Effect of enzymolysis alginate oligosaccharide on myofibrillar protein in simulated oral digestion
-
摘要: 将鲢 (Hypophthalmichthys molitrix) 加工成肉糜制品能增加消费者的接受度从而提高其经济价值,酶解褐藻寡糖 (Enzymolysis alginate oligosaccharide, EAO) 能与鲢肌原纤维蛋白 (Myofibrillar protein, MP) 快速反应,提高食品的功能特性。食物经口腔加工后会发生明显的物理、化学变化。为了解肌原纤维蛋白在鲢消化过程中的结构变化,明确口腔消化对褐藻寡糖修饰后的肌原纤维蛋白的影响,从新鲜鲢中提取了肌原纤维蛋白,并向其中添加0.45 mg·mL−1的酶解褐藻寡糖获得寡糖-蛋白复合物 (EAO-MP),考察了鲢肌原纤维蛋白 (M组) 与寡糖-蛋白复合物 (A组) 在模拟口腔消化中的傅里叶红外光谱、内源性荧光光谱、紫外吸收光谱、巯基含量、氢键含量、表面疏水性的变化差异。结果显示:经过模拟口腔消化后,M组无规卷曲结构、总巯基含量增加,表面疏水性显著降低 (P<0.05),说明肌原纤维蛋白由于模拟口腔消化液的作用,二级、三级结构发生了改变;添加酶解褐藻寡糖后的A组无规卷曲结构下降了2.97%,A组在3个不同消化时间点 (0、5、15 s) α-螺旋结构相比M组分别增加了7.29%、2.73%、5.55%;氢键含量显著增加 (P<0.05),说明肌原纤维蛋白与酶解褐藻寡糖通过氢键作用结合为共价聚合物;巯基含量显著降低,表面疏水性呈升高趋势,说明酶解褐藻寡糖的加入促进肌原纤维蛋白在模拟口腔消化液中展开蛋白结构。综上,酶解褐藻寡糖的添加能促使鲢肌原纤维蛋白分子结构在模拟口腔消化液中展开,推测这可能有利于蛋白后续的消化吸收。Abstract: Processing silver carp (Hypophthalmichthys molitrix) into surimi products can improve consumers' acceptance and its economic value. Enzymolysis alginate oligosaccharide (EAO) can quickly react with myofibrillar protein (MP) extracted from silver carp to improve functional characteristics. Food will undergo physical and chemical changes after oral processing. To better understand the effects of oral digestion on the EAO-modified MP, we extracted the MP from fresh silver carp which was added 0.45 mg·mL−1 EAO to create a complex (EAO-MP). Then we investigated the variations of Fourier infrared spectroscopy, endogenous fluorescence spectroscopy, UV absorption spectroscopy, contents of sulfhydryl and active sulfhydryl, surface hydrophobicity, and hydrogen bonds in the simulated oral digestion of silver carp MP (Group M) and EAO-MP (Group A). The results show that, after the simulated oral digestion, the random coil structure and total sulfhydryl content increased, while the surface hydrophobicity decreased significantly in Group M (P<0.05), which demonstrates that the secondary and tertiary structures of MP had changed due to the effect of simulated oral digestive fluid. Besides, the random coil in Group A decreased by 2.97% after adding EAO. At three different digestion times, the α-helix increased by 7.29%, 2.73% and 5.55%, respectively, compared with Group M. Additionally, the hydrogen bond content increased significantly in Group A (P<0.05), revealing that MP and EAO were bonded to a covalent polymer by the hydrogen bond force. The significant increase in surface hydrophobicity and decrease in sulfhydryl content show that the addition of EAO promotes the expansion of the protein structure of MP in simulated oral digestive fluid. In conclusion, the addition of EAO can promote the molecular structure of silver carp MP to expand in the simulated oral digestive fluid, which may be conducive to the subsequent digestion and absorption of protein.
