{e}}^{{H{{{\text{'}}}}}}} $ ,H'为Shannon多样性指数;当A=2时,$ {N_2} = $ 1/λ,λ为辛普森指数;根据N2和N0指数计算物种的均匀度 (E2)。$$ {E_2} = \ln (1/{\minibfont{λ}} )/\ln S = \ln {N_2}/\ln {N_0} $$ (6) 1.3 数据处理
每个航次原始数据的各个站点渔获尾数与质量均标准化为拖网时间1 h的渔获尾数 (尾·h−1) 和渔获量 (kg·h−1)。剔除渔获量占比少于0.1%且出现站位不超过2%的物种,标准化后的渔获量数据采用四次方根进行转换,构建Bray-Curtis相似性系数矩阵,通过等级聚类分析 (Cluster analysis, CLUSTER) 和非线性多维尺度排序 (Non-metric multi-dimensional scaling, NMDS) 分析北部湾鱼类群落结构的变化特征[29]。NMDS的分析结果通过胁强系数 (stress) 衡量:stress值介于0.1~0.2,代表NMDS的二维点图具有一定的解释意义;stress值小于0.1时,表示排序的结果较好;stress值小于0.05时代表性很好[30]。聚类与NMDS排序分析均通过R 4.2.0中的vegan包进行[31]。使用相似性分析 (Analysis of similarities, ANOSIM) 对年际间各站位群落组成差异进行检验 :其中,R值用于说明年际间是否存在差异;P值用于说明是否存在显著性差异[32]。不同站点资源密度的空间分布用ArcGIS 10.3软件绘制后套合在标准地图上。
2. 结果
2.1 种类组成
2006年夏季 (7月) 北部湾渔业资源调查共获得鱼类184种,生物量排名前十的物种分别为竹荚鱼 (Trachurus japonicus)、发光鲷 (Acropoma japonicum)、大头白姑鱼 (Pennahia macrocephalus)、二长棘犁齿鲷 (Evynnis cardinalis)、蓝圆鲹 (Decapterus maruadsi)、带鱼 (Trichiurus lepturus)、黄斑鲾 (Leiognathus bindus)、棕腹刺鲀 (Gastrophysus spadiceus)、多齿蛇鲻 (Saurida tumbil) 和鹿斑鲾 (L. ruconius),分别占总生物量的29.92%、23.96%、4.14%、3.93%、3.00%、2.82%、1.91%、1.83%、1.79%和1.75%。2008年夏季 (7月) 北部湾渔业调查共获得鱼类212种,生物量排名前十的物种为竹荚鱼、蓝圆鲹、发光鲷、二长棘犁齿鲷、刺鲳 (Psenopsis anomala)、大头白姑鱼、多齿蛇鲻、黑边鲾 (L. splendens)、花斑蛇鲻 (S. undosquamis)和黄斑鲾,分别占总生物量的36.07%、33.28%、9.11%、3.74%、2.61%、2.46%、1.81%、0.91%、0.84%和0.66%。两个航次渔业资源调查共获得鱼类251种,航次共有种145种,出现1次的物种生物量占总生物量的2.47%。不同年份北部湾夏季鱼类种类组成有所变化,但其种类数相对稳定。
北部湾鱼类在不同年份相对重要性指数高于100的种类见表1。出现的共同优势种为发光鲷和竹荚鱼。发光鲷为2006年夏季渔获的第一优势种,占该航次鱼类渔获生物量和渔获尾数的23.96%和53.89%;竹荚鱼为2008年夏季航次的第一优势种,其生物量和渔获尾数分别占36.07%和46.13%。
表 1 北部湾2006和2008年夏季主要鱼类物种变化Table 1. Variation in dominant species in Beibu Gulf in summer of 2006 and 20082006年夏季 Summer of 2006 2008年夏季 Summer of 2008 种类 Species 相对重要性指数 IRI 种类 Species 相对重要性指数 IRI 发光鲷 Acropoma japonicum 4 341.33 竹荚鱼 Trachurus japonicus 7 745.79 竹荚鱼 Trachurus japonicus 3 550.31 蓝圆鲹 Decapterus maruadsi 4 