Spatio-temporal changes of bacterioplankton communities in Litopenaeus vannamei desalinated ponds and their responses to physicochemical factors
-
摘要: 浮游细菌调控是对虾养殖水体环境控制策略的核心内容,探究浮游细菌群落构建的一般规律,可进一步推动对虾养殖水体水质调控技术的研究。运用16S rRNA高通量测序技术,对凡纳滨对虾 (Litopenaeus vannamei) 淡化养殖池塘进行了12次周际调查。结果显示,48个样品共获得2 854个操作分类单元 (Operational taxonomic units, OTU,97%相似性),序列比对发现古细菌2门1纲1科1属,细菌30门59纲98目199科433属,其中优势菌群25属。优势菌群在组成上有较高的相似性,但各池优势菌群在分布和相对丰度变动上有较大差异。各池系统发育多样性指数总平均值为77.57,变幅为24.39~111.65;香农多样性指数总平均值为3.96,变幅为2.64~5.06;物种丰富度指数总平均值为716,变幅为229~1 054。非度量多维标度分析 (Non-metric multidimensional scaling, NMDS) 表明各池塘浮游细菌群落在养殖初期差异较大,中、后期差异减小,冗余分析 (Redundancy analysis, RDA) 显示活性磷、碱度、溶解氧和硫化物可显著影响浮游细菌的群落结构。Abstract: The regulation of bacterioplankton is the core content of the environmental control strategy in shrimp aquaculture. Exploring the general rules of the construction of bacterioplankton community can further promote the research on water quality regulation for shrimp ponds. Using 16s rRNA high-throughput sequencing technology, we conducted 12 weekly surveys in Litopenaeus vannamei desalinated ponds.The results indicate that a total of 2 854 OTUs (97% similarity) were obtained from 48 samples (Archaea belonged to 2 phyla, 1 class, 1 family and 1 genus; and bacteria belonged to 30 phyla, 59 classes, 98 orders, 199 families and 433 genera, among which 25 genera were dominant flora). The dominant flora had high similarity in the composition, but with great differences in the distribution and relative abundance in each pond. The total average phylogenetic diversity index was 77.57, ranging from 24.39 to 111.65; the total average Shannon diversity index was 3.96, ranging from 2.64 to 5.06; the total average species richness index was 716, ranging from 229 to 1 054. NMDS analysis shows that the community structure of bacterioplankton in each pond varied greatly at the early stage of aquaculture, but not so greatly at the middle and late stages. The results of redundancy analysis shows that the labile phosphorus, total alkalinity, dissolved oxygen and sulfide were the main environmental factors affecting the distribution characteristics of community structure of bacterioplankton.
