Effects of temperature on survival and growth of Paphia textile juveniles
-
摘要: 采用实验生态学方法,观察了温度对织锦巴非蛤 (Paphia textile) 稚贝生存和生长的影响,以期为该贝中间培育场地的选择提供科学依据。结果表明:1) 稚贝的48 h半致死低、高温分别为4.95、33.39 ℃;96 h的半致死低、高温分别为8.68、32.49 ℃;15 d半致死低、高温分别为12.09、31.02 ℃;2) 在持续15 d的实验中,10 ℃时,稚贝在第10天全部死亡;32 ℃时,第15天的成活率仅为16.67%;3) 以稚贝在15 d内50%个体稳定存活的高、低端温度作为生存临界温度,稚贝适宜生存温度范围为12.09~31.02 ℃;以成活率最高的一组或几组 (组间差异不显著)为依据,稚贝最适生存温度范围为14~28 ℃;4) 以平均日增长达到最佳组的30%所对应的高、低端温度为依据,稚贝适宜生长温度范围为16.62~31.14 ℃;以平均日增长最高的一组或几组 (组间差异不显著)为依据,最适生长温度范围为24~28 ℃,最适生长温度在适宜生存温度范围内明显偏向高温端。综上,推测织锦巴非蛤稚贝适宜在南方海区潮下带水温不超过31 ℃的海底底播中培。Abstract: In this study, we observed the effects of temperature on the survival and growth of Paphia textile juveniles by using experimental ecological methods, so as to provide references for the selection of the intermediate breeding site of the juveniles. The results show that: 1) The 48 h semi-lethal low and high temperatures were 4.95 and 33.39 ℃, respectively; the semi-lethal low and high temperatures at 96 h were 8.68 and 32.49 ℃, respectively; the 15 d semi-lethal low and high temperatures were 12.09 and 31.02 ℃, respectively. 2) At 10 ℃, the juveniles all died on the 10th day, and at 32 ℃, the survival rate of the juveniles on the 15th day was only 16.67%. 3) Taking the high and low temperatures of 50% of individuals which survived stably within 15 d as the critical temperature for survival, we found that the suitable survival temperature range of the juveniles was 12.09–31.02 ℃. Based on the group or groups with the highest survival rate (No significant differences between groups), the most suitable survival temperature range of juveniles was 14–28 ℃. 4) Based on the high and low temperatures corresponding to the average daily growth of 30% of the optimal group, the suitable growth temperature range of juveniles was 16.62–31.14 ℃. Based on the group or groups with the highest average daily growth (No significant differences between groups), the most suitable growth temperature range of juveniles was 24–28 ℃, and the optimal growth temperature was obviously biased towards the high temperature side within the suitable survival temperature range. In conclusion, it is inferred that P. textile juvenile is suitable for underwater bottom sowing in the southern sea area with a subtidal water temperature below 31 ℃.