457.01 黄斑鲾 Leiognathus bindus 470.08 发光鲷 Acropoma japonicum 1 607.03 粗纹鲾 Leiognathus lineolatus 453.90 二长棘犁齿鲷 Evynnis cardinalis 624.04 二长棘犁齿鲷 Evynnis cardinalis 439.46 刺鲳 Psenopsis anomala 220.78 蓝圆鲹 Decapterus maruadsi 328.12 大头白姑鱼 Pennahia macrocephalus 152.78 鹿斑鲾 Leiognathus ruconius 295.36 多齿蛇鲻 Saurida tumbil 151.55 带鱼 Trichiurus lepturus 257.75 粗纹鲾 Leiognathus lineolatus 120.54 大头白姑鱼 Pennahia macrocephalus 219.87 棕腹刺鲀 Gastrophysus spadiceus 204.41 多齿蛇鲻 Saurida tumbil 157.50 䱨 Terapon theraps 142.28 2.2 物种多样性
2006和2008年夏季北部湾海域所有调查站位的鱼类群落生物多样性指数见表2。2008年航次所有调查站位的丰富度指数 (D')、多样性指数 (H') 和均匀度指数 (E1和E2) 的均值与置信区间变化趋势相同,均低于2006年航次。独立样本t检验结果显示,两航次间丰富度指数差异显著,物种多样性指数和均匀度指数无显著性差异 (D': t=3.686, P<0.05; H': t=1.661, P=0.1; E1: t=1.429, P=0.156; E2: t=0.803, P=0.424);北部湾沿岸站点 (C1—C22) 在两航次间的各多样性指数具有显著性差异 (D': t=2.855, P<0.05; H': t=2.825, P<0.05; E1: t=3.080, P<0.05; E2: t=2.900, P<0.05);北部湾中南部站点 (S1—S30) 在两航次间的各多样性指数无显著性差异 (P>0.05)。
表 2 北部湾鱼类群落各指数Table 2. Indexes of fish community in Beibu Gulf丰富度指数 Richness index 多样性指数 Diversity index 均匀度指数 Eveness index N0 D' N1 N2 H' E1 E2 2006年夏季
Summer of 2006均值 Mean 30.96 6.66 7.51 5.50 1.85 0.54 0.42 标准误 SE 0.94 0.23 0.58 0.56 0.09 0.02 0.03 置信区间 CI 29.08~32.84 6.19~7.13 6.35~8.67 4.38~6.61 1.67~2.02 0.49~0.59 0.36~0.48 2008年夏季
Summer of 2006均值 Mean 29.29 5.46 6.08 4.70 1.64 0.49 0.39 标准误 SE 0.81 0.23 0.44 0.57 0.08 0.03 0.03 置信区间 CI 27.66~30.91 5.00~5.92 5.20~6.95 3.56~5.83 1.48~1.81 0.43~0.54 0.33~0.44 2.3 群落划分
分别对不同年份进行聚类分析,得到鱼类组合的空间和年际变化。图2和图3分别为2006和2008年夏季航次各采样站位聚类分析图和NMDS二位点图。拉尼娜事件发生前,北部湾鱼类的群落类型可以划分为北部沿岸和海南岛沿岸群落(群落I) 与中南部群落 (群落II)。拉尼娜事件发生后,北部湾鱼类的群落类型可以划分为北部沿岸群落 (群落I) 与中南部群落 (群落II)。从图4可看出,群落I和群落II分布较为稳定,拉尼娜事件前后的主要差异在于海南岛西部沿岸站点。通过ANOSIM检验,北部湾鱼类群落结构在拉尼娜事件前后存在显著性差异 (R=0.09, P<0.05)。
2.4 主要优势种的分布
2006年优势种占总渔获生物量的53.87%,占总渔获尾数的65.00%。2008年优势种占总渔获量的78.46%,占总渔获尾数的87.74%,优势种的占比明显上升,种类组成更为丰富。2008年夏季竹荚鱼和蓝圆鲹资源量显著增加 (图5),北部近岸海域尤为明显,而发光鲷资源量相对减少,竹荚鱼成为第一优势种,且经济价值相对较高。