-
扇贝是中国海水养殖的重要品种之一,特别是从20世纪80年代以来,扇贝养殖发展迅速,目前在贝类养殖中占据主导地位,近几年年总产量已达到100万t[1]。为了增加产品的可调配性和提高产品的附加值,常将其制成干品,也就是采用一定的工艺手段将其干燥。干燥的方法许多,如晒干、煮干、烘干、喷雾干燥和真空干燥等,但这些干燥方法都是0℃以上或更高的温度下进行。干燥所得的产品,一般是体积缩小、质地变硬,有些物质发生了氧化,一些易挥发的成分大部分会损失掉,有些热敏性的物质会发生变性,微生物会失去生物活力,干燥后的物质不易在水中溶解等。因此干燥后的产品与干燥前相比在性状上有很大的差别。而真空冷冻干燥就是把含有大量水分物质,预先进行降温冻结成固体,然后在真空的条件下使水蒸汽直接升华出来,而物质本身剩留在冻结时的冰架中,因此它干燥后体积不变,疏松多孔物质在升华时要吸收热量,引起产品本身温度的下降而减慢升华速度,为了增加升华速度,缩短干燥时间,必须要对产品进行适当加热,整个干燥是在较低的温度下进行的。所以真空冷冻的干制品具有其它传统的干制品无法比拟的优越性。
1. 试验材料与方法
本课题组经过前期恒压法(即真空室压力保持不变)的墨西哥湾扇贝Argopecten irradians concentricus真空冷冻干燥的实验研究,已得出恒压情况下的最佳冻干参数为:物料厚度9 mm,加热板温度39℃,干燥室压力50 Pa[2]。在冻干过程中若维持箱内压力为50 Pa,那么在冻干的前半阶段,由于箱内压力的偏低,已干层中水蒸汽的导热系数减小,即物料的有效导热系数减小,传热减慢,致使升华面温度较低,升华速率较慢,此时干燥过程处于传热控制阶段,设法增加对升华面的供热量对提高冻干速率有利;在冻干的后半阶段,过程处于传质控制状态,过高的箱内压力增加了升华面的供热量,可能导致制品升华面温度超过其共融点温度而影响冻干质量,同时箱内压力的过高不利于制品中升华水汽的顺利逸出[3]。因此,冻干过程的前半阶段需高压后半阶段需低压的传热传质特性,决定了前期实验所得到的最佳参数具有一定的相对性,是相对于恒压冻干方式而言的,而不是所有的情形。
1.1 试验装置
试验装置采用军事医学科学院实验仪器厂研制的LGJ-18型冷冻干燥机,并对其进行适当的改造,以便能进行干燥室压强的调节(图 1)。真空冷冻干燥过程的结束主要采用温度趋近法并结合冻干品的剩余水分含量判断[4]。由于加热为混和加热方式[5],由前期大量实验发现,当物料中心温度接近加热板温度并持续70 min左右基本不变时,即可认为干燥过程结束。此时剩余含水量控制在工艺要求的范围内。样品预冻在海尔BD-370LT-86L-I超低温保存箱内进行。
1.2 试验材料
墨西哥湾扇贝购于广东湛江霞山区东风市场,静养数小时后,开壳取扇贝的闭壳肌,其厚度均为9 mm,重量基本一致,置于海尔超低温保存箱-30℃下预冻。
1.3 试验方法
常规恒压冻干最大的缺点是冻干所需的时间长、能耗大,加工食品费用昂贵,产品成本高,在能源较紧的情况下,难以推广应用。因此,必须采取行之有效的措施来缩短干燥时间以降低成本。循环压力法进行的冷冻干燥克服了恒压过程的不足。循环压力法是利用气体及已干层的导热性和对流作用来强化传热和传质。被冷冻的物质经过反复的压力循环过程,其真空度在某个区间内改变,从而获得最佳的干燥时间,节省了能耗。具体的实施过程是:在冻干的前半周期提高箱内压力,以增加气体的对流和干燥层的导热,提高升华界面的温度及相应压力。此时,由于干燥层外表面压力增高,水蒸汽逸出只能是扩散,速度较慢;在后半周期中,箱内压力迅速降低,升华界面与外表面之间形成较大的压差,水蒸汽逸出大部分时间是较快的水力流,而不是扩散。这样压力的交替变化构成循环压力冻干[6]。另一种调压法是两段式的压力调节,即冻干过程中前半阶段高压、后半阶段低压,该法简单易行,操作性强。由于受实验条件的限制,较难实现周期性的压力调节,本实验采取后一种调压法。压力的大小由缓冲箱的微调放气阀来调节。
1.3.1 因素和水平的选取
高压值和低压值的选取是不可忽视的,同时也涉及到何时调压的问题。过早地调压对缩短冻干时间不明显;若调节过晚,则可能由于制品温度的过度上升,造成冻干质量的下降。本文采用3因素3水平的正交实验,高压值由工艺条件决定,取为100、80、60 Pa,低压值由冻干机性能决定,取为10、25、40 Pa,且都受前期恒压实验的优化参数50 Pa的制约。调压温度控制在升华阶段完成前后,取制品中心温度为-5、0、5℃。水平编码见表 1。
表 1 3因素3水平编码表Table 1. Factors and levels of the orthogonal experiments高压/Pa high pressure 低压/Pa low pressure 调压温度/℃ temperature 水平1 level 1 100 25 -5 水平2 level 2 80 40 0 水平3 level 3 60 10 5 2. 结果与讨论