-
琼胶和海藻酸钠是从海藻中提取的亲水性胶体,良好的成膜性和生物降解性使其成为可食性包装膜材料的研究热点之一[1-3]。研究表明,单一成膜基材制备的薄膜的应用性能通常具有一定的缺陷,如海藻酸钠膜机械强度低、琼胶膜柔韧性低,从而限制了其实际应用。而将不同的成膜基材复配可改善其应用性能[4]。Hou等[5]将琼胶与海藻酸钠复合,并在硼酸的作用下制备了阻燃膜;Abdollahi等[6]制备了羧甲基纤维素/琼胶复合膜,增强了膜的柔韧性;Rukmanikrishnan等[7]制备了黄原胶/琼胶复合膜,提高了膜的热稳定性。笔者前期研究了琼胶/海藻酸钠复合膜的制备工艺 (未发表),发现当琼胶与海藻酸钠质量比为1∶1时,复合膜的断裂伸长率、拉伸强度和水蒸气透过率分别为28.73%、32.76 MPa和0.661 2 g·mm·(m2·h·kPa)−1,相较于琼胶或海藻酸钠单一膜,复合膜的性能指标得到了很好的改善,但其机械强度、阻湿性能与传统的高分子塑料膜相比仍有较大差距。因此,在提高琼胶/海藻酸钠复合膜应用性能方面还需要进一步研究。
交联改性可提高可食性膜材料的机械性能和阻湿性能等理化特性,因此成为膜改性的方法之一[8]。目前,已有学者研究了单一交联剂对可食性复合膜的改性作用并取得了显著效果。如Uranga等[9]用柠檬酸与琼胶/鱼明胶交联,提高了复合膜的阻湿性;庄晓雯等[10]以氯化铁-盐酸溶液 (FeCl3-HCl) 为交联体系,制备了防紫外线的海藻酸钠纤维膜;Belay等[11]以琥珀酸为交联剂,制备了高强度的琼胶膜。可见,交联剂的种类是影响交联膜性能的关键因素。
为提高琼胶/海藻酸钠复合膜的应用性能,本研究在前期研究的基础上,以琼胶和海藻酸钠为成膜基料、以甘油为增塑剂,研究阿魏酸 (Ferulic acid, FA)、单宁酸 (Tannin acid, TA)、柠檬酸 (Citric acid, CA) 和丁二酸 (Succinic acid, SA) 4种食用交联剂,对琼胶/海藻酸钠复合膜机械性能和阻湿性等理化特性的影响,以期为琼胶/海藻酸钠可食性复合膜的开发利用提供理论依据和科学参考。
1. 材料与方法
1.1 材料与试剂
琼胶粉 (汕头市澄海区琼胶厂);海藻酸钠 [酷尔化学 (北京) 科技有限公司];甘油、阿魏酸、柠檬酸 [阿拉丁试剂 (上海) 有限公司];单宁酸 (天津市北辰方正试剂厂);丁二酸 (西陇科学有限公司);无水氯化钙 (天津市汇杭化工科技有限公司)。试剂均为分析纯。
1.2 仪器与设备
电子拉力试验机 (东莞东日仪器有限公司);数显磁力搅拌水浴锅 (金坛区西城新瑞仪器厂);BS224S电子天平 (美国Sartorius公司);恒温干燥箱 (重庆雅马拓科技有限公司);恒温恒湿培养箱 (上海力辰邦西仪器科技有限公司);UV2550紫外-可见分光光度计 (上海美谱达仪器有限公司);IRAffinity−1红外光谱仪 (日本岛津公司);数显测厚仪 (浙江德清盛泰芯电子科技有限公司);Phenom Pro台式扫描电镜 (上海复纳科学仪器有限公司)。其他均为实验室常用仪器。
1.3 方法
1.3.1 复合膜的制备
根据笔者前期实验并参考Hou等[5]的方法制备琼胶/海藻酸钠复合膜。分别称取0.75 g琼胶和海藻酸钠于锥形瓶中,加入100 mL去离子水,加热搅拌至完全溶解。然后加入不同质量分数 (以琼胶和海藻酸钠为基准,下同) 的交联剂 (阿魏酸、单宁酸、柠檬酸、丁二酸),在70 ℃下水浴搅拌至完全溶解,再分别加入质量分数为30%的甘油,继续搅拌30 min。将所得的溶液抽真空脱除气泡后,倒入18 cm×18 cm×1 cm的亚克力板槽中,移入50 ℃干燥箱恒温干燥24 h,取出、揭膜,再将膜放入90 ℃干燥箱中干燥12 h。最后放入恒温恒湿培养箱中 (25 ℃,相对湿度50%)。
1.3.2 复合膜性能指标测定
1) 厚度测定。采用数显测厚仪 (精度为0.001 mm) 对薄膜厚度进行测定。将薄膜铺平,在中心和四角随机选取10个位置进行测定。薄膜厚度取其平均值。
2) 机械性能测定。参照孙晗等[12]的方法,略作修改。将膜裁成2 cm×8 cm条状,用拉伸试验机测定膜的拉伸强度 (Tensile strength, TS) 和断裂伸长率 (Elongation at break percent, EB)。夹具起始间距为40 mm,拉伸速度为50 mm·min−1,每张膜测3个平行,结果取其平均值。计算公式为:
$$ {σ_{\rm {TS}}}=\frac{F}{S}\times 10^{-6} $$ (1) $$ R_{\mathrm{EB}}=\frac{L}{L_0} \times 100 {\text{%}} $$ (2) 式中:σTS 表示拉伸强度 (MPa); F 表示试样断裂时承受的最大拉力 (N); S 表示试样的横截面积 (m2);REB表示断裂伸长率 (%);L表示试样断裂时的伸长量 (mm);L0表示夹具起始间距 (mm)。
