Intertidal macrozoobenthic community structure and its disturbed state in Zhanjiang Bay
-
摘要: 大型底栖动物是潮间带生态环境监测与评价的良好指示生物。湛江湾是粤西最大的港湾,为揭示湛江湾潮间带大型底栖动物群落特征和受干扰程度,为其生态保护提供科学依据,分别在2020年8月 (夏季) 和2021年1月 (冬季) 实地调查了湛江湾5个不同人类活动胁迫下的断面 (东海岛、东头山岛、鹿渚村、特呈岛和海湾大桥),分析了大型底栖动物的种类组成、栖息密度与生物量空间分布以及生物多样性,并采用分类学多样性指数和栖息密度-生物量比较 (Abundance-biomass comparison, ABC) 曲线分析了大型底栖动物群落受干扰程度。结果表明:1) 共鉴定出大型底栖动物98种,其中软体动物最多 (45种) ,其次为节肢动物 (26种) 和环节动物 (19种) ;2) 5个断面大型底栖动物夏、冬季的平均栖息密度分别为174和187 个·m − 2,平均生物量分别为171.27和188.38 g·m − 2,均表现为冬季大于夏季;软体动物疏纹满月蛤 (Lucina scarlatoi) 和节肢动物白脊管藤壶 (Fistulobalanus albicostatus) 为冬夏两季的共有优势种;3) Bray-Curtis聚类分析和非度量多维标度排序分析 (nMDS) 结果表明,不同季节5个断面均可分为4个亚群,其中鹿渚村和海湾大桥为一个亚群,东头山岛和特呈岛为一个亚群,而东海岛夏、冬季各为一个亚群;4 ) 分类学多样性指数和ABC曲线对湛江湾潮间带大型底栖生物群落受扰动分析评估结果存在一定差异,其中分类学多样性分析结果表明东头山岛断面和受旅游休闲影响较大的海湾大桥断面冬季受干扰程度相对严重,而ABC曲线则显示受贝类养殖影响的鹿渚村断面夏季受干扰程度较为严重。研究表明人类活动已经对湛江湾潮间带大型底栖生物群落产生了一定程度的不利影响。Abstract: Macrozobenthos are ideal indicators for monitoring and evaluating the ecological environment of intertidal zones. Zhanjiang Bay is the largest harbor in western Guangdong. In order to reveal the characteristics and disturbed state of macrobenthos communities in the intertidal zone of Zhanjiang Bay as well as to provide a scientific basis for their ecological protection, we investigated five intertidal zones (Donghai Island, Dongtoushan Island, Luzhu Village, Techeng Island and Zhanjiang Bay Bridge) exposed to different anthropogenic pressures in Zhanjiang Bay in August 2020 (Summer) and January 2021 (Winter). We analyzed the species composition, distribution of abundance and biomass, and biodiversities of macrozobenthos. Besides, we studied the disturbed state of macrozoobenthos communities by using the taxonomic diversity indexes and Abundance-biomass comparison (ABC) curves. The results show that: 1) A total of 98 species appeared in the five intertidal zones, among which Mollusca (45 species) were the most, followed by Arthropoda (26 species) and Annelida (19 species). 2) The average abundance and biomass of the macrozoobenthos were all greater in winter (187 ind·m−2, 188.38 g·m−2) than in summer (174 ind·m−2, 171.27 g·m−2). The mollusk Lucina scarlatoi and the arthropod Fistulobalanus albicostatus were the dominant species both in summer and winter. 3) Bray-Curtis similarity clustering analysis on the communities and non-metric multidimensional scaling (nMDS) suggest that the communities in the five intertidal zones in summer and winter could be spatially clustered into four groups. Among them, Luzhu Village and Zhanjiang Bay Bridge formed a subgroup, Dongtoushan Island and Techeng Island formed a subgroup, and Donghai Island formed a subgroup in summer and winter. 4) The taxonomic diversity index and ABC curves show some differences in evaluating the anthropogenic stresses on the intertidal macrozoobenthic community in Zhanjiang Bay. Furthermore, the taxonomic diversity index shows that Dongtoushan Island and Zhanjiang Bay Bridge were affected by tourism, and were more severely disturbed in winter, while the ABC curves show that Luzhu Village was affected by shellfish farming and was more severely disturbed in summer. The study reveals that human activities have had a negative impact on the macrozoobenthic communities in the intertidal zones of Zhanjiang Bay.