图 5 拉尼娜事件前后主要优势种生物量的分布变化注:a、b对应拉尼娜事件前后竹荚鱼生物量;c、d对应拉尼娜事件前后蓝圆鲹生物量。Figure 5. Distribution of biomass of dominant species before and after La Niña eventNote: The a and b represent T. japonicus biomass before and after La Niña event; c and d represent D. maruadsi biomass before and after La Niña event.2.5 2006年和2008年北部湾海表温变化对比
图6是北部湾海域2006年2—7月和2008年2—7月的水温变化情况。2008年2—3月的SST较2006年同期下降明显,2008年4—7月的SST同样有所降低。
3. 讨论
3.1 鱼类资源量分布对拉尼娜事件的响应
气候变化通过改变海水温度、盐度、溶解氧以及海流等海洋水文环境因子直接对小型中上层鱼类的群落结构产生影响,主要表现在生物量、分布、产卵、繁殖以及物种组成等方面[33-34]。此外,由于浮游生物与非生物环境密切相关,环境变化可以改变浮游生物的物候、生物量或群落组成,进而影响以浮游生物作为饵食的小型中上层鱼类[35]。拉尼娜事件引起海洋环境发生较大范围的变化,太平洋中东部海域海水温度急剧下降,中国近海海域随之发生变化[36]。研究海域处于相对稳定的半封闭海湾环境,在拉尼娜事件前后渔获量存在明显差异 (图7),2008年夏季航次明显高于2006年夏季航次,主要体现在竹荚鱼和蓝圆鲹等小型中上层鱼类的生物量和丰度上 (图5)。同时,去除竹荚鱼和蓝圆鲹后的年际间渔获量差异不显著 (P>0.05)。此外,在2008年航次中,竹荚鱼成为北部湾海域的第一优势物种,取代了近年来一直占据绝对优势的发光鲷。拉尼娜事件之后北部湾海域温度回升,由于鱼类群落组成具有较强的温度依赖性,在一定范围内,其资源量分布与温度呈正相关[37];同时拉尼娜事件期间海域的风力加强,涡流和上升流将下层营养盐与有机质带至上层,生产力升高,促进北部湾海域浮游生物生长发育,以其为饵料的鱼类发生相应的变化[38]。因此,竹荚鱼和蓝圆鲹等小型中上层鱼类资源量的增加可能与温度、饵料结构以及鱼类洄游等因素改变相关。
在鱼类资源空间分布上,北部湾中南部鱼类群落生物量和丰度较高,2008年夏季渔获物的生物量和渔获尾数普遍增加,且在整个调查海域分布较为均匀。2006年夏季竹荚鱼和蓝圆鲹主要分布在北部湾中南部,2008年夏季在北部湾东北部沿岸也有较多分布。北部湾沿海上升流带来丰富的营养盐,促进饵料生物的生长和繁殖,为竹荚鱼和蓝圆鲹等鱼类提供索饵育肥场所[33-34]。ENSO对鱼类群落的影响会表现出一定的滞后性,因为生境的改变会影响到鱼类的补充,在事件发生数月或数年后影响到鱼类群落结构和地理格局[7]。
3.2 物种多样性特征及其优势种对拉尼娜事件的响应
比较2006年和2008年北部湾夏季多样性指数 (表2),2008年夏季各多样性指数均值有所降低。物种多样性越低,物种均匀度越小,多样性的降低表明不同鱼类物种资源量之间的差异增大[28]。拉尼娜事件发生后,航次渔获量显著增加,主要集中在竹荚鱼、蓝圆鲹等中上层鱼类物种之间;同时竹荚鱼和蓝圆鲹向东北部大陆架沿岸移动,鱼类物种多样性水平总体上发生了一定程度的变化 (图5)。竹荚鱼和蓝圆鲹资源量的爆发,使得其余物种在种间竞争中处于不利地位,物种多样性因物种间资源量和分布的极不均匀在拉尼娜事件之后出现指数偏小的现象[28]。两航次间的物种多样性指数和均匀度指数年间无统计学上的差异;北部湾沿岸站点在拉尼娜事件前后的各多样性指数均具显著性差异 (P<0.05)。原因可能是北部湾鱼类空间分布上的差异导致组内差异较大,组间方差相对减小,假设检验的统计功效减弱[31];拉尼娜事件之后北部湾沿岸地区竹荚鱼和蓝圆鲹的爆发取代鲾类等小型鱼类,资源量和分布的不均匀加大年间各指数差异[17]。20世纪60年代以来,由于过度捕捞渔业资源衰退,发光鲷等小型底层物种逐渐取代传统的优质物种[20]。2006年夏季航次渔获物中发光鲷和鲾科等小型低质鱼类占据较大比例;2008年研究水域中渔获量显著变化,小型中上层鱼类竹荚鱼、蓝圆鲹大量繁殖,取代发光鲷成为绝对优势物种,鱼类群落发生变化。