3) 溶胀率和水溶性测定。参考Wang等[13]的方法,略作修改。将膜裁成2 cm×2 cm的方块,在105 ℃烘箱干燥至恒质量 (m1)。将烘干后的薄膜放入盛有50 mL蒸馏水的锥形瓶中,在25 ℃下浸泡24 h,取出,用滤纸吸干其表面水分,测其质量 (m2),再用105 ℃的烘箱干燥至恒质量,取出,测其质量 (m3)。每个样品测3个平行,结果取平均值。膜的溶胀率 (Swelling ratio, RSR, %) 和水溶性 (Water solubility, RWS, %) 计算公式分别为:
$$ R_{\mathrm{SR}}=\frac{m_2-m_1}{m_1} \times 100 {\text{%}} $$ (3) $$ R_{\mathrm{WS}}=\frac{m_1-m_3}{m_1} \times 100 {\text{%}} $$ (4) 4) 水蒸气透过率测定。参照Kurt和Kahyaaglu[14]的方法,略作修改。将膜裁成直径为6 cm的圆片,覆盖在装有无水氯化钙的称量瓶 (50 mm×30 mm) 口上,并用石蜡封好瓶口,测其质量。然后将称量瓶放入底部盛有蒸馏水的玻璃干燥器中 (提前在25 ℃下恒温4 h),在25 ℃下恒温静置,每隔2 h取出称量瓶测其质量,连续测6次。每个样品做3个平行,结果取平均值。复合膜水蒸气透过率 (Water vapor permeability, WVP) 计算公式为:
$$R_{ \rm { WVP }}=\frac{{v_\rm{WVP}}\times D}{\Delta P} $$ (5) 式中:RWVP表示水蒸气透过率;vWVP表示水蒸气透过速率 [g·(m2·h)−1];D表示膜的厚度 (mm);ΔP表示膜两侧水蒸气压差 (3.167 1 kPa)。
5) 不透明度测定。用紫外-可见分光光度计对膜的不透明度进行测定,参照Sukhija等[15]的方法,略作修改。将膜裁成矩形,使其刚好紧贴10 mm比色皿内壁。以空白比色皿为对照,用分光光度计在600 nm下测定吸光度值。每个样品做3个平行,结果取平均值。膜的不透明度计算公式为:
$$ O _{\mathrm{p}}=\frac{A_{600}}{X} $$ (6) 式中:Op表示不透明度;A600表示600 nm下的吸光度;X表示膜的厚度 (mm)。
1.3.3 扫描电镜
参考庄晓雯等[10]的方法,略作修改。将膜样品在液氮中脆断并进行镀金处理,在10 kV加速电压下使用扫描电子显微镜进行微观结构分析。
1.3.4 红外光谱测定
参考Belay等[11]的方法,略作修改。采用傅里叶变换红外光谱 (FT-IR) 对膜的化学结构进行分析。将薄膜在90 ℃下干燥后,以空气为背景,对样品进行测定,扫描波数介于400~4 000 cm−1,扫描32次,分辨率为4 cm−1,用OMNIC 8.2软件进行数据分析。
1.3.5 数据处理
采用IBM SPSS Statistics 22.0软件对实验数据进行统计分析,使用Origin 2018软件绘图。每个样品做3个平行实验,数据以“平均值±标准差 (
$ \overline { X} \pm{{\rm{SD}})} $ ”表示。2. 结果与分析
2.1 交联剂对复合膜机械性能的影响
拉伸强度和断裂伸长率是评价薄膜机械性能的重要指标,良好的机械性能有利于保持薄膜的力学完整性和应用行为。由图1-a可见,随着交联剂添加量的增加,4种交联膜的拉伸强度均呈先升后降的变化趋势。阿魏酸和单宁酸在添加量为0%~5%时,拉伸强度随添加量的增加而直线上升,当添加量为5%时达最大值 (45.13和42.90 MPa),比对照组 (32.05 MPa) 分别提高了40.8%和33.9%;当添加量为5%~15%时,拉伸强度随添加量的增加而降低,在15%时达最低值 (29.50和31.22 MPa),相较于最高值分别降低了34.6%和27.2%。当柠檬酸和丁二酸添加量为0%~10%时,拉伸强度由32.05 MPa分别提高至46.97和44.11 MPa,提高了46.6%和37.6%;当添加量超过10%时,拉伸强度快速下降,当添加量为15%时降至最低值 (40.91和39.56 MPa)。这与Cao等[16]制备的阿魏酸/明胶交联膜拉伸强度的变化趋势一致,当阿魏酸添加量为0~30 mg·g−1时,交联膜的拉伸强度随添加量的增加而提高,但当添加量超过30 mg·g−1时,拉伸强度随添加量的增加而降低。适量添加交联剂可提高膜的拉伸强度,这是因为交联剂与琼胶和海藻酸钠分子链中的羟基 (−OH) 和羧基 (−COOH) 发生反应,形成分子间氢键和羰基,形成致密的三维网络结构,从而增加了膜的拉伸强度[17]。但过量的交联剂会游离于薄膜中,降低分子链间的相互作用,导致薄膜结构紊乱,从而降低拉伸强度[18]。另外,过量的交联剂会使琼胶和海藻酸钠发生部分水解而降低薄膜的拉伸强度[19]。