-
Keywords:
- Macrozoobenthos /
- Intertidal zone /
- Community structure /
- ABC curves /
- Zhanjiang Bay
-
广东鲂 (Megalobrama terminalis) 是一种江河洄游鱼类,在我国南方水系中占有重要的渔业生产地位[1-2]。我国南方水系复杂多样,并经历了多次河流袭夺,而气候变化导致的海平面波动是形成其特有河网系统的重要因素之一[3]。由于广东鲂对淡水环境依赖性较强,因此,海平面波动产生的地理隔离,对广东鲂种群的遗传结构产生了一定影响。Chen等[3]指出3个广东鲂地理遗传种群分别为珠江、漠阳江和海南岛万泉河种群,并发现广东鲂种群在不同的淡水栖息地中表现出明显的适应性分化。刘凯等[4]研究表明,受地理分布、食物来源、遗传特征和栖息环境等因素的叠加影响,鱼类的不同地理种群在肌肉营养成分上能够产生相对稳定的变异。然而,不同广东鲂地理种群肌肉营养成分是否存在显著差异尚不清楚。目前,对广东鲂研究多在于早期资源、资源捕捞量、性腺发育、繁殖策略、消化生理等方面[1-3,5-8],针对不同广东鲂种群肌肉营养成分和能量密度的研究尚未见报道。由于人类活动的不断加强 (如水利水电工程、航道治理、水污染、过度捕捞等),珠江野生广东鲂种群数量持续下降[2,7-8],漠阳江和万泉河广东鲂种群则呈现规模小、片段化分布特征,在其他陆河河流如榕江、鉴江、韩江中已难以监测到野生样本。因此,本研究测定了万泉河、漠阳江、西江广东鲂种群肌肉营养成分和能量密度,探究不同地理广东鲂种群肌肉营养成分差异,以期充实鱼类营养学和能量生态学研究材料,也为不同广东鲂的野生地理种群的分类保护和合理利用提供科学依据。
1. 材料与方法
1.1 样本采集
2020年6—7月分别于海南省琼海市万泉河琼海段 (QH, 110°27"36'E, 19°12"36'N)、广东省阳江市漠阳江段 (YJ, 111°42"2'E, 22°48"7'N) 以及广东省肇庆市珠江干流 (西江) 肇庆江段 (ZQ, 112°24"35'E, 23°5"24'N) 采集到150尾广东鲂,各采样点50尾 (雌、雄各25尾) 。采用哈希水质分析仪测量取样点的水温、盐度、溶解氧 (Dissolved oxygen, DO) 和pH,并测量样品的体长和体质量。采样站位的环境信息和样本生物学信息见表1。采用液氮快速冷冻样本,于–20 ℃冷冻保存,随后带回实验室−80 ℃保存。采集背部中后段肌肉 (每尾在相同位置采集20 g肌肉) 用于检测肌肉成分。各项指标由广东省质量监督食品检验站进行检测,各实验组均设置3个重复,每个重复含10尾样本 (背部肌肉捣碎)。
表 1 3个广东鲂地理种群环境信息和样本生物学信息Table 1. Basic environmental information, biological information of three M. terminalis populations指标
Index采样点 Sampling site 琼海 QH 阳江 YJ 肇庆 ZQ 环境指标 Environmental index 水温 Water temperature/℃ 30.0±0.2 29.2±0.4 28.6±0.3 盐度 Salinity 0.03±0.01 0.01±0.02 0.01±0.01 酸碱度 pH 7.7±0.3 7.9±0.3 7.8±0.3 溶解氧质量浓度 DO/(mg∙L−1) 6.8±0.2 6.7±0.2 7.0±0.2 生物学指标 Biological index 体长 Body length ($\overline { X}\pm { \rm {SD}} $)/mm 233±17.6 253±20.7 271±27.3 体质量 Body mass ($\overline { X}\pm { \rm {SD}} $)/g 354±19.4 424±33.1 521±30.1 1.2 肌肉营养成分和能量密度测定方法
样本水分测定采用GB 5009.3—2016;粗蛋白测定采用GB 5009.5—2016;脂肪测定采用GB 5009.4—2016;灰分测定采用GB 5009.4—2016;氨基酸测定采用GB T5009.124—2016;脂肪酸测定采用GB 5009.168—2016。采用电感耦合等离子体质谱仪 (7700 Series) 依据GB 5009—2016测定样本中钾 (K)、钙 (Ca)、钠 (Na)、磷 (P)、镁 (Mg)、锌 (Zn)、铁 (Fe)、铜 (Cu)、锰 (Mn) 等矿质元素含量。根据联合国粮农组织/世界卫生组织 (FAO/WHO) 提出和1991年中国预防医学科学院营养与食品卫生研究所提出的氨基酸评分模式,计算氨基酸评分 (Amino acid score, AAS)、化学评分 (Chemical score, CS) 和必需氨基酸指数 (Essential amino acid index, EAAI) [9-10]。Phillipson微量能量仪 (Gentry Instruments Inc., Aiken, South Carolina, USA) 测定能量密度。