实验中的冻干时间为升化干燥和解析干燥时间之和,从置入干燥箱开动真空泵开始计时到物料温度接近加热板温度并持续70 min左右为冷冻干燥的总时间,其值可以从冻干曲线读取,也可以人工计时,采用统计分析法中的直接分析法(极差分析法)[7],实验结果见表 2。
表 2 3因素3水平正交实验结果Table 2. The orthogonal experimental results of vacuum froze-drying of scallop编号no. 因素factors 实验结果experimental results A(高压/Pa) high pressure B(低压/Pa) low pressure C(温度/℃) temperature 实验时间/h experimental time 1 1(100) 1(25) 1(-5) 3.13 2 1(100) 2(40) 2(0) 3.25 3 1(100) 3(10) 3(5) 3.23 4 2(80) 1(25) 3(5) 3.05 5 2(80) 2(40) 1(-5) 3.25 6 2(80) 3(10) 2(0) 3.47 7 3(60) 1(25) 2(0) 3.25 8 3(60) 2(40) 3(5) 3.48 9 3(60) 3(10) 1(-5) 3.35 M1 9.61 9.43 9.73 M2 9.77 9.98 9.97 M3 10.08 10.05 9.76 k1 3.20 3.14 3.24 k2 3.26 3.33 3.32 k3 3.36 3.35 3.25 R 0.16 0.21 0.08 极差分析显示RB>RA>RC。表明:过高的压力对冻干时间的缩短不明显,低压有利于水蒸汽的顺利排出,调压温度对冻干时间的影响最小。其影响冻干时间的因子主次顺序为因子B(低压)、因子A(高压)、因子C(调压温度)。这应从热质和传递2方面分析。本实验中的加热方式为混和加热方式,以冻结层的直接板式导热为主,且其导热系数远大于受辐射加热的干燥层的导热系数,即升华界面所需热量主要由冻结层提供。前半阶段的高压虽稍许改善了干燥层的有效导热性能,导致物料界面水蒸汽分压增大,传质推动力加大,但干燥箱的高压造成的传质阻力也同时增大,而且干燥箱压强对冻结层几乎无影响,致使高压对冻干时间的改善不明显。后半阶段的低压无疑加大了升华面水蒸汽分压和干燥箱内水蒸汽分压间的压差,传质推动力增大,有利于水汽的顺利逸出,直接促进了升华速率的提高。表中数据也显示,对于因子A(高压),M3>M2>M1,表明高压中的水平3较优,同理可得因子B(低压)和因子C(调节时的温度)的较优水平分别为水平3和水平2,即最佳参数值为高压60 Pa、低压10 Pa和调压温度0℃。这种水平搭配不在我们所做的9个实验之内,这并不奇怪,因为正交实验仅仅对因子的所有水平搭配选做了一部分[8]。进一步做优化水平组合实验进行验证,所得的冻干时间为2.83 h,比前期恒压法的优化冻干时间3.75 h[2]缩短约20%,其它调压法的各水平搭配比优化的恒压法缩短冻干时间约10%左右。
3. 结束语
(1) 通过正交试验与极差分析,得出了调压法的高压、低压及调节时的温度对冻干时间影响的主次顺序为低压、高压及调节时的物料温度。同时也示意了调压法的优化参数为高压60 Pa、低压10 Pa、调压时的物料中心温度0℃,调压法的冻干时间比优化的恒压法冻干时间缩短10%左右,优化后可缩短约20%。
(2) 从高压和低压都取压力较小的水平3可以间接判断冻干过程主要为传质过程所控制。
-
图 3 3口池塘的α多样性系数分析
注:箱体上中下线分别为75、50 (中位数) 和25分位数,轴须线最长不超过1.5倍箱体范围,黑色空心圆表示平均数;差异显著性用* (P<0.05)、** (P<0.01)以及*** (P<0.001) 表示;图中的样本量:A:n=22、B:n=12、C:n=12。
Figure 3. α diversity index analysis of bacterioplankton in three ponds
Note: The upper, middle and lower lines of the box are 75, 50 (Median) and 25 quantiles, respectively. The maximum length of whiskers shall not exceed 1.5 times of the box range. The black hollow circles represent the average values. The significant differences were represented by * (P<0.05), ** (P<0.01) and *** (P<0.001). The numbers of replicated samples in this figure are: A: n=22; B: n=12; C: n=12.