图 1 不同交联剂对复合膜拉伸强度、断裂伸长率、水蒸气透过率水溶性和溶胀率的影响注:图1-d和1-e中同种交联剂不同小写字母间存在显著性差异 (P<0.05)。Figure 1. Effects of different crosslinking agents on tensile strength, elongation at break, water vapor permeability, water solubility, and swelling ratio of composite filmsNote: For the same crosslinking agent, different letters indicate significant differences (P<0.05).由图1-b可知,4种交联剂降低了琼胶/海藻酸钠复合膜的断裂伸长率,且呈先降后升的变化趋势。当阿魏酸和单宁酸添加量介于0%~5%时,薄膜断裂伸长率随添加量的增加而降低,当添加量为5%时,达到最低值 (19.49%和15.44%),比对照组 (29.21%) 分别降低了33.3%和47.1%。当添加量超过5%时,断裂伸长率又缓慢上升最后趋于平衡,并在15%时达最大值 (25.48%和17.36%)。而柠檬酸和丁二酸在添加量为0%~10%时,薄膜断裂伸长率随添加量的增加而下降,并在10%时达到最低值 (17.87%和18.73%),比对照组分别降低了38.8%和35.9%,但当添加量超过10%时,断裂伸长率趋于上升,在15%时达最大值 (23.07%和22.56%)。添加交联剂使薄膜断裂伸长率降低,这是因为交联剂与成膜物质反应形成了致密的网络结构,提高了膜拉伸强度,但限制了大分子链的自由运动,减小了成膜基质分子间的距离[20]。而当添加量继续增加,薄膜断裂伸长率又再上升,这是因为交联剂的增塑作用[21]使过量的交联剂分子插入到成膜物质的分子之间,减弱了分子间的作用力,降低了膜的刚性。这与Mathew和Abraham[20]对阿魏酸交联淀粉/壳聚糖复合膜的研究结果相似,该研究发现当阿魏酸添加量为0~75 mg时,复合膜拉伸强度随添加量的增加逐渐提高,但复合膜的断裂伸长率逐渐降低,当添加量超过75 mg时,复合膜拉伸强度下降,但复合膜断裂伸长率提高。
2.2 交联剂对复合膜水蒸气透过率的影响
膜的水蒸气透过率是评价包装材料阻隔性能的重要指标。由图1-c可见,4种交联剂在一定添加范围内均可降低复合膜的水蒸气透过率,且随添加量的增加呈先下降后上升的趋势。当添加量为0%~10%时,柠檬酸和丁二酸交联膜的水蒸气透过率逐渐减小,在10%时分别达最低值 [0.507 3和0.559 8 g·mm·(m2·h·kPa)−1],比对照组 [0.667 9 g·mm·(m2·h·kPa)−1] 降低了24.0%和16.2%。当添加量超过10%时,水蒸气透过率又逐渐提高;而当阿魏酸和单宁酸添加量为0%~5%时,薄膜水蒸气透过率逐渐降低,并在5%时分别达最低值 [0.591 6和0.571 7 g·mm·(m2·h·kPa)−1],比对照组分别降低了11.4%和14.4%。当添加量超过5%时,薄膜水蒸气透过率又不断升高。这与阿魏酸对马铃薯淀粉膜水蒸气透过率的影响[18]结论相似,即当阿魏酸添加量为0%~1%时,淀粉膜的水蒸气透过率逐渐降低,在1%时达最低值 [4.52 g·mm·(m2·d·kPa)−1],而当添加量超过1%时,淀粉膜的水蒸气透过率又随添加量的增加略微提高。交联剂可降低复合膜水蒸气透过率、提高膜的阻隔性,这是因为交联反应使聚合物的网络结构更加紧密,使大分子之间的间隙减小,限制了水分子的渗透作用。而添加过量时,多余的交联剂可减弱成膜物质间的相互作用,增大聚合物的分子距离,增加膜的通透性,从而导致水蒸气透过率升高[22],降低膜的阻隔性能。
2.3 交联剂对复合膜水溶性和溶胀率的影响
耐水性是作为包装用途的薄膜材料非常重要的指标,而水溶性和溶胀率则是评价薄膜耐水性的主要指标。由图1-d可见,4种交联剂均显著降低了薄膜的水溶性 (P<0.05),且随添加量的增加先降后升。当阿魏酸和单宁酸添加量为5%时,水溶性降至最低值 (29.88%和29.82%),比对照组 (48.51%) 分别降低了38.4%和38.5%。当添加量超过5%时,水溶性随添加量的增加又缓慢上升,但仍显著低于对照组 (P<0.05);当柠檬酸和丁二酸添加量为10%时,水溶性降至最低值 (24.17%和23.08%),比对照组分别降低了50.2%和52.4%。当添加量为10%~15%时,又随添加量的增加而上升。添加交联剂可使膜的水溶性降至30%以下,与明胶可食膜[23]和大豆分离蛋白可食膜[24]相比,该交联膜具有更优异的耐水性。适量添加交联剂可使薄膜水溶性降低,这是因为交联反应减少了琼胶和海藻酸钠中的亲水性−OH的数量,降低了成膜物质对水分子的吸引力 [25]。而添加过量的交联剂会使琼胶和海藻酸钠发生部分水解,破坏膜的网络结构,水分子更加容易进入成膜物质分子内部,导致薄膜水溶性升高[18]。
溶胀是指溶剂分子扩散进入高分子内部间隙中,宏观上表现出体积增大的现象[26]。由图1-e可见,随着交联剂添加量的增加,薄膜溶胀率先降后升。在添加量为0%~5%时,阿魏酸和单宁酸交联膜溶胀率分别由400%降至207%和167%,比对照组降低了48.3%和58.3%。当添加量超过5%时,薄膜溶胀率又逐渐上升,但在实验剂量范围内显著低于对照组 (P<0.05);当柠檬酸和丁二酸添加量为0%~10%时,薄膜溶胀率随添加量的增加而显著降低 (P<0.05),并在10%时达最低值 (38%和42%),比对照组分别降低了91%和90%。当添加量超过10%时,交联膜溶胀率又逐渐上升,这与水溶性具有相似的变化趋势。适量添加交联剂可以降低膜的溶胀率,如Belay等[11]以丁二酸为交联剂制备琼胶膜,当丁二酸添加量为0%~15%时,琼胶膜溶胀率从804%降至108%。适量添加交联剂会降低膜溶胀率,这是因为交联剂会使大分子间的距离缩小,水分子难以渗透到成膜物质的分子间隙中。但添加过量则会导致薄膜结构松散,水分子更易进入成膜物质分子内部,使薄膜溶胀率升高[27]。