-
为推进我国水产养殖方式的转变,近年来封闭式工厂化养殖已逐渐成为对虾养殖的重要发展方向,但由于该模式以人工投饵为主,而且养殖密度高、投饵量大,养殖过程中易产生并积累大量的残饵、粪便和生物残体等物质。这些污染物长期处于水体下层,在厌氧的环境中分解产生氨氮、亚硝酸氮、硫化氢、有机酸、胺类、低级脂肪酸和甲烷等对养殖动物有毒的中间产物,成为养殖水体污染的重要内源[1]。如何调控好养殖水质,降低养殖污染,尽可能利用少的空间,获得高产优质的产品,成为对虾养殖中的焦点问题。
一般的理化方法控制水质技术存在种种弊端。从可持续发展的要求来说,利用微生物制剂对养殖水质因子进行生物调控是改善养殖生态环境,减少病害发生及保持水产养殖健康、稳定发展的重要手段。微生物制剂在虾塘方面使用情况的研究进行得较多,但对工厂化养殖水体研究的报道还较少[2-5]。
本实验研究了地衣芽孢杆菌(Bacillus licheni-formis, BL)、荚膜红假单胞菌(Rhodopseudomonas capsulata, RC)和乳酸杆菌(Lactobacillus spp.,LB)对凡纳滨对虾(Litopenaeus vannamei)封闭式高密度养殖水质的调控效果。探索实际生产中对虾养殖水质的调控方法,为进一步研究构建具有南方特色的对虾工厂化养殖模式及对虾工厂化高密度养殖水质调控提供科学依据。
1. 材料与方法
1.1 实验材料
荚膜红假单胞菌为液体型,活菌数为5×108CFU · mL-1; 地衣芽孢杆菌为粉末型,活菌数为2×109CFU · g-1;乳酸杆菌为液体型,活菌数为2×109CFU · mL-1。3种微生物制剂均由中国水产科学研究院南海水产研究所健康养殖中心提供。凡纳滨对虾初始平均体长3.1 cm,平均体重0.87 g。
1.2 实验系统
实验于2005年8月15日至2005年10月3日在广东省湛江市东海岛国家863海水养殖种子工程南方基地进行。实验海水经二级沙滤后72 h暗处静止备用。实验容器为玻璃钢桶,容积0.3 m3,水深0.65 m,有独立的给排水系统及完善的供气系统,室内自然光照,全程充气。
1.3 实验设计
实验历时45 d。实验前用高锰酸钾消毒玻璃钢桶,养殖用水经二氧化氯消毒剂消毒,其后采用曝气24 h方式去除水体中的余氯。对虾暂养7 d后开始实验。具体实验设计见表 1,各组均设置3个重复。每组随机放养凡纳滨对虾100尾。每日投饵4次,投喂量根据对虾的具体摄食情况而定。实验过程中适量添加淡水补充蒸发水量,其余管理措施各组均一致。每天虹吸残饵和粪便。
表 1 各组施用微生物制剂的情况Table 1 The method of using microbiological preparation in each group组别
group对照组
control group地衣芽孢杆菌+ 荚膜红假单胞菌(G1)
B.licheniformis +R.capsulate地衣芽孢杆菌+ 荚膜红假单胞菌(G2)
B.licheniformis +R.capsulata地衣芽孢杆菌+ 乳酸杆菌(G3)
B.licheniformis +Lactobacillus spp.地衣芽孢杆菌+ 乳酸杆菌(G4)
B.licheniformis +Lactobacillus spp.施用频率
frequency- 1次/7 d 1次/3 d 1次/7 d 1次/3 d 施用配比
ratio- 2:1 2:1 1:2 1:2 施用量
quantity-1.5 g +3 mL 3 g+6 mL 1.5 g+3 mL 3 g+6 mL 总活菌量
total quantity of bacteriums- 4.5×109CFU 9×109CFU 9×109CFU 1.8×1010CFU 1.4 水质分析方法
本实验主要监测水体中硝酸氮(NO3-)、氨氮(NH4+)、亚硝酸氮(NO2-)、化学耗氧量(COD)、活性磷酸盐(PO43-)等各项水质指标的变化情况。水样现场采集后立即进行测定。测定方法参考《海洋监测规范》(BG 17378.4-1998)[6]。
2. 结果
2.1 对水体中NO3-含量的影响
各处理组间NO3-含量除28 d外差异不显著(P>0.05)。实验开始时各组水体中的NO3-含量基本一致;到第7天各处理组NO3-含量均低于对照组,但差异不显著(P>0.05);在第28天低于对照组,且差异显著(P<0.05)。实验结束时G2组NO3-较高,其余各处理组硝酸氮含量与对照组间有差异但不显著(P>0.05)。各组NO3-含量均在21 d达到峰值,随后略有降低(图 1)。
2.2 对水体中NH4+含量的影响
如图 2所示,仅G1、G3组在28 d略有降低,各处理组NH4+浓度整体呈积累趋势,但均达到良好水质标准,且始终低于对照组。第7~35天各组NH4+含量差异显著(P<0.05),第14天时各处理组间差异显著(P<0.05)。第7天NH4+降低到最低值,其中G1低达0.009 mg · L-1。在第28天水体中NH4+含量急剧增加,对照组上升较快。处理组G1、G2、G3、G4的NH4+的相对降解率[(对照组-处理组) /对照组×100%]分别为62%、60%、65%、49%。实验前21 d,G2组NH4+含量波动较小,相对降低解为79%。