1.3 数据分析
采用单因素方差分析 (One-way ANOVA) 检验不同广东鲂地理种群肌肉营养成分差异显著性。如差异显著,则采用多重比较方法比较平均数之间的差异,显著性水平为0.05。数据分析采用SPSS 19.0统计软件进行。实验数据均用“平均值±标准差 (
$\overline X \pm {\rm{SD}} $ )”表示。采用R (3.1.14) 对3个广东鲂种群肌肉生化分析结果进行主成分分析 (Principal component analysis, PCA)。2. 结果
2.1 一般营养成分和能量密度分析
万泉河广东鲂肌肉水分质量分数显著高于西江种群,而粗蛋白质质量分数则显著低于西江种群 (P<0.05,表2)。粗脂肪和灰分质量分数在3个地理种群中均无显著性差异。西江种群肌肉能量密度显著高于万泉河和漠阳江种群 (P<0.05)。
表 2 3个广东鲂地理种群肌肉中的一般营养成分和能量密度Table 2. Nutritional composition of muscle of three M. terminalis populations项目
Item广东鲂种群 M. terminalis population 琼海 QH 阳江 YJ 肇庆 ZQ 水分质量分数 Moisture mass fraction/% 79.0±0.5a 78.2±0.9ab 77.0±0.6b 粗蛋白质质量分数 Crude protein mass fraction/% 18.3±0.5b 19.1±0.7ab 20.2±0.5a 粗脂肪质量分数 Crude lipid mass fraction/% 1.2±0.1 1.1±0.1 1.3±0.1 粗灰分质量分数 Ash mass fraction/% 1.1±0.1 1.2±0.1 1.2±0.1 能量密度 Energy density/(kJ·g−1) 3.1±0.1b 3.2±0.2b 3.6±0.2a 注:同行不同上标字母表示差异显著 (P<0.05),下表同此。 Note: Different superscript letters within the same row indicate significant difference (P<0.05). The same case in the following tables. 2.2 氨基酸组成分析与评价
3个广东鲂地理种群共检测出18种常见氨基酸 (表3)。西江种群肌肉中的总氨基酸含量 (Total amino acids, TAA) 最高,漠阳江种群次之,万泉河种群最低。在必需氨基酸 (Essential aamino acid, EAA) 中,西江种群的赖氨酸和亮氨酸含量显著高于万泉河种群 (P<0.05),漠阳江种群介于两者之间。呈味氨基酸中,西江种群肌肉中的天冬氨酸、谷氨酸、甘氨酸和丙氨酸含量均显著高于万泉河种群 (P<0.05)。漠阳江种群肌肉中必需氨基酸/总氨基酸 (EAA/TAA) 最高,而西江种群最低。呈味氨基酸/总氨基酸 (DAA/TAA) 在3个广东鲂地理种群肌肉中无明显差异。芳香氨基酸/支链氨基酸 (BCAA/AAA) 在万泉河种群肌肉中最高,漠阳江种群次之,西江种群最低。将3个广东鲂地理种群肌肉的EAAI进行标准模式 (FAO/WHO) 及全鸡蛋蛋白质模式2种评价 (表3),分别计算出各EAA的AAS、CS和EAAI (表4)。万泉河、漠阳江和西江种群肌肉中的第一限制性氨基酸为蛋氨酸+半胱氨酸,第二限制性氨基酸为缬氨酸,其余各EAA的AAS均高于1;各EAA的CS与AAS结果保持一致。3个广东鲂地理种群肌肉中的EAAI达80以上,说明其氨基酸组成十分均衡。其中西江种群肌肉EAAI最高 (85.05)。
表 3 3个广东鲂地理种群肌肉氨基酸组成Table 3. Comparison of amino acid composition of muscles of three M. terminalis populations项目
Item广东鲂种群 M. terminalis population 琼海 QH 阳江 YJ 肇庆 ZQ 天冬氨酸* Asp 1.80±0.04b 1.82±0.07b 1.99±0.05a 苏氨酸# Thr 0.80±0.02 0.80±0.03 0.86±0.04 丝氨酸 Ser 0.72±0.02 0.73±0.03 0.80±0.04 谷氨酸* Glu 2.78±0.06b 2.68±0.10b 2.99±0.14a 脯氨酸 Pro 0.61±0.02 0.63±0.02 0.66±0.04 甘氨酸* Gly 0.83±0.04b 0.87±0.04ab 0.97±0.06a 丙氨酸* Ala 1.06±0.02b 1.09±0.03b 1.18±0.08a 缬氨酸#△ Val 0.85±0.02 0.87±0.03 0.92±0.04 蛋氨酸 Met 0.53±0.01 0.53±0.02 0.57±0.03 异亮氨酸#△ Ile 