4种交联剂均可显著降低膜的水溶性和溶胀率 (P<0.05),表明交联剂可显著提高复合膜的耐水性。在相同添加量下,柠檬酸和丁二酸交联膜水溶性和溶胀率均比阿魏酸和单宁酸交联膜低,这是因为柠檬酸和丁二酸的反应活性更高,能与成膜物质间形成更加稳定的网络结构,降低膜的亲水性,水分子也难以进入交联膜的网络结构之中[28-29]。
2.4 交联剂对复合膜不透明度的影响
包装膜的外观会影响消费者对产品的可接受程度,不透明度是评价薄膜对光透过程度的重要指标。由表1可知,4种交联剂对复合膜的不透明度影响显著 (P<0.05)。随着添加量的增加,复合膜的不透明度逐渐升高。4种交联剂添加量由0%增至15%时,交联膜的不透明度分别由1.18增至1.59、3.65、1.41和1.29。单宁酸对复合膜不透明度影响最大,比对照组提高了2.5倍,这是因为单宁酸为浅棕色,随添加量的增加,复合膜颜色逐渐变黄[16],导致膜不透明度增加;阿魏酸交联膜的不透明度也高于柠檬酸和丁二酸交联膜,这是因为阿魏酸在空气中被部分氧化,导致复合膜颜色变白,从而增加了膜的不透明度;柠檬酸和丁二酸对复合膜透明度的影响,是由于其交联作用使膜的结构变得更加致密,从而降低了可见光的透过率,另外柠檬酸在保温反应过程中会脱水,产生有色不饱和酸,导致复合膜颜色变黄[30],这也增加了膜的不透明度。
表 1 不同交联剂对复合膜不透明度的影响Table 1. Effect of different crosslinking agents on opacity of composite films交联剂添加量Crosslinking agent
addition/%复合膜不透明度Opacity of composite films 阿魏酸FA 单宁酸TA 柠檬酸CA 丁二酸SA 0 1.18±0.01f 1.18±0.01f 1.18±0.01d 1.18±0.01e 3 1.22±0.01e 1.84±0.02e 1.20±0.02d 1.20±0.01de 5 1.30±0.02d 2.64±0.03d 1.27±0.03c 1.23±0.01cd 7 1.39±0.01c 2.93±0.06c 1.31±0.02b 1.24±0.02bc 10 1.46±0.01b 3.14±0.02b 1.34±0.02b 1.27±0.03ab 15 1.59±0.01a 3.65±0.10a 1.41±0.03a 1.29±0.01a 注:同列不同字母表示差异显著 (P<0.05)。 Note: Different letters within the same column indicate significant differences (P<0.05). 2.5 交联膜扫描电镜分析
对4种琼胶/海藻酸钠交联膜 (阿魏酸和单宁酸添加量5%,柠檬酸和丁二酸添加量10%) 和未交联膜进行扫描电镜分析 (图2)。未交联膜与交联膜表面均较光滑、平整,未出现孔隙、明显颗粒及相分离现象,这说明成膜基质各组分之间的相容性良好,这是因为琼胶与海藻酸钠中含有大量−OH,通过形成分子间氢键提高其相容性。由交联膜和未交联膜的截面可见,未交联膜截面粗糙且出现明显的纵向裂纹,这与成膜基质干燥后呈纤维化取向有关;而交联膜的截面更加光滑、致密且无裂纹出现,这是因为交联剂通过与成膜基质之间形成氢键和酯键,使各组分之间的连接更加紧密,从而改变了其纤维化取向,因此无裂纹出现,截面更加光滑。这与单宁酸和阿魏酸对明胶膜的影响相似,交联剂的添加改变了明胶膜截面的微观结构,形成了更多的网络结构[16]。
2.6 红外光谱
对4种琼胶/海藻酸钠交联膜 (阿魏酸和单宁酸添加量5%,柠檬酸和丁二酸添加量10%) 和对照膜进行了FT-IR分析 (图3)。复合膜在3 379 cm−1处的吸收带是琼胶和海藻酸钠分子中−OH伸缩振动的结果[31],1 599和1 417 cm−1处的特征峰分别对应−COOH的反对称和对称伸缩振动吸收峰[32]。2 929 cm−1处C−H的对称伸缩振动吸收峰和931 cm−1处的C−O−C拉伸吸收峰均为典型的多糖特征吸收峰[33]。柠檬酸和丁二酸交联膜分别在1 720和1 717 cm−1处出现新的吸收峰,表明分子中形成了C=O,说明柠檬酸和丁二酸的羧基通过与海藻酸钠和琼胶中的−OH形成酯键实现交联[34-35]。然而,阿魏酸和单宁酸交联膜在1 720 cm−1处未出现明显的吸收峰,表明在该反应条件下,阿魏酸和单宁酸未能与海藻酸钠和琼胶发生酯化反应,但在3 379 cm−1处吸收峰强度变大,这是因为分子间形成了更多的氢键[36],由此可推测阿魏酸和单宁酸与琼胶和海藻酸钠通过分子间氢键而实现交联。
3. 结论