3.3 鱼类群落结构变化对拉尼娜事件的响应
通过聚类分析,北部湾海域可划分为北部湾陆架区沿岸和北部湾中南部两个相对稳定的区域,暖水性和暖温性鱼类占主要优势,群落分布较稳定。2006年夏季航次东北部沿岸渔获物主要以鲾等小型鱼类为主,中南部则以发光鲷、竹荚鱼等为主。2008年航次渔获量普遍增加,北部湾海域竹荚鱼和蓝圆鲹爆发,在渔获组成中所占比例上升,优势种的资源量发生了显著变化。拉尼娜事件期间 (2008年2月) 北部湾海域SST发生了明显下降,拉尼娜事件之后SST较同期同样有所下降 (图6)。拉尼娜事件期间 (冬季),东北风增强,引起强烈的离岸流,进而引发局部海域的上升流,在近岸上升流和广东沿岸流的作用下底层营养盐和有机质向表层运输,水生生态系统物理化学参数和浮游生物的生产力升高,促进鱼类物种的迁徙和分布[39];同时,暖温性鱼类的产卵阶段可能随着水温降低而推迟[36]。拉尼娜事件之后,海水迅速回暖,浮游生物繁殖旺盛、饵料丰富、繁育条件优越,为鱼类物种提供良好的孕育和生长场所;而鱼类群落组成具有较强的温度依赖性,春季水温的回升促进了补充群体的生长发育。同时,北部湾海域在5—8月实施全面伏季休渔,有效保障了鱼类育幼阶段。在未来对北部湾海域鱼类群落分布和变化趋势开展研究时,也应综合各种环境因子。
-
表 1 Sn-SERCA基因克隆及实时荧光定量引物序列
Table 1 Primer sequence used in gene cloning and qRT-PCR of Sn-SERCA gene
引物Primer 序列 (5'—3')Sequence (5'–3') 用途Function 5'-outer GTCTGCTGGAACCTTGTC 5'RACE 5'-inner CTGCCATACTCCAACAACT 5'RACE 3'-outer CAACTCAACTACTACCAACTG 3'RACE 3'-inner GTCACTTCTTGTCTCCTCAT 3'RACE M13-F CGCCAGGGTTTTCCCAGTCACGAC 菌落PCR M13-R AGCGGATAACAATTTCACACAGGA 菌落PCR qRT-PCR-S TGCCTTGTAGCCTCCTTCC qRT-PCR qRT-PCR-A ACTGTCCTCATCTTCCATTGTG qRT-PCR 60SL7-S CAGGCTAACAACTTCTTATGG qRT-PCR (内参) 60SL7-A TGGCTTGACAGATAACACTT qRT-PCR (内参) 表 2 Sn-SERCA序列分析所用软件及在线工具
Table 2 Software and online tool for sequence analysis of Sn-SERCA
名称Name 网址Website 用途Function DNAMAN 8 拼接测序结果及多序列比对 ORF Finder https://www.ncbi.nlm.nih.gov/orffinder 预测ORF及氨基酸序列 ProtParam https://web.expasy.org/protparam 预测蛋白的理化性质 NCBI Blast https://blast.ncbi.nlm.nih.gov/Blast.cgi 搜索同源蛋白 SMART http://smart.embl-heidelberg.de 预测保守结构域 SOPMA https://npsa-prabi.ibcp.fr/NPSA/npsa_sopma.html 预测蛋白二级结构 phyre2 http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index 预测蛋白三级结构 MEME Suit http://meme-suite.org/index.html Motif 搜索 -
[1] CUTLER, EDWARD B. The Sipuncula: their systematics, biology, and evolution[M]. New York: Cornell University Press, 1994.