图 7 优势菌群分布和群落多样性 (H') 与主要理化因子之间的关系 (II型标尺)
注:Aci. 不动杆菌属;Aer. 气单胞菌属;Fla. 黄杆菌属;Gem. 芽殖杆菌属;GpI. GpIIa;Ilu. 微酸菌属;Lim. 湖栖菌属;Pol. 多核杆菌;Rho. 红杆菌属;Sed. 沉积物杆状菌属;Spa. 发光细菌属;Sph. 鞘脂菌属。
Figure 7. Species associations of dominan flora and diversity (H') with environmental factors (Scaling II)
Note: Aci. Acinetobacter sp.; Aer. Aeromonas sp.; Fla. Flavobacterium sp.; Gem. Gemmobacter sp.; GpI. GpIIa; Ilu. Ilumatobacter sp.; Lim. Limnohabitans sp.; Pol. Polynucleobacter sp.; Rho. Rhodobacter sp.; Sed. Sediminibacterium sp.; Spa. Spartobacteria genera incertae sedis; Sph. Sphingomonas sp..
表 1 凡纳滨对虾养殖池塘水体主要理化因子
Table 1 Environmental factors in L. vannamei ponds
环境因子
Environmental factor池塘A
Pond A池塘B
Pond B池塘C
Pond C水温 Temperature/℃ 26.19±2.01 26.15±1.57 26.37±2.00 pH 8.10±0.50 8.29±0.37 8.30±0.38 溶解氧质量浓度 DO/(mg·L−1) 8.00±0.68 8.45±1.17 8.11±1.15 铵态氮质量浓度 NH4-N/(mg·L−1) 0.45±0.73 0.44±0.39 0.33±0.27 亚硝酸氮质量浓度 NO2-N/(mg·L−1) 0.01±0.01 0.01±0.01 0.01±0.01 硝酸态氮质量浓度 NO3-N/(mg·L−1) 0.34±0.44 0.41±0.42 0.48±0.53 活性磷质量浓度 PO4-P/(mg·L−1) 0.12±0.14 0.37±0.24 0.22±0.28 活性硅酸盐质量浓度 SiO3-Si/(mg·L−1) 11.2±3.55 12.38±7.38 4.03±2.98 高锰酸盐指数 CODMn/(mg·L−1) 8.34±7.19 6.12±3.18 5.34±2.91 叶绿素 a 质量浓度 Chl-a/(mg·L−1) 75.78±131.01 56.13±42.81 58.36±61.48 硫化物质量浓度 Sul/(mg·L−1) 0.03±0.04 0.02±0.01 0.02±0.01 矿化度质量浓度 Mineralization degree/(mg·L−1) 1209.44±2445.58 813.39±171.69 814.35±41.91 碱度 ALK/(mg·L−1) 138.18±12.06 115.32±33.82 84.46±14.73 总硬度 Total hardness/(mg·L−1) 362.76±395.28 476.5±227.34 349.36±60.18 表 2 各样本有效序列数据统计
Table 2 Valid sequences of each sample
样品
Sample条形码
Barcode有效序列
Valid sequence/条碱基数
Base number平均长度
Mean length/bp最短序列长度
Min. length/bp最长序列长度
Max. length/bpS1 GTAACA 82 736 34 604 966 418.26 363 469 S2 CCAGAC 81 905 34 619 470 422.68 361 476 S3 GGTGAA 56 859 23 683 959 416.54 367 475 S4 TGCATC 85 212 35 667 198 418.57 353 469 S5 TCGACC 83 246 34 547 936 415.01 365 470 S6 GTCGCG 73 829 30 547 465 413.76 362 453 S7 CGGATG 83 662 34 668 763 414.39 356 465 S8 GTGAAA 84 384 34 811 366 412.54 350 466 S9 ATCTTG 100 945 41 590 813 412.01 350 452 S10 TATGCA 73 801 30 659 241 415.43 352 459 S11 GTAACA 86 471 35 924 249 415.45 354 471 S12 GCGAGG 90 432 37 722 526 417.14 351 465 S13 CACGAT 54 439 22 735 194 417.63 373 465 S14 GCGGTA 44 227 18 478 585 417.81 352 471 S15 TATCGA 61 431 25 638 627 417.36 359 473 S16 ATCACG 52 384 21 792 829 416.02 376 471 S17 CGGATG 99 211 41 215 038 415.43 360 473 S18 CGCATA 100 001 41 427 908 414.27 372 476 S19 TGCATC 65 712 27 246 907 414.64 359 476 S20 TCAGTA 76 029 31 690 841 416.83 362 471 S21 CGGCAC 