0.78±0.02 0.79±0.02 0.83±0.03 亮氨酸#△ Leu 1.41±0.03b 1.41±0.05ab 1.52±0.05a 半胱氨酸 Cys 0.11±0.07 0.19±0.03 0.43±0.15 酪氨酸◆ Tyr 0.62±0.02 0.61±0.02 0.66±0.02 苯丙氨酸# Phe 0.72±0.02 0.74±0.02 0.80±0.03 赖氨酸# Lys 1.73±0.05a 1.73±0.09ab 1.87±0.03b 组氨酸○ His 0.42±0.01 0.45±0.04 0.48±0.05 精氨酸○ Arg 1.07±0.04 1.07±0.04 1.17±0.07 色氨酸# Trp 0.27±0.04 0.35±0.03 0.37±0.05 氨基酸总量 TAA 17.11±0.58a 17.37±0.69a 19.07±0.57b 呈味氨基酸总量 DAA 6.47±0.06a 6.46±0.08a 7.13±0.07b 必需氨基酸/非必需氨基酸 EAA/NEAA/% 72.41 73.03 69.95 必需氨基酸/总氨基酸 EAA/TAA/% 38.34 38.51 37.60 半必需氨基酸/总氨基酸 SEAA/TAA/% 8.36 8.41 8.26 芳香氨基酸/支链氨基酸 BCAA/AAA/% 4.90 5.03 4.05 注:#. 必需氨基酸;○. 半必需氨基酸;*. 呈味氨基酸;△. 支链氨基酸;◆. 芳香氨基酸。 Note: #. Essential amino acid; ○. Semiessential amino acid; *. Delicious amino acid; △. Branched chain amino acid; ◆. Aromatic amino acid. 表 4 3个广东鲂地理种群肌肉氨基酸评价Table 4. Evaluation of essential amino acids composition of muscle of three M. terminalis populations评价模式
Evaluation method氨基酸
Amino acids广东鲂种群 M. terminalis population 琼海 QH 阳江 YJ 肇庆 ZQ 氨基酸评分 AAS 苏氨酸 Thr 1.09 1.05 1.07 缬氨酸 Val 0.94 0.92 0.92 色氨酸 Trp 1.53 1.91 1.91 异亮氨酸 Ile 1.06 1.03 1.03 亮氨酸 Leu 1.09 1.05 1.07 赖氨酸 Lys 1.73 1.66 1.70 苯丙氨酸 Phe+酪氨酸 Tyr 1.20 1.17 1.19 蛋氨酸 Met+半胱氨酸 Cys 0.82 0.78 0.80 化学评分 CS 苏氨酸 Thr 0.93 0.90 0.91 缬氨酸 Val 0.71 0.69 0.69 色氨酸 Trp 0.96 1.24 1.31 异亮氨酸 Ile 0.80 0.78 0.78 亮氨酸 Leu 0.90 0.86 0.88 赖氨酸 Lys 1.34 1.28 1.31 苯丙氨酸 Phe+酪氨酸 Tyr 0.81 0.78 0.80 蛋氨酸 Met+半胱氨酸 Cys 0.47 0.45 0.46 必需氨基酸指数 EAAI 83.31 83.37 85.05 2.3 脂肪酸组成分析
3个广东鲂地理种群肌肉中共检测出23种常见脂肪酸 (表5),其中包括7 种饱和脂肪酸 (Saturated fatty acid, SFA) 7种单不饱和脂肪酸 (Monounsaturated fatty acid, MUFA) 和9种多不饱和脂肪酸 (Polyunsaturated fatty acids, PUFA)。SFA中C14:0、C16:0和C22:0在万泉河种群肌肉中的含量显著高于漠阳江和西江种群 (P<0.05)。万泉河种群肌肉中MUFA总量显著低于西江和漠阳江种群 (P<0.05)。其中,C16:1、C18:1 n-9t、C18:1 n-9c漠阳江种群肌肉中含量最高,而在万泉河种群肌肉中含量最低。C22:1 n-9、C24:1在漠阳江种群肌肉中含量显著低于西江和万泉河种群。西江种群肌肉中二十二碳六希酸 (DHA) 含量最高,显著高于万泉河和漠阳江种群 (P<0.05)。PUFA在万泉河种群肌肉中含量最高,西江种群次之,漠阳江种群最低。
表 5 3个广东鲂地理种群肌肉脂肪酸组成Table 5. Comparison of fatty acids of muscles of three M. terminalis populations% 项目