[2] 李凤鲁, 周红, 王玮. 中国沿海星虫动物门名录[J]. 青岛海洋大学学报, 1992, 22(2): 72-88. [3] 陈伟耀, 李金兰, 陈伟寿, 等. 光祼星虫营养成分和药理作用的研究进展[J]. 安徽农业科学, 2018, 46(12): 20-22. doi: 10.3969/j.issn.0517-6611.2018.12.007 [4] 李俊伟, 胡瑞萍, 郭永坚, 等. 光裸方格星虫生物扰动对沉积物氮磷物质释放的影响[J]. 生态科学, 2019, 38(5): 8-14. doi: 10.14108/j.cnki.1008-8873.2019.05.002 [5] 蒲利云, 李高俊, 刘天密, 等. 光裸方格星虫水泥池工厂化养殖技术研究[J]. 现代农业科技, 2014(22): 250-251, 259. doi: 10.3969/j.issn.1007-5739.2014.22.147 [6] 王庆恒, 邓岳文, 张家炜, 等. 一种光裸星虫室内苗种培育的方法: CN106035246B[P]. 2019-09-10. [7] 张家炜. 光裸星虫早期发育观察及卵母细胞发育关键基因的研究[D]. 湛江: 广东海洋大学, 2019: 11-56. [8] BAULIEU E E, GODEAU F, SCHORDERET M, et al. Steroid-induced meiotic division in Xenopus laevis oocytes: surface and calcium[J]. Nature, 1978, 275(5681): 593-598. doi: 10.1038/275593a0
[9] TOSTI E. Calcium ion currents mediating oocyte maturation events[J]. Reprod Biol Endocrinol, 2006, 4(1): 1-9. doi: 10.1186/1477-7827-4-1
[10] HOMA S T. Calcium and meiotic maturation of the mammalian oocyte[J]. Mol Reprod Dev, 1995, 40(1): 122-134. doi: 10.1002/mrd.1080400116
[11] YU X, CARROLL S, RIGAUD J L, et al. H+ countertransport and electrogenicity of the sarcoplasmic reticulum Ca2+ pump in reconstituted proteoliposomes[J]. Biophys J, 1993, 64(4): 1232-1242. doi: 10.1016/S0006-3495(93)81489-9
[12] ZAFAR S, HUSSAIN A, LIU Y, et al. Specificity of ligand binding to transport sites: Ca2+ binding to the Ca2+ transport ATPase and its dependence on H+ and Mg2+[J]. Arch Biochem Biophys, 2008, 476(1): 87-94. doi: 10.1016/j.abb.2008.04.035
[13] KAPLAN J H. Biochemistry of Na, K-ATPase[J]. Annu Rev Biochem, 2002, 71(1): 511-535. doi: 10.1146/annurev.biochem.71.102201.141218
[14] MØLLER J V, JUUL B, le MAIRE M. Structural organization, ion transport, and energy transduction of P-type ATPases[J]. Biochim Biophys Acta-Rev Biomembr, 1996, 1286(1): 1-51. doi: 10.1016/0304-4157(95)00017-8
[15] SKOU J C. The influence of some cations on an adenosine triphosphatase from peripheral nerves[J]. Biochim Biophys Acta, 1957, 23: 394-401. doi: 10.1016/0006-3002(57)90343-8
[16] PERIASAMY M, KALYANASUNDARAM A. SERCA pump isoforms: their role in calcium transport and disease[J]. Muscle Nerve, 2007, 35(4): 430-442. doi: 10.1002/mus.20745
[17] CHEN D, ZHANG Z, WHEATLY M G, et al. Cloning and characterization of the heart muscle isoform of sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) from crayfish[J]. J Exp Biol, 2002, 205(17): 2677-2686. doi: 10.1242/jeb.205.17.2677
[18] FAN W, LI C, LI S, et al. Cloning, characterization, and expression patterns of three sarco/endoplasmic reticulum Ca2+-ATPase isoforms from pearl oyster (Pinctada fucata)[J]. Acta Biochim Biophys Sin, 2007, 39(9): 722-730. doi: 10.1111/j.1745-7270.2007.00330.x
[19] ROEGNER M E, CHEN H Y, WATSON R D. Molecular cloning and characterization of a sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) from Y-organs of the blue crab (Callinectes sapidus)[J]. Gene, 2018, 673: 12-21. doi: 10.1016/j.gene.2018.06.018
[20] STRICKER S A, SMYTHE T L. Multiple triggers of oocyte maturation in nemertean worms: the roles of calcium and serotonin[J]. J Exp Zool, 2000, 287(3): 243-261. doi: 10.1002/1097-010X(20000801)287:3<243::AID-JEZ6>3.0.CO;2-B
[21] DEGUCHI R, MORISAWA M. External Ca2+ is predominantly used for cytoplasmic and nuclear Ca2+ increases in fertilized oocytes of the marine bivalve Mactra chinensis[J]. J Cell Sci, 2003, 116(2): 367-376. doi: 10.1242/jcs.00221
[22] EL-JOUNI W, JANG B, HAUN S, et al. Calcium signaling differentiation during Xenopus oocyte maturation[J]. Dev Biol, 2005, 288(2): 514-525. doi: 10.1016/j.ydbio.2005.10.034
[23] ZHANG J W, SU Y L, ZHONG R Z, et al. Transcriptome analysis reveals key molecular events of germinal vesicle breakdown in Sipunculus nudus[J]. Aquac Res, 2021, 52(4): 1757-1766. doi: 10.1111/are.15031
[24] 周丹, 苏泳霖, 钟如卓, 等. 光裸星虫Hsp90基因的全长克隆及其在全组织和卵母细胞中的表达分析[J]. 渔业科学进展, 2020, 41(5): 150-159. [25] PRIMEAU J O, ARMANIOUS G P, M’LYNN E F, et al. The sarcoendoplasmic reticulum calcium ATPase[J]. Subcell Biochem, 2018, 87: 229-258.