75 202 31 405 455 417.61 364 469 S22 ATCACG 71 605 30 328 221 423.55 352 470 S23 CGGATG 63 358 26 635 233 420.39 367 470 S24 GTGAAA 56 429 23 698 925 419.98 350 471 S25 TCAGTA 92 400 38 487 742 416.53 355 435 S26 GAAGTG 87 305 37 043 958 424.31 368 448 S27 TCGACC 94 075 39 472 386 419.58 360 464 S28 CTTGTA 52 273 22 054 548 421.91 373 472 S29 GTTTCG 44 697 18 684 447 418.02 360 462 S30 ATCTTG 59 737 25 072 871 419.72 365 465 S32 GCCATC 78 462 32 993 239 420.5 357 474 S33 TGTGTT 69 613 29 167 734 419.00 351 474 S34 CTTGTA 56 083 23 551 548 419.94 356 471 S35 GTTTCG 45 701 18 993 334 415.60 359 464 S36 TTCGTA 46 337 19 212 573 414.63 356 468 S37 CCAGAC 51 978 21 598 326 415.53 372 436 S38 AGCAGT 77 233 31 835 991 412.21 350 470 S39 GAGGAA 75 226 31 060 291 412.89 370 468 S40 AAGGTA 46 920 19 633 227 418.44 352 450 S41 ATCACG 43 983 18 242 559 414.76 352 469 S42 TAGGAC 66 639 27 702 230 415.71 356 470 S43 TGGACG 49 206 20 369 621 413.97 357 472 S44 AGAACA 50 322 20 765 128 412.65 356 469 S45 GGTGTG 41 169 17 011 770 413.22 350 471 S46 AACTAT 67 691 28 070 176 414.68 357 468 S47 ACTGCG 60 220 25 559 117 424.43 359 474 S48 TGTGTT 94 261 39 467 506 418.7 355 474 S49 TAGGAC 86 904 36 530 365 420.35 353 467 -
[1] CABELLO F C. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal healthy and for the environment[J]. Environ Microbiol, 2006, 8: 1137-1144. doi: 10.1111/j.1462-2920.2006.01054.x
[2] MA Z, SONG X, WAN R, et al. A modified water quality index for intensive shrimp ponds of Litopenaeus vannamei[J]. Ecol Indic, 2013, 24: 287-293. doi: 10.1016/j.ecolind.2012.06.024
[3] GONZALEZ J M, SIMO R, MASSANA R, et al. Bacterial community structure associated with a dimethylsulfo niopropionate-producing North Atlantic algal bloom[J]. Appl Environ Microb, 2000, 66: 4237-4246. doi: 10.1128/AEM.66.10.4237-4246.2000
[4] WEI C L, ZENG Y H, TANG K X, et al. Comparison of bacterioplankton communities in three mariculture ponds farming different commercial animals in subtropical Chinese coast[J]. Hydrobiologia, 2009, 632: 107-126. doi: 10.1007/s10750-009-9831-8
[5] CARON D A. Inorganic nutrients, bacteria, and the microbial loop[J]. Microb Ecol, 1994, 28: 295-298. doi: 10.1007/BF00166820
[6] COTNER J B, BIDDANDA B. Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems[J]. Ecosystems, 2002, 5: 105-121. doi: 10.1007/s10021-001-0059-3
[7] LEMONNIER H, COURTIES C, MUGNIER C, et al. Nutrient and microbial dynamics in eutrophying shrimp ponds affected or unaffected by vibriosis[J]. Mar Pollut Bull 2010, 60: 402-411.