Item广东鲂种群 M. terminalis population 琼海 QH 阳江 YJ 肇庆 ZQ 肉豆蔻酸 C14:0 5.36±0.85a 3.53±0.41b 3.40±0.32b 十五碳酸 C15:0 1.02±0.25 0.66±0.05 0.70±0.13 棕榈酸 C16:0 27.33±1.47 a 21.83±1.16 b 21.80±1.99 b 珠光脂酸 C17:0 2.03±0.35 0.99±0.18 1.13±0.33 硬脂酸 C18:0 11.34±1.79a 5.97±1.03b 8.14±1.65ab 花生酸 C20:0 0.29±0.05a 0.15±0.02b 0.21±0.07ab 花生酸 C22:0 0.30±0.08a 0.10±0.01c 0.17±0.01b ∑饱和脂肪酸 SFA 47.67±2.12a 33.23±2.85b 35.56±4.35b 肉豆蔻烯酸 C14:1 0.06±0.02 0.12±0.02 0.08±0.01 棕榈油酸 C16:1 6.21±1.22b 10.45±1.73a 8.10±0.52ab 顺-11-二十碳一烯酸 C20:1 2.32±0.36 1.85±0.08 2.06±0.15 顺-15-二十四碳一烯酸 C24:1 0.27±0.09a 0.06±0.01b 0.24±0.10a 反式油酸 C18:1 n-9t 0.21±0.05b 0.43±0.07a 0.35±0.07ab 油酸 C18:1 n-9c 16.73±3.87b 35.53±4.35a 31.80±3.65a 二十二碳一烯酸 C22:1 n-9 1.09±0.36a 0.11±0.03b 1.03±0.61a ∑单不饱和脂肪酸 MUFA 26.89±3.93a 48.54±5.20b 43.66±7.08b 亚油酸 C18:2 n-6c 4.30±0.64a 2.23±0.33b 1.59±0.64b α-亚麻酸 C18:3 n-3 5.54±0.86a 4.03±1.56ab 2.35±0.51b γ-亚麻酸 C18:3 n-6 0.14±0.02a 0.08±0.02ab 0.01±0.00b 顺,顺-11,14-二十碳二烯酸 C20:2 0.39±0.08 0.34±0.01 0.36±0.04 顺-11,14,17-二十碳三烯酸 C20:3 n-3 0.32±0.05 0.27±0.06 0.21±0.08 顺,顺,顺-8,11,14-二十碳三烯酸 C20:3 n-6 0.39±0.09a 0.22±0.03b 0.14±0.01c 花生四烯酸 C20:4 n-6 (ARA) 5.27±0.89a 2.94±0.42b 4.88±0.95a 二十碳五烯酸 C20:5 n-3 (EPA) 3.16±0.72 4.06±0.10 4.09±0.87 二十二碳六烯酸 C22:6 n-3 (DHA) 5.74±1.03b 3.95±0.13c 7.03±1.28a ∑多不饱和脂肪酸 PUFA 25.11±2.83a 18.04±2.47b 20.64±5.61ab 2.4 矿质元素组成分析
3个广东鲂地理种群肌肉中均含有丰富的矿质元素,其中K质量分数最高,Ca次之 (表6)。西江种群肌肉中K和Ca质量分数显著高于万泉河种群,而Na和Mg质量分数则显著低于万泉河种群 (P<0.05)。万泉河种群肌肉Zn质量分数显著高于漠阳江和西江种群,而Mn和Fe质量分数显著低于漠阳江和西江种群 (P<0.05)。
表 6 3个广东鲂地理种群肌肉矿质元素组成Table 6. Mineral element of muscle of three M. terminalis populationsmg∙kg−1 元素
Element广东鲂种群 M. terminalis population 琼海 QH 阳江 YJ 肇庆 ZQ 钾 K 3 340.05±105.36b 3 460.04±192.92ab 3 820.36±221.12a 钙 Ca 1 050.12±28.87 b 1 100.25±40.02 ab 1 200.11±34.64 a 钠 Na 487.34±58.96a 345.35±7.23b 385.57±30.66b 镁 Mg 298.65±3.79 303.05±2.65 332.31±5.51 磷 P 241.59±25.97 230.45±2.08 247.78±4.04 锌 Zn 6.47±0.15a 4.16±0.18b 3.82±0.17b 铁 Fe 3.06±0.13c 4.75±0.14b 6.43±0.18a 铜 Cu 0.12±0.00 0.12±0.01 0.13±0.01 锰 Mn 0.21±0.01c 0.38±0.02b 0.64±0.01a 2.5 3个广东鲂种群生化分析结果的主成分分析
综合3个广东鲂种群生化分析结果,并进行PCA。西江种群分布距均万泉河和漠阳江种群较远,万泉河种群和漠阳江种群相对较近。PCA共提取了2个主成分,对变异的累积贡献率为80.25%。其中主成分1的贡献率为50.75%,主成分2的为29.50% (图1)。
3. 讨论