2.3 对水体中NO2-含量的影响
实验开始的1~7 d各处理组水体中NO2-的含量较低,随实验的进行含量有所升高,但始终明显低于对照组。G1组的NO2-含量最低,并一直保持至实验结束(图 3)。处理组G1、G2、G3、G4的相对降解率46%、22%、22%、40%。第7、14、21、和35天时各处理组NO2-含量显著低于对照组(P<0.05),在第14天各处理组间差异显著(P<0.05)。NO2-含量实验中呈先上升后降低的趋势,到第21天对照组NO2-的浓度已达0.725 mg · L-1。
2.4 对水体中PO43-含量的影响
实验期间水中的PO43-含量随养殖时间的推移而增加,各处理方法都不能很好的缓解水体中PO43-的积累。各组PO43-的含量在第7、21、28天有差异,但差异不显著(P>0.05)(表 2)。
表 2 水中活性磷酸盐含量变化Table 2 The change of PO43-in waterMean±SD; mg · L-1 时间/d
time对照
control groupG1 G2 G3 G4 0 0.029±0.002c 0.042±0.003a 0.035±0.002b 0.034±0.000b 0.034±0.001b 7 0.340±0.010c 0.398±0.010a 0.391±0.012ab 0.366±0.016abc 0.372±0.020abc 14 0.677±0.003 0.710±0.018 0.707±0.012 0.711±0.017 0.719±0.019 21 1.008±0.022ia 0.990±0.031ab 0.945±0.021ab 0.920±0.013b 0.926±0.022ab 28 1.464±0.012a 1.424±0.022ab 1.310±0.065b 1.418±0.029ab 1.424±0.014ab 35 1.916±0.036 1.966±0.060 1.833±0.077 1.986±0.088 1.989±0.070 注: 同行数据中上标具不同字母者标记的值表示存在显著差异(P<0.05)
Note: Different letters in the same rows show significant difference.2.5 对水体中COD的影响
COD随着养殖时间的推移呈上升趋势。各组COD在第21天上升至较高值,但从结果来看,组间无显著差异(P>0.05),其中G1、G2组COD相对较低(表 3)。
表 3 水中COD的变化Table 3 The change of COD in waterMean±SD; mg · L-1 时间/d
time对照
control groupG1 G2 G3 G4 0 1.097±0.012 1.076±0.048 1.105±0.002 1.104±0.034 1.108±0.028 7 2.113±0.140a 1.921±0.112ab 1.704±0.108b 1.940±0.023ab 2.029±0.191ab 14 2.899±0.248 3.093±0.058 2.908±0.136 2.985±0.136 2.860±0.046 21 3.944±0.431bc 6.384±0.522a 6.618±0.062a 3.218±0.417c 5.873±0.386a 28 19.023±0.510ab 7.584±0.213c 13.185±0.783bc 20.362±6.443ab 24.755±1.456a 35 38.848±0.841a 29.020±4.370bc 32.020±0.470b 29.982±0.524bc 24.438±1.629c 注: 同行数据中上标具不同字母者标记的值表示存在显著差异(P<0.05)
Note: Different letters in the same rows show significant difference.3. 讨论
3.1 微生物制剂对对虾养殖水体中氮化合物含量的影响
处理组NH4+含量显著低于对照组,均达到良好水质标准(NH4+ <0.6 mg · L-1),表明微生物制剂对养殖水体氨氮的去除有较明显的效果。实验前期0~7 d内氨氮、亚硝酸盐的含量比较低是因为幼虾摄食量低,排泄物较少,这同祁真等[7]的研究结论一致。到第21天各组水质变差,表明水体中有机物积累已超过微生物制剂的处理限度,提示微生物制剂分解有机物的能力有一定的限度,与王彦波等[8]和朱忠琴等[9]的结论一致。