本研究比较了4种交联剂对琼胶/海藻酸钠复合膜性能的影响。结果表明,适量添加交联剂可有效改善琼胶/海藻酸钠复合膜的性能。当阿魏酸和单宁酸添加量为5%、柠檬酸和丁二酸添加量为10%时,各交联膜的性能指标均达到最优值;各交联剂在最适添加量条件下,柠檬酸对复合膜的综合性能指标改善最好,即当添加量为10%时,拉伸强度比对照组提高了46.6%,水溶性和溶胀率分别降低了50.2%和91%,水蒸气透过率降低了24%;4种交联剂均增加了复合膜的不透明度,因此琼胶/海藻酸钠交联改性膜较适宜阻光包装材料;扫描电镜分析表明,成膜基质各组分相容性良好,交联剂使复合膜截面更加致密、光滑;FT-IR分析表明,柠檬酸和丁二酸与琼胶和海藻酸钠分子中的−OH发生酯化反应而改善膜的性能,而阿魏酸和单宁酸与琼胶和海藻酸钠通过形成分子间氢键实现交联。综上,本研究的4种交联剂可不同程度地改善琼胶/海藻酸钠复合膜的应用特性,在生物可降解包装材料领域具有较好的应用前景,也为海藻多糖可食性膜的研究和开发提供了理论基础。
-
图 1 不同温度下织锦巴非蛤稚贝的体质量平均日增长
注:10 ℃组稚贝全部死亡,平均日增长视为0,不参与显著性分析;方柱上不同字母表示各组之间差异显著 (P<0.05);图2同此。
Figure 1. Average daily growth of body mass of P. textile juveniles at different temperatures
Note: All the juveniles in the 10 ℃ group died, and the average daily growth was regarded as zero, not involved in the significance analysis; Different letters on the bars indicate significant differences between the groups (P<0.05). The same case in Fig. 2.
表 1 织锦巴非蛤稚贝在不同温度下48、96 h的成活率
Table 1 Survival rates of P. textile juveniles at 48th and 96th hour at different temperatures
温度Temperature/℃ 实测平均成活率Actual measured average survival rate/% 相对平均成活率Relative average survival rate/% 48 h 96 h 48 h 96 h 4 0.00±0.00d 0.00±0.00d 0 0 5 52.76±3.48c 0.00±0.00d 52.76 0 6 70.77±8.48b 1.11±1.92d 70.77 1.15 7 72.55±8.60b 2.26±1.96d 72.55 2.34 8 95.49±4.87a 27.92±2.93c 95.49 28.88 9 96.67±3.33a 57.92±3.08b 96.67 59.91 20~22 100.00±0.00a 96.67±3.33 a 100.00 100.00 31 88.62±5.31b 81.76±3.21 b 88.62 84.58 32 84.44±5.09c 78.89±1.92 b 84.44 81.61 33 62.89±8.63d 16.55±3.01c 62.89 17.12 34 29.63±9.80e 2.47±2.14d 29.63 2.55 35 0.00±0.00f 0.00±0.00d 0 0 36 0.00±0.00f 0.00±0.00d 0 0 注:常温对照组温度为20~22 ℃;低温组与高温组各自做显著性分析;同列不同小写字母表示各组之间差异显著 (P<0.05),下表同此。 Note: The temperature in the control group is 20−22 ℃. The significance of low temperature group and high temperature group was analyzed respectively. Different lowercase letters within the same column indicate significant differences between the groups (P<0.05). The same case in the following tables. 表 2 实验周期内不同温度下织锦巴非蛤稚贝每天死亡情况
Table 2 Daily death of P. textile juveniles at different temperatures during experimental period