鱼类肌肉中蛋白质和脂肪含量是评价其营养价值的重要指标[11]。3 个广东鲂地理种群肌肉的粗蛋白质量分数 (18.3%~20.2%) 高于团头鲂 (Megalobrama amblycephala)、鲤 (Cyprinus carpio)、鲢 (Hypophthalmichthys molitrix)、鳙 (H. nobilis) 和草鱼 (Ctenopharyngodon idella),与翘嘴鲌 (Culter alburnus) 接近[12-13]。3个广东鲂地理种群肌肉粗脂肪质量分数 (1.1%~1.3%) 较团头鲂、翘嘴鲌、鲢、鳙、斑鳜 (Siniperca scherzeri) 等低[12-14],与常见的海水鱼类如牙鲆 (Paralichthys olivaceus)[15]、黄斑篮子鱼 (Siganus oramin)[16]和日本鳗鲡 (Anguilla japonica)[17]类似,表现出典型的低脂肪、高蛋白的特点。本研究发现,3个广东鲂种群肌肉生化PCA结果显示西江种群分布距万泉河和漠阳江种群较远,可能是由于栖息地环境因子以及饵料生物种类存在明显差异。本研究还发现,西江种群能量密度显著高于漠阳江和万泉河种群。能量密度被认为是衡量鱼体能量储备水平的重要指标,能直接反映鱼类发育状况以及对外界环境因子的适应性[18]。鱼类生殖洄游是主动的、定期定向的高耗能运动,且鱼体自身能量储备有限,因此鱼类洄游须尽可能地调节自身身体结构、能量储备和代谢能力以适应生殖洄游的需要[19-20]。3个广东鲂种群生殖洄游距离存在明显差异,可能是导致种群间肌肉中能源物质的积累程度不同的主要原因之一。有研究发现鱼类肌肉能量累积和消耗与其洄游能力密切相关[21-22]。
鱼类肌肉中蛋白质的营养价值由各种EAA含量和组成比例决定[23-24]。本研究显示,在3个广东鲂种群肌肉中谷氨酸含量均最高,谷氨酸作为一种重要呈味氨基酸,具有促进脑发育、治疗神经系统疾病等作用[25]。3个广东鲂种群肌肉中谷氨酸含量均高于团头鲂与翘嘴鲌[12]。西江种群肌肉中谷氨酸含量显著高于漠阳江和万泉河种群,表明西江种群肌肉较万泉河和漠阳江种群风味更佳。3个广东鲂种群肌肉中赖氨酸含量均较高,其中,西江种群肌肉中赖氨酸含量最高。赖氨酸是人体EAA之一,不仅具有提高蛋白质利用率和促进人体生长发育的作用,还可以增强免疫力、改善神经系统、预防骨质疏松[24,26]。在FAO/WHO提出的人体均衡蛋白需求理想模式中,EAA/NEAA>60%的蛋白质质量较好[27],3个野生广东鲂种群肌肉均属于良好的蛋白源。西江种群肌肉中的EAAI最高 (85.05),说明其肌肉中EAA组成最为平衡,蛋白质营养价值最高。肌肉中的脂肪酸含量是影响肌肉风味的重要因素之一[28]。本研究发现,西江和漠阳江种群肌肉均表现出MUFA的高占比。有研究表明,MUFA在调节人体脂质代谢方面具有重要的生理作用[29]。PUFA中DHA与EPA含量是评价鱼类营养成分的关键指标[30]。西江种群肌肉中的DHA含量显著高于漠阳江和万泉河种群,表明西江种群肌肉的脂肪质量较高。
矿物质元素是构成人体组织的重要成分,参与人体内多种物质的代谢和生理活动[31]。3个广东鲂种群肌肉中Na、K、Ca等常规矿质元素以及Fe、Zn、Cu、Mn等微量元素均有检出。K、Fe、Zn等矿质元素含量低于异齿裂腹鱼 (Schizothoraxo connori)[32]。Ca含量显著高于褐点石斑鱼 (Epinephelus fuscoguttatus) 和青石斑鱼 (E. awoara) 等多种海鱼[31]。西江种群肌肉中Fe含量显著高于漠阳江和万泉河种群,而Zn含量则显著低于万泉河种群。Fe具有造血功能和促进人体生长的作用等,Zn可以促进儿童智力的正常发育[33]。3个广东鲂地理种群肌肉多种微量元素含量差异显著,这可能是由于栖息水环境的差异所致。万泉河种群相对西江种群,其主要栖息水域为河口,盐度相对较高,易受潮汐影响。有研究发现淡水环境中Fe含量均显著高于海水,Zn含量明显低于海水环境[34-35]。因此,栖息地环境差异导致了Zn在万泉河种群肌肉中富集度更高,Fe和Mn则在西江种群肌肉中富集度更高。
-
图 4 湛江湾潮间带5个断面夏季和冬季大型底栖动物的平均分类差异指数 (Δ+) 和分类差异变异指数 (Λ+) 的95%置信区间漏斗图
注:图中前2个字母代表潮间带断面,如断面C1、C2;第3个字母代表采样季节,其中S为夏季,W为冬季;后图同此。
Figure 4. 95% probability funnels for average taxonomic distinctness (Δ+) and variation in taxonomic distinctness (Λ+) in five intertidal sampling zones of macrozoobenthos in Zhanjiang Bay in summer and winter
Note: The first two letters in the figure represent the intertidal zone, such as Zone C1 and C2; the third letter represents the sampling seasons, and S represents summer while W represents winter. The same case in the following figures.