在本实验中,各实验组的NH4+整体呈上升的趋势,这可能是亚硝酸盐的还原产物中含有NH4+ [10],导致了NH4+的积累。水体NO2-向NH4+和NO3-转化反应中,会表现出较低的NO2-浓度,较高的NO3-浓度。曝气条件下的游离混合微生物可以将氨氧化成硝态氮与亚硝态氮。实验过程中连续充氧,溶解氧的存在,反硝化脱氮会受到影响,也会造成水中硝态氮的积累。
在实验中氮化合物均呈现出随养殖时间积累的趋势。对虾工厂化养殖中,提高了水的利用率,减少了养殖废水的排放; 但投饵量的增加和养殖密度的增大,致使饵料和对虾排泄物等在养殖水体中积累。如果在养殖中后期长期不换水,这些物质溶解在水体中,分解后可产生大量氨氮、亚硝酸氮等有害物质,导致水质氮化合物含量上升。
3.2 微生物制剂对水体中PO43-和COD的影响
本实验中COD和PO43-均较高,呈现出上升趋势。在高密度、高投饵的对虾工厂化养殖水体中,作为主要营养元素的无机磷含量普遍较高,且随时间增加而升高。在水环境中有机物的分解产生磷,浮游植物的生长消耗磷。本实验是室内小水体实验,水中浮游植物含量极少,造成磷酸盐含量升高。邱德全等[11]研究表明在高密度对虾养殖中活性磷的含量都比较高。胡菊香等[12]测定的养殖水中COD也较高,达11~23 mg · L-1。由测定结果来看,实验中各微生物制剂对降低COD的作用没有显著差异,这同马江耀等[13]研究光合细菌、水产EM原液、益生菌(主要为芽孢杆菌Bacillus sp.)对COD无明显效果的结论是一致的。在长期不换水的情况下,水中的残饵、粪便等随养殖时间的推移不断积累,从而造成了各实验组COD和活性磷酸盐随养殖时间推进,不同程度的升高。
3.3 多种微生物的协同作用
光合细菌能够分解小分子有机物,具有降低养殖水体中氨氮、亚硝态氮和COD等有害物质,净化水质等重要作用,它可以促进异养菌的生长。芽孢杆菌能够将大分子有机物分解成小分子有机物和氨基酸等,促进H2S、亚硝酸盐氧化,对水体中氨氮和有机物的分解作用比较明显[14]。乳酸菌能降解亚硝酸盐的含量,但研究较多的是通过饵料添加以中和动物体内的毒性物质,如抑制胺和氨的合成。荚膜红假单胞菌与地衣芽孢杆菌、乳酸杆菌与地衣芽孢杆菌之间在机理上可形成协同作用的关系。多种微生物联合使用,菌群在其生长过程中可直接吸收利用水体中的小分子含氮化合物,迅速分解水中的有机物,同时依靠协同作用,可以降低水中耗氧量、氮化合物含量,调控养殖水质。
实验结果表明,本实验在虾池中添加微生物制剂,可以减少换水量,缓解氨氮、亚硝酸盐积累的问题,减少由换水带入的病菌,从而达到净化水质的目的。其他学者的研究也表明多种微生物能较好地调控养殖水质,如宫兴文等[15]将玉垒菌和光合细菌联用,结果表明可以增加水体溶氧、起到降低NH4+的作用; 李卓佳等[16]研究表明以芽抱杆菌为主体的复合微生物可改善鱼塘水质条件,降低氨氮和亚硝酸盐浓度; 叶乐等[17]将芽孢杆菌和光合细菌用于对虾育苗池可降低H2S、NH4+的含量。
使用不同的微生物制剂,其作用效果各不相同。在实验进行的前21 d,降低水体中氨氮的最佳组为地衣芽孢杆菌+荚膜红假单胞菌3 d使用1次,21 d后地衣芽孢杆菌+乳酸杆菌7 d使用1次的作用较为明显; 降低亚硝酸氮的最佳方案是地衣芽孢杆菌+荚膜红假单胞菌组合7 d使用1次。但各处理组对PO43-均无明显效果,而在降低水体COD的方面地衣芽孢杆菌+荚膜红假单胞菌组合相对较好。在水中施用地衣芽孢杆菌和荚膜红假单胞菌制剂,可以明显降低养殖水体的氨氮等物质的含量。
对水质的调控效果综合分析表明,微生物制剂3 d施用1次与7 d施用1次无显著差异。增加微生物制剂的使用频率并不能更好地改善养殖水质。对微生物制剂的使用间隔时间并非越短越好,微生物制剂的浓度也并非越高越好。从节约养殖成本考虑,使用微生物制剂的时间间隔可在1周以上。粉末状的地衣芽孢杆菌在水中的沉积系数大于液体制剂的乳酸杆菌、荚膜红假单胞菌,前者更适合于净化塘底,而后两者对富营养化养殖池水质的净化更为理想。不同季节、不同品种对虾养殖的环境条件不相同,对微生物制剂的使用方法、比例、用量和施用频率有待进一步研究。
-
图 1 肌原纤维蛋白和寡糖-蛋白复合物口腔消化产物傅里叶红外光谱 (a) 和二级结构含量 (b)
注:下标1是α-螺旋显著性,下标2是β-折叠显著性,下标3是β-转角显著性,下标4是无规卷曲显著性。
Figure 1. Fourier infrared spectroscopy (a) and secondary structure content (b) of MP and EAO-MP oral digestive products
Note: Endnote subscript 1 is α-helix significance; endnote subscript 2 is β-helix significance; endnote subscript 3 is β-turn significance; endnote subscript 4 is random coil significance.