[26] GORSKI P A, TRIEBER C A, LARIVIÈRE E, et al. Transmembrane helix 11 is a genuine regulator of the endoplasmic reticulum Ca2+ pump and acts as a functional parallel of β-subunit on α-Na+, K+-ATPase[J]. J Biol Chem, 2012, 287(24): 19876-19885. doi: 10.1074/jbc.M111.335620
[27] ALTSHULER I, VAILLANT J J, XU S, et al. The evolutionary history of sarco (endo) plasmic calcium ATPase (SERCA)[J]. PLoS One, 2012, 7(12): e52617. doi: 10.1371/journal.pone.0052617
[28] 王庆恒, 张家炜, 郝瑞娟, 等. 光裸星虫体腔液中卵子发生的超微结构[J]. 海洋与湖沼, 2017, 48(1): 57-66. [29] WUYTACK F, RAEYMAEKERS L, MISSIAEN L. Molecular physiology of the SERCA and SPCA pumps[J]. Cell calcium, 2002, 32(5/6): 279-305.
[30] LAMBERT C C. Signaling pathways in ascidian oocyte maturation: the roles of cAMP/Epac, intracellular calcium levels, and calmodulin kinase in regulating GVBD[J]. Mol Reprod Dev, 2011, 78(10/11): 726-733.
[31] 苏泳霖, 叶健铭, 刘琪, 等. 光裸星虫Cdc25基因的克隆及在卵母细胞中的表达分析[J]. 基因组学与应用生物学, 2021, 40(4): 1544-1552. [32] 吴斌, 廖思明, 兰国宝. 水生无脊椎动物氮排泄研究概述[J]. 广西科学, 2008, 15(1): 92-96. doi: 10.3969/j.issn.1005-9164.2008.01.025 [33] 逯云召, 王庆恒, 杜晓东. 温度和体质量对光裸星虫排氨率和耗氧率的影响[J]. 广东海洋大学学报, 2012, 32(1): 87-91. doi: 10.3969/j.issn.1673-9159.2012.01.015 [34] 李文静, 孙斯曼, 李默. 谷氨酰胺代谢对卵巢肿瘤细胞生物学行为的影响[J]. 国际医学生殖健康/计划生育, 2019, 38(1): 75-77, 86. [35] LI S, HAO B, LU Y, et al. Intracellular alkalinization induces cytosolic Ca2+ increases by inhibiting sarco/endoplasmic reticulum Ca2+-ATPase (SERCA)[J]. PLoS One, 2012, 7(2): e31905. doi: 10.1371/journal.pone.0031905
[36] EPEL D. Mechanisms of activation of sperm and egg during fertilization of sea urchin gametes[J]. Curr Top Dev Biol, 1978, 12: 185-246.
[37] ALBERS R W. Biochemical aspects of active transport[J]. Annu Rev Biochem, 1967, 36(1): 727-756. doi: 10.1146/annurev.bi.36.070167.003455
[38] TOYOSHIMA C, MIZUTANI T. Crystal structure of the calcium pump with a bound ATP analogue[J]. Nature, 2004, 430(6999): 529-535. doi: 10.1038/nature02680
[39] POST R L, KUME S. Evidence for an aspartyl phosphate residue at the active site of sodium and potassium ion transport adenosine triphosphatase[J]. J Biol Chem, 1973, 248(20): 6993-7000. doi: 10.1016/S0021-9258(19)43350-4
[40] PAPP B, BROULAND J P. Altered endoplasmic reticulum calcium pump expression during breast tumorigenesis[J]. Breast Cancer-Basic Clin Res, 2011, 5: 163-174.
-
期刊类型引用(1)
1. 程高,陈国宝,陈丕茂,佟飞,牛麓连,陈钰祥. 基于声学技术定点监测海洋牧场鱼类资源昼夜变化研究. 南方水产科学. 2024(05): 63-70 . 本站查看
其他类型引用(1)