时间 Time 死亡个数 Number of deaths 10 ℃ 14 ℃ 18 ℃ 22 ℃ 24 ℃ 26 ℃ 28 ℃ 30 ℃ 32 ℃ 第1天 1st day 0 0 0 0 0 0 0 0 0 第2天 2nd day 0 0 0 0 0 0 0.33 0.33 0 第3天 3rd day 0.33 0 0.33 0 0 0.33 0.33 0.33 0 第4天 4th day 0 0 0 0 0 0 0 0 0 第5天 5th day 0.33 0 0 0.33 0 0.33 0 0 0 第6天 6th day 1.33 0 0 0 0 0 0 0 0 第7天 7th day 3.33 0 0 0 0 0.33 0 0.67 0 第8天 8th day 9.67 0.33 0 0 0 0 0 0.33 0.67 第9天 9th day 13.00 0 0 0 0 0.33 0 0.33 0 第10天 10th day 2 0 0 0 0 0 0.33 0.67 2.67 第11天 11th day 0 0 0 0.33 0 0.33 0 0.33 0.33 第12天 12th day 0 1 0 0 0 0 0 1.67 4.67 第13天 13th day 0 0.33 0 0 0 0 0 0.33 4.67 第14天 14th day 0 0 0 0.33 0 0 0 0 5.33 第15天 15th day 0 0 0 0 0.33 0 0 0 6.67 累计死亡个数Cumulative mortality/个 30.00±0.00 1.67±2.08 0.33±0.58 1.00±1.00 0.33±0.58 1.67±0.58 1.00±1.00 5.00±1.00 25.00±1.00 注:上述每天对应的死亡数为各温度组3个平行组死亡数量的平均值,累积死亡个数为3个平行组的平均值±标准差。 Note: The number of deaths per day is the average of the number of deaths in the three parallel groups for each temperature group, and the cumulative number of deaths is the $ \overline { X}\pm { \rm {SD} }$ of the three parallel groups. 表 3 织锦巴非蛤稚贝在不同温度下15 d的成活率
Table 3 Survival rates of P. textile juveniles at 15th day at different temperatures
温度Temperature/ ℃ 实测平均成活率Measured average survival rate/% 相对平均成活率Relative average survival rate/% 10 0.00±0.00d 0 14 94.45±6.94a 95.51 18 98.89±1.92a 100.00 22 96.67±3.34a 97.75 24 98.89±1.92a 100.00 26 94.44±1.93a 95.50 28 96.67±3.34a 97.76 30 83.33±3.36b 84.27 32 16.67±3.34c 16.86 -
[1] 栗志民, 刘志刚, 韩伟贤. 织锦巴非蛤稚贝盐度适应性研究[J]. 海洋科学, 2011, 35(10): 96-102. [2] 纪燕如, 林志华, 伍荣聪, 等. 我国东南沿海5个织锦巴非蛤地理群体的形态差异分析[J]. 热带生物学报, 2011, 2(3): 219-225. doi: 10.3969/j.issn.1674-7054.2011.03.006 [3] 邹杰, 彭慧婧, 杨家林. 织锦巴非蛤人工种苗培育及浅海养殖实验[J]. 科学养鱼, 2019(10): 57-58. [4] 陈瑞芳, 董兰芳, 许明珠. 广西特色海水养殖品种发展现状与展望[J]. 广西科学院学报, 2020, 36(3): 237-241. [5] 邱清波, 李由明, 吴丽云, 等. 干露对缀锦蛤、文蛤、美女蛤和织锦巴非蛤耗氧率的影响[J]. 海南热带海洋学院学报, 2018, 25(2): 20-24. [6] 赵虹博, 邓素贞, 张静, 等. 从织锦巴非蛤提取总类胡萝卜素的两种前处理方法效果比较[J]. 海洋科学, 2019, 43(11): 62-67. doi: 10.11759/hykx20190430001 [7] STRUAN C, CAITLIN C, DANA M, et al. The coupled effects of stocking density and temperature on sea scallop (Placopecten magellanicus) growth in suspended culture[J]. Aquac Rep, 2021, 20: 100684. doi: 10.1016/j.aqrep.2021.100684
[8] LUCHIN V A, GRIGORYEVA N I. The effects of water temperature on the timing of spawning and spat settlement of the Yesso scallop (Mizuhopecten yessoensis Jay, 1857) in Minonosok Cove (Posyet Bay, Peter the Great Bay, Sea of Japan)[J]. Rus J Mar Biol, 2021, 46(7): 580-589.