图 2 肌原纤维蛋白和寡糖-蛋白复合物口腔消化产物内源荧光光谱 (a) 和最大荧光强度 (b)
注:不同大写字母表示在同一模拟口腔消化时间中,不同消化产物之间存在显著性差异 (P<0.05);不同小写字母表示在同组消化产物中,不同模拟口腔消化时间之间存在显著性差异 (P<0.05);表2、图4—图6同此。
Figure 2. Endogenous fluorescence spectra (a) and maximum fluorescence intensity (b) of MP and EAO-MP oral digestive products
Note:Values with different capital letters indicate significant differences among different digestive products at the same simulated oral digestion time (P<0.05); values with different lowercase letters indicate significant differences in the same group of digestion products at different simulated oral digestion time (P<0.05). The same case in Table 2 and Fig. 4−Fig. 6.
表 1 口腔消化组别
Table 1 Oral digestion group
组别 Group 名称 Name 未消化鲢肌原纤维蛋白Undigested silver carp myofibrillar protein M0 鲢肌原纤维蛋白模拟口腔消化5 sSilver carp myofibrillar protein after simulated oral digestion for 5 s M5 鲢肌原纤维蛋白模拟口腔消化15 sSilver carp myofibrillar protein after simulated oral digestion for 15 s M15 未消化鲢肌原纤维蛋白-寡糖复合物Undigested silver carp myofibrillar protein-alginate oligosaccharide complex A0 鲢肌原纤维蛋白-寡糖复合物模拟口腔消化5 sSilver carp myofibrillar protein-alginate oligosaccharide complex after simulated oral digestion for 5 s A5 鲢肌原纤维蛋白-寡糖复合物模拟口腔消化15 sSilver carp myofibrillar protein-alginate oligosaccharide complex after simulated oral digestion for 15 s A15 表 2 紫外二阶导数生成 r值
Table 2 UV second order derivative generated r value
模拟口腔消化时间Simulated oral digestion time/s 鲢肌原纤维
蛋白组 (M组) MP group寡糖-蛋白
复合物组 (A组)EAO-MP group0 1.11±0.18Aa 1.62±0.88Aa 5 0.98±0.27Aa 1.12±0.16Aa 15 0.97±0.16Aa 1.55±0.31Aa -
[1] 尹艺霖, 刘学军. 不同超声功率处理对鲢鱼肌原纤维蛋白理化特性及凝胶品质的影响[J]. 肉类研究, 2019, 33(3): 14-19. [2] WALAYAT N, WANG X K, LIU J H, et al. Kappa-carrageenan as an effective cryoprotectant on water mobility and functional properties of grass carp myofibrillar protein gel during frozen storage[J]. LWT, 2022, 154: 112675. doi: 10.1016/j.lwt.2021.112675
[3] LU S, NA K, WEI J N, et al. Alginate oligosaccharides: the structure-function relationships and the directional preparation for application[J]. Carbohydr Polym, 2022, 284: 119225. doi: 10.1016/j.carbpol.2022.119225