表 1 不同季节湛江湾潮间带大型底栖动物优势种和优势度
Table 1 Dominant species and their dominance on macrozoobenthos in Zhanjiang Bay in different seasons
种类Species 夏季Summer 冬季Winter 珠带拟蟹守螺 Cerithidea cingulata — 0.081 疏纹满月蛤 Lucina scarlatoi 0.063 0.023 白脊管藤壶 Fistulobalanus albicostatus 0.060 0.033 相拟节虫 Praxillella affinis 0.050 — 欧文虫 Owenia fusiformis 0.043 — 韦氏毛带蟹 Dotilla wichmanni 0.033 — 绿螂 Glauconome sp. 0.032 — 革囊星虫 Phascolosoma sp. — 0.025 纵带滩栖螺 Batillaria zonalis 0.021 — 注:—表示Y<0.02。 Note: —. Y is less than 0.02. 表 2 不同季节5个断面大型底栖动物生物多样性指数
Table 2 Indexes of H', d, J' of macrozoobenthos in five intertidal zones in different seasons
采样断面
Sampling
cross-section季节Season Shannon指数 H' Margalef
丰富度
指数dPielou
均匀度
指数J'C1 夏季 Summer 1.74 1.10 0.70 冬季 Winter 2.44 1.80 0.83 C2 夏季 Summer 2.40 2.00 0.79 冬季 Winter 2.84 2.00 0.93 C3 夏季 Summer 2.02 1.80 0.69 冬季 Winter 2.22 1.90 0.74 C4 夏季 Summer 2.56 3.10 0.74 冬季 Winter 2.57 2.00 0.84 C5 夏季 Summer 2.84 2.00 0.93 冬季 Winter 2.24 2.30 0.70 平均值 Mean 2.39 2.00 0.79 -
[1] 刘颖, 李进京, 陈晨, 等. 浙江象山港岛屿春、夏季潮间带大型底栖生物的群落结构特征[J]. 海洋与湖沼, 2021, 52(3): 685-696. doi: 10.11693/hyhz20201000283 [2] 李亚芳, 杜飞雁, 王亮根, 等. 底质类型对三亚湾潮间带大型底栖动物生态功能的影响[J]. 水产学报, 2018, 42(10): 1559-1571. [3] DONG J Y, ZHAO L, YANG X, et al. Functional trait responses of macrobenthos to anthropogenic pressure in three temperate intertidal communities[J]. Front Mar Sci, 2021, 8: 1-15.
[4] CHATZINIKOLAOU E, MANDALAKIS M, DAMIANIDIS P, et al. Spatio-temporal benthic biodiversity patterns and pollution pressure in three Mediterranean touristic ports[J]. Sci Total Environ, 2018, 624: 648-660. doi: 10.1016/j.scitotenv.2017.12.111
[5] 李宝泉, 姜少玉, 吕卷章, 等. 黄河三角洲潮间带及近岸浅海大型底栖动物物种组成及长周期变化[J]. 生物多样性, 2020, 28(12): 1511-1522. doi: 10.17520/biods.2020164 [6] 杨颖, 陈思思, 周红宏, 等. 长江口潮间带底栖生物生态及变化趋势评价[J]. 生态学报, 2022, 42(4): 1-13. [7] REHITHA T V, VINEETHA G, MADHU N V. Ecological habitat quality assessment of a tropical estuary using macrobenthic functional characteristics and biotic indices[J]. Environ Sci Pollut Res, 2022, 29(31): 47629-47646. doi: 10.1007/s11356-022-19295-8
[8] 陈梓林, 李纯厚, 肖雅元, 等. 江门近岸海域大型底栖动物群落结构的分布特征[J]. 南方水产科学, 2020, 16(4): 18-27. doi: 10.12131/20190248 [9] 纪莹璐, 王尽文, 张亮, 等. 日照岚山港邻近海域大型底栖动物群落结构及季节变化[J]. 生态科学, 2020, 39(5): 151-160. [10] MOSBAHI N, PEZY J P, NEIFAR L, et al. Ecological status assessment and non-indigenous species in industrial and fishing bays of the Gulf of Gabès (central Mediterranean Sea)[J]. Environ Sci Pollut Res, 2021, 28(46): 65278-65299. doi: 10.1007/s11356-021-14729-1
[11] 周伟男, 孙省利, 李荣冠, 等. 湛江湾大型底栖动物的群落结构和多样性特征[J]. 广东海洋大学学报, 2013, 33(1): 1-8. doi: 10.3969/j.issn.1673-9159.2013.01.003 [12] 刘前, 王学锋, 吕少梁, 等. 湛江湾海域游泳动物群落结构及多样性分析[J]. 广东海洋大学学报, 2021, 41(2): 103-110. doi: 10.3969/j.issn.1673-9159.2021.02.014 [13] 周凤霞, 袁柳婷, 陆旋, 等. 湛江湾表层沉积物不同形态磷的变化特征[J]. 海洋环境科学, 2022, 41(4): 509-518. doi: 10.12111/j.mes.20210095 [14] 唐秋霞, 王友绍. 雷州半岛红树林群落特征及其分布格局[J]. 生态科学, 2021, 40(5): 23-32. doi: 10.14108/j.cnki.1008-8873.2021.05.004 [15] 柯盛, 申玉春, 谢恩义, 等. 雷州半岛流沙湾潮间带底栖贝类多样性[J]. 生物多样性, 2013, 21(5): 547-553. [16] 崔宗梅, 黄津伟, 王海艳, 等. 广东雷州半岛东部沿岸潮间带常见牡蛎的种类及其分布[J]. 海洋与湖沼, 2018, 49(6): 1350-1357. doi: 10.11693/hyhz20180300054 [17] ZHANG Y, LI Y, SHI F, et al. Seasonal and spatial variation in species diversity, abundance, and element accumulation capacities of macroalgae in mangrove forests of Zhanjiang, China[J]. Acta Oceanol Sin, 2014, 33(8): 73-82. doi: 10.1007/s13131-014-0414-9
[18] CHEN Q, JING L I, ZHAO Q, et al. Changes in the benthic protozoan community during succession of a mangrove ecosystem in Zhanjiang, China[J]. Ecosphere, 2018, 9(4): 1-13.