[8] AMANN R I. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiol Rev, 1995, 59: 143-169. doi: 10.1128/mr.59.1.143-169.1995
[9] LI C, LIU J, CHEN X, et al. Determinism governs the succession of disturbed bacterioplankton communities in a coastal maricultural ecosystem[J]. Sci Total Environ, 2022, 828: 154457. doi: 10.1016/j.scitotenv.2022.154457
[10] LIU C H, CHANG F H, YANG J W, et al. Free-living marine bacterioplankton composition and diversity along the Kuroshio region[J]. Deep-Sea Res I, 2022, 183: 103741. doi: 10.1016/j.dsr.2022.103741
[11] LU Z B, REN Z M, LIN W H, et al. Succession, sources, and assembly of bacterial community in the developing crab larval microbiome[J]. Aquaculture, 2021, 548: 737600.
[12] LIU Y P, PAN B Z, ZHU X Z, et al. Patterns of microbial communities and their relationships with water quality in a large-scale water transfer system[J]. J Environ Manage, 2022, 319: 115678. doi: 10.1016/j.jenvman.2022.115678
[13] 靳燕, 邱莹, 董志, 等. 北运河浮游细菌集合群落空间变化的环境解释[J]. 中国环境科学, 2021, 41(3): 1378-1386. doi: 10.3969/j.issn.1000-6923.2021.03.041 [14] 杨淑芳. 凡纳滨对虾养殖池塘水质动态变化及细菌多样性研究[D]. 厦门: 集美大学, 2017: 10-19. [15] 张皓. 养殖环境微生物群落的动态变化及与水环境的互作[D]. 苏州: 苏州大学, 2015: 16-29. [16] YANG W, ZHENG C, ZHENG Z M, et al. Nutrient enrichment during shrimp cultivation alters bacterioplankton assemblies and destroys community stability[J]. Ecotox Environ Safe, 2018, 156: 366-374. doi: 10.1016/j.ecoenv.2018.03.043
[17] YANG W Z, ZHENG J Y, CHEN Q, et al. Succession of bacterioplankton community in intensive shrimp (Litopenaeus vannamei) aquaculture systems[J]. Aquaculture, 2018, 497: 200-213. doi: 10.1016/j.aquaculture.2018.07.053
[18] 国家环境保护总局水和废水检测分析方法编委会. 水和废水检测分析方法(第四版)[M]. 北京: 中国环境科学出版社, 2002: 30-152. [19] EDGAR R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19): 2460-2461. doi: 10.1093/bioinformatics/btq461
[20] AKSNES D L, WASSMANN P. Modeling the significance of zooplankton grazing for export production[J]. Limnol Oceanogr, 1993, 38(5): 978-985. doi: 10.4319/lo.1993.38.5.0978
[21] FAITH D P. Conservation evaluation and phylogenetic diversity[J]. Biol Conserv, 1992, 61: 1-10. doi: 10.1016/0006-3207(92)91201-3
[22] SHANNON C E, WEAVER W. The mathematical theory of communication[M]. Urbana, IL: University of Illinois Press, 1949: 55-187.