[4] 荣婧, 仇超颖, 胡晓, 等. 鸢乌贼肌原纤维蛋白糖基化产物功能特性研究[J]. 南方水产科学, 2018, 14(1): 68-76. [5] 虞铭霞, 张怡, 张宾. 海藻糖和褐藻胶寡糖对冻藏紫贻贝品质的影响[J]. 现代食品科技, 2019, 35(9): 163-169. [6] 张丽, 史洪涛, 李月勤, 等. 褐藻寡糖对断奶仔猪生长性能、抗氧化性能和肠道消化吸收功能的影响[J]. 中国饲料, 2018, 29(14): 56-61. [7] CHEN J Y, CHEN Q M, XIE C Q, et al. Effects of simulated gastric and intestinal digestion on chitooligosaccharides in two in vitro models[J]. Int J Food Sci Tech, 2020, 55(5): 1881-90. doi: 10.1111/ijfs.14337
[8] 仇超颖, 荣婧, 胡晓, 等. 糖基化鸢乌贼肌原纤维蛋白体外消化产物抗氧化性研究[J]. 南方水产科学, 2018, 14(6): 105-112. doi: 10.12131/20180074 [9] SAIGUSA M, NISHIZAWA M, SHIMIZU Y, et al. In vitro and in vivo anti-inflammatory activity of digested peptides derived from salmon myofibrillar protein conjugated with a small quantity of alginate oligosaccharide[J]. Biosci Biotech Bioch, 2015, 79(9): 1518-1527. doi: 10.1080/09168451.2015.1031075
[10] WANG X M, CHEN J S. Food oral processing: recent developments and challenges[J]. Curr Opin Colloid Interface Sci, 2017, 28: 22-30. doi: 10.1016/j.cocis.2017.01.001
[11] 杨天, 耿文豪, 郑志红, 等. 褐藻寡糖对鲢鱼鱼糜稳定性、分子间作用力及肌原纤维蛋白结构的影响[J]. 肉类研究, 2021, 35(7): 1-8. [12] 仪淑敏, 李睿智, 陈杨, 等. 白鲢鱼肌原纤维蛋白双向电泳分析体系的建立[J]. 食品科学, 2017, 38(1): 41-46. [13] MINEKUS M, ALMINGER M, ALVITO P, et al. A standardised static in vitro digestion method suitable for food: an international consensus[J]. Food Funct, 2014, 5(6): 1113-1124. doi: 10.1039/C3FO60702J
[14] XU Y J, ZHAO X, BIAN G L, et al. Structural and solubility properties of pale, soft and exudative (PSE)-like chicken breast myofibrillar protein: effect of glycosylation[J]. Food Sci Technol, 2018, 95: 209-215.
[15] WANG Z F, HE Z F, ZHANG D, et al. Effect of multiple freeze-thaw cycles on protein and lipid oxidation in rabbit meat[J]. Int J Food Sci Technol, 2021, 56(6): 3004-3015. doi: 10.1111/ijfs.14943
[16] 哈斯, 韩玲钰, 许喆, 等. 碱性pH对马鲛鱼肌球蛋白热聚集行为的影响[J]. 现代食品科技, 2022, 38(4): 114-120, 61. doi: 10.13982/j.mfst.1673-9078.2022.4.0719 [17] YILDIZ G, DING J Z, ANDRADE J, et al. Effect of plant protein-polysaccharide complexes produced by mano-thermo-sonication and pH-shifting on the structure and stability of oil-in-water emulsions[J]. Innov Food Sci Emerg Technol, 2018, 47: 317-25. doi: 10.1016/j.ifset.2018.03.005
[18] LI T F, ZHAO J X, HUANG J, et al. Improvement of the quality of surimi products with over-drying potato starches [J]. J Food Qual, 2017: 1417856. Doi: 10.1155/2017/1417856.