[19] CHEN Q, ZHAO Q, JIAN S, et al. Changes in the functional feeding groups of macrobenthic fauna during mangrove forest succession in Zhanjiang, China[J]. Ecol Res, 2018, 33(5): 959-970. doi: 10.1007/s11284-018-1603-3
[20] 蔡立哲, 许鹏, 傅素晶, 等. 湛江高桥红树林和盐沼湿地的大型底栖动物次级生产力[J]. 应用生态学报, 2012, 23(4): 965-971. [21] 曲方圆, 于子山. 分类多样性在大型底栖动物生态学方面的应用: 以黄海底栖动物为例[J]. 生物多样性, 2010, 18(2): 150-155. [22] 朱晓芬, 陈彬, 俞炜炜, 等. 厦门湾大型底栖动物分类学多样性指数及分类充分性[J]. 生态学报, 2018, 38(15): 5554-5565. [23] 田胜艳, 于子山, 刘晓收, 等. 丰度/生物量比较曲线法监测大型底栖动物群落受污染扰动的研究[J]. 海洋通报, 2006(1): 92-96. doi: 10.3969/j.issn.1001-6392.2006.01.013 [24] 赖廷和, 何斌源, 黄中坚, 等. 防城河口湾潮间带大型底栖动物群落结构研究[J]. 热带海洋学报, 2019, 38(2): 67-77. [25] 梁超愉, 张汉华, 吴进锋. 大亚湾潮间带生物种类组成、数量分布及生物多样性研究[J]. 南方水产, 2005, 1(3): 42-48. [26] 舒黎明, 陈丕茂, 秦传新, 等. 柘林湾-南澳岛潮间带冬夏两季大型底栖动物种类组成及优势种[J]. 生态学杂志, 2016, 35(2): 423-430. [27] ZHOU H X, LIU J E, QIN P. Impacts of an alien species (Spartina alterniflora) on the macrobenthos community of Jiangsu coastal inter-tidal ecosystem[J]. Ecol Eng, 2009, 35(4): 521-528. doi: 10.1016/j.ecoleng.2008.06.007
[28] 彭茂潇, 钱培力, 张永普, 等. 洞头无居民海岛岩相潮间带夏季大型底栖动物群落格局[J]. 生态学杂志, 2013, 32(9): 2469-2479. [29] 卓异, 蔡立哲, 郭涛, 等. 泉州湾蟳埔潮间带大型底栖动物群落的时空分布[J]. 生态学报, 2014, 34(5): 1244-1252. [30] 史会剑, 李玄, 王海艳, 等. 黄河三角洲潮间带大型底栖无脊椎动物群落结构与分布特征[J]. 海洋科学, 2021, 45(2): 11-21. [31] 陶世如, 姜丽芬, 吴纪华, 等. 长江口横沙岛、长兴岛潮间带大型底栖动物群落特征及其季节变化[J]. 生态学杂志, 2009, 28(7): 1345-1350. [32] 王海博, 蔡文倩, 林岿璇, 等. 环渤海潮间带秋季大型底栖动物生态学研究[J]. 环境科学研究, 2011, 24(12): 1339-1345. [33] 胡成业, 杜肖, 水玉跃, 等. 浙江6个列岛潮间带大型底栖动物分类多样性[J]. 中国水产科学, 2016, 23(2): 458-468. [34] WARWICK R M, CLARKE K R. Taxonomic distinctness and environmental assessment[J]. J Appl Ecol, 1998, 35(4): 532-543. doi: 10.1046/j.1365-2664.1998.3540532.x
[35] 余骥, 马长安, 吕巍巍, 等. 崇明东滩潮间带大型底栖动物的空间分布与历史演变[J]. 海洋与湖沼, 2013, 44(4): 1078-1085. [36] MOUILLOT D, LAUNE J, TOMASINI J A, et al. Assessment of coastal lagoon quality with taxonomic diversity indices of fish, zoobenthos and macrophyte communities[J]. Hydrobiologia, 2005, 550(1): 121-130. doi: 10.1007/s10750-005-4368-y
[37] 金文育, 彭欣, 王宁, 等. 渔山列岛夏季潮间带大型底栖生物群落结构研究[J]. 海洋科学, 2017, 41(3): 17-25. doi: 10.11759/hykx20160121002 [38] 刘士龙, 秦旭东, 王广军, 等. 2017年夏季北海市冯家江入海口红树林潮间带大型底栖动物群落结构及多样性[J]. 湿地科学, 2019, 17(3): 352-358. -
期刊类型引用(2)
1. 庄晓琪,刘巧瑜,林泽钳,姚彦延,钱敏,李湘銮,白卫东,董浩. 低盐腌制对脆肉鲩冻融后品质的影响. 食品工业科技. 2025(08): 76-84 . 百度学术
2. 郝淑贤,韦丽娜,魏涯,黄卉,相欢,赵永强,岑剑伟,王迪,李来好. 发热包传热效果及其对冻干鱼肉复水品质的影响. 广东海洋大学学报. 2024(04): 139-146 . 百度学术
其他类型引用(0)