[23] 杨家新. 微生物生态学[M]. 北京: 化学工业出版社, 2004: 45-134. [24] HAN J H, BAEK K, LEE M H. Lacibacter nakdongensis sp. nov., isolated from river sediment[J]. Int J Syst Evol Microbiol, 2017, 67: 352-356. doi: 10.1099/ijsem.0.001631
[25] WITCZAK P, CYDZIK-KWIATKOWSKA A, ZIELIŃSKA M. Treatment of the liquid phase of digestate from a biogas plant for water reuse[J]. Bio Tech, 2019, 276: 226-235. doi: 10.1016/j.biortech.2018.12.077
[26] XUAN L, SHENG Z, LU J, et al. Bacterioplankton community responses and the potential ecological thresholds along disturbance gradients[J]. Sci Total Environ, 2019, 696: 134015. doi: 10.1016/j.scitotenv.2019.134015
[27] YANG Y, GAO Y, HUANG X, et al. Adaptive shifts of bacterioplankton communities in response to nitrogen enrichment in a highly polluted river[J]. Environ Pollut, 2019, 245: 290-299. doi: 10.1016/j.envpol.2018.11.002
[28] COMTE J, del GIORGIO P A. Composition influences the pathway but not the outcome of the metabolic response of bacterioplankton to resource shifts[J]. PLoS One, 2011, 6: e25266. doi: 10.1371/journal.pone.0025266
[29] ADAMOVICH B V, MEDVINSKY A B, NIKITINA L V, et al. Relations between variations in the lake bacterioplankton abundance and the lake trophic state: evidence from the 20-year monitoring[J]. Ecol Indic, 2019, 7: 120-129.
[30] 吕锡斌, 吴云成, 陈良强, 等. 赤水河流域浮游细菌群落特征及其与水质的关系[J]. 环境科学学报, 2021, 41(11): 4596-4605. doi: 10.13671/j.hjkxxb.2021.0125 [31] JING X Y, GOU H, GONG Y, et al. Seasonal dynamics of the coastal bacterioplankton at intensive fish-farming areas of the Yellow Sea, China revealed by high-throughput sequencing[J]. Mar Pollut Bull, 2019, 139: 366-375. doi: 10.1016/j.marpolbul.2018.12.052
[32] SHADE A, HANNES P, STEVEN D A, et al. Fundamentals of microbial community resistance and resilience[J]. Front Microbiol, 2012, 19(3): 417.
[33] 郭远涛. 吸附固定化对藻菌共生体在畜禽养殖废水处理中的强化效果研究[D]. 南昌: 南昌大学, 2021: 12-36. [34] CAVENDER-BARES J, KOZAK K H, FINE P V A, et al. The merging of community ecology and phylogenetic biology[J]. Ecol Lett, 2009, 12: 693-715. doi: 10.1111/j.1461-0248.2009.01314.x
[35] CHESSON P. Mechanisms of maintenance of species diversity[J]. Annu Rev Ecol Syst, 2000, 31: 343-366. doi: 10.1146/annurev.ecolsys.31.1.343
[36] FAN L M, HU G D, QIU L P, et al. Variations in bacterioplankton communities in aquaculture ponds and the influencing factors during the peak period of culture[J]. Environ Pollut, 2020, 258: 113656. doi: 10.1016/j.envpol.2019.113656
[37] IVES A R, CARPENTER S R. Stability and diversity of ecosystems[J]. Science, 2007, 317: 58-62. doi: 10.1126/science.1133258
[38] YACHI S, LOREAU M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis[J]. Proc Natl Acad Sci USA, 1999, 96: 1463-1468. doi: 10.1073/pnas.96.4.1463
[39] 胡晓娟, 李卓佳, 曹煜成, 等. 强天气干扰条件下粤西凡纳滨对虾养殖池塘细菌群落动态特征[J]. 南方水产科学, 2012, 8(5): 52-59. doi: 10.3969/j.issn.2095-0780.2012.05.008 [40] CONNELL J H. Diversity in tropical rain forests and coral reefs: high diversity of trees and corals is maintained only in a non-equilibrium state[J]. Science, 1978, 199: 1302-1310. doi: 10.1126/science.199.4335.1302