[19] ZHANG Y M, PUOLANNE E, ERTBJERG P. Mimicking myofibrillar protein denaturation in frozen-thawed meat: effect of pH at high ionic strength[J]. Food Chem, 2021, 338: 128017. doi: 10.1016/j.foodchem.2020.128017
[20] XU Y J, DONG M, TANG C B, et al. Glycation-induced structural modification of myofibrillar protein and its relation to emulsifying properties[J]. LWT, 2020, 117: 108664. doi: 10.1016/j.lwt.2019.108664
[21] XIE F, SHAO H L, HU X C. Effect of storage time and concentration on structure of regenerated silk fibroin solution[J]. Int J Mod Phys B, 2006, 20(25n27): 3878-3883. doi: 10.1142/S0217979206040520
[22] ZHONG Y Y, HAN P, SUN S L, et al. Effects of apple polyphenols and hydroxypropyl-β-cyclodextrin inclusion complexes on the oxidation of myofibrillar proteins and microstructures in lamb during frozen storage[J]. Food Chem, 2022, 375: 131874. doi: 10.1016/j.foodchem.2021.131874
[23] 梁雯雯, 杨天, 郭建, 等. 升温方式对鲢鱼肌球蛋白结构和理化性质的影响[J]. 食品科学, 2021, 42(21): 24-31. doi: 10.7506/spkx1002-6630-20201012-086 [24] 陈金玉, 李彬, 何丽丽, 等. 海藻糖和甘露醇对冻融循环引起的虾蛄肌原纤维蛋白结构和功能特性变化的影响[J]. 食品科学, 2019, 40(16): 30-37. doi: 10.7506/spkx1002-6630-20180606-087 [25] XU Z Z, HUANG G Q, XU T C, et al. Comparative study on the Maillard reaction of chitosan oligosaccharide and glucose with soybean protein isolate[J]. Int J Biol Macromol, 2019, 131: 601-607. doi: 10.1016/j.ijbiomac.2019.03.101
[26] QIU Y J, JIANG H, DONG Y Y, et al. Expression and biochemical characterization of a novel fucoidanase from flavobacterium algicola with the principal product of fucoidan-derived disaccharide[J]. Foods, 2022, 11(7): 1025. doi: 10.3390/foods11071025
[27] 林巍, 刘晓兰, 任健, 等. 3种还原糖对芸豆清蛋白糖基化改性产物乳化性及结构的影响[J]. 食品与机械, 2019, 35(10): 170-173. [28] YANG X Y, SU Y, LI L. Study of soybean gel induced by Lactobacillus plantarum: protein structure and intermolecular interaction[J]. LWT-Food Sci Technol, 2019, 119(2): 108794.
[29] 杨天, 郑志红, 张紫薇, 等. 酶解海洋壳寡糖和褐藻寡糖对鲢鱼糜热稳定性、化学作用力及蛋白质结构的影响[J]. 大连海洋大学学报, 2022, 37(1): 157-165. [30] LU H, LIANG Y H, ZHANG X M, et al. Effects of cathepsins on gel strength and water-holding capacity of myofibrillar protein gels from bighead carp (Aristichthys nobilis) under a hydroxyl radical-generation oxidizing system[J]. Foods, 2022, 11(3): 330. doi: 10.3390/foods11030330
[31] 毛小雨, 许馨予, 杨鹄隽, 等. 紫花芸豆蛋白体外消化产物的抗氧化活性及结构特征分析[J]. 食品科学, 2021, 42(3): 56-62. [32] LI X P, LIU C K, WANG J X, et al. Tea polyphenols affect oxidative modification and solution stability of myofibrillar protein from grass carp (Ctenopharyngodon idellus)[J]. Food Biophys, 2020, 15(4): 397-408. doi: 10.1007/s11483-020-09635-x
[33] SHUI S S, QI H, SHAIMAA H, et al. Kappa-carrageenan and its oligosaccharides maintain the physicochemical properties of myofibrillar proteins in shrimp mud (Xia-Hua) during frozen storage[J]. J Food Sci, 2021, 86(1): 140-148. doi: 10.1111/1750-3841.15547
[34] 高涛, 罗黄洋, 吴韧, 等. 川明参多糖在体外模拟消化过程中的结构变化及对消化酶活性的影响[J]. 食品与发酵工业, 2021, 47(23): 98-105. [35] 刘郁琪, 覃小丽, 阚建全, 等. 酪蛋白与可溶性大豆多糖的酶促糖基化产物制备及其性能分析[J]. 食品科学, 2020, 41(19): 74-82. [36] WALAYAT N, TANG W, WANG X P, et al. Effective role of konjac oligosaccharide against oxidative changes in silver carp proteins during fluctuated frozen storage[J]. Food Hydrocoll, 2022, 131: 107761. doi: 10.1016/j.foodhyd.2022.107761
[37] 王伟, 王昱, 陈日新, 等. 海藻酸钠分子质量对低脂乳化肠凝胶特性的影响[J]. 肉类研究, 2019, 33(6): 1-6.