[9] MARSHALL D A, COXE N C, la PEYRE M K, et al. Tolerance of northern Gulf of Mexico eastern oysters to chronic warming at extreme salinities[J]. J Therm Biol, 2021, 100: 103072. doi: 10.1016/j.jtherbio.2021.103072
[10] CAMERON L P, REYMOND C E, MÜLLER-LUNDIN F, et al. Effects of temperature and ocean acidification on the extrapallial fluid pH, calcification rate, and condition factor of the king scallop Pecten maximus[J]. J Shellfish Res, 2019, 38(3): 763. doi: 10.2983/035.038.0327
[11] 司和, 宋志民, 唐贤明, 等. 温度和盐度对波纹巴非蛤胚胎、幼虫及稚贝发育的影响[J]. 水产科学, 2018, 37(2): 255-258. [12] 刘越. 虾夷扇贝对温度、饥饿胁迫的应答机制浅析[J]. 南方农业, 2020, 14(5): 127-128. [13] 栗志民, 刘志刚, 姚茹, 等. 温度和盐度对皱肋文蛤幼贝存活与生长的影响[J]. 生态学报, 2010, 30(13): 3406-3413. [14] 刘志刚, 王辉, 栗志民, 等. 墨西哥湾扇贝高起始致死温度的研究[J]. 中国水产科学, 2007, 14(5): 778-785. doi: 10.3321/j.issn:1005-8737.2007.05.011 [15] 刘志刚, 王辉, 栗志民, 等. 温度对不同大小墨西哥湾扇贝生长的影响[J]. 热带海洋学报, 2007(5): 47-52. doi: 10.3969/j.issn.1009-5470.2007.05.008 [16] 张颖雪, 苏洁, 樊景凤, 等. 海水养殖贝类弧菌病流行暴发及其环境影响因素研究进展[J]. 海洋环境科学, 2020, 39(3): 480-487. doi: 10.12111/j.mes20200324 [17] 刘春胜, 刘小霞, 汪浩, 等. 光照强度和光色对番红砗磲(Tridacna crocea)氨氮、活性磷酸盐及氧代谢的影响[J]. 海洋与湖沼, 2018, 49(2): 313-318. [18] 黄晓婷, 杨祖晶, 王浩, 等. 侏儒蛤潜沙行为研究[J]. 中国海洋大学学报(自然科学版), 2020, 50(9): 64-71. [19] 姜娓娓, 方建光, 李加琦, 等. 温度胁迫对皱纹盘鲍生理和生化活动的影响[J]. 中国水产科学, 2017, 24(2): 220-230. [20] 刘旭绪, 张秀梅, 覃乐政, 等. 干露时长及温度对魁蚶幼贝潜沙行为及呼吸代谢的影响[J]. 中国海洋大学学报(自然科学版), 2017, 47(3): 19-26. doi: 10.16441/j.cnki.hdxb.20160219 [21] WANG Q Z, XIE X, ZHANG M, et al. Effects of temperature and salinity on survival and growth of juvenile ark shell Anadara broughtonii[J]. Fish Sci, 2017, 83(4): 619-624. doi: 10.1007/s12562-017-1095-z
[22] SYAZILI A, SYAFIUDDIN, NIARTININGSIH A, et al. Effect of ocean acidification and temperature on growth, survival, and shell performance of fluted giant clams (Tridacna squamosa)[J]. IOP Conf Ser: Earth Environ Sci, 2020, 473(1): 012141. doi: 10.1088/1755-1315/473/1/012141
[23] 张柯馨, 曹楚畑, 刘志刚, 等. 钝缀锦蛤 (Tapes dorsatus)稚贝的温度和盐度耐受性研究[J]. 海洋学报, 2022, 44(6): 1-8. [24] 江天棋, 张扬, 姜亚洲, 等. 高温胁迫对厚壳贻贝摄食、代谢和相关酶活性的影响[J]. 生态学杂志, 2020, 39(9): 3048-3056. doi: 10.13292/j.1000-4890.202009.027 [25] 董莎莎, 聂鸿涛, 闫喜武. 贝类低温胁迫响应机制研究进展[J]. 大连海洋大学学报, 2019, 34(3): 457-462. doi: 10.16535/j.cnki.dlhyxb.2019.03.023 [26] LI J K, WU X W, TAN J, et al. Molecular cloning of the heat shock protein 20 gene from Paphia textile and its expression in response to heat shock[J]. Chin J Oceanol Limnol, 2015, 33(4): 919-927. doi: 10.1007/s00343-015-4223-6
[27] PENG L N, HUANG L B, GUI T Y, et al. Identification and expression profiling of Hsp20 genes in Neoporphyra haitanensis[J]. J Appl Phycol, 2022, 34: 1089-1097. doi: 10.1007/s10811-022-02686-2
[28] 司凯歌. 中华鲟热休克蛋白HSP30基因和HSP70家族基因的克隆及其在高温胁迫和细菌感染下的表达分析[D]. 上海: 上海海洋大学, 2019: 1-9. [29] EYMANN C, GÖTZE S, BOCK C, et al. Thermal performance of the European flat oyster, Ostrea edulis (Linnaeus, 1758): explaining ecological findings under climate change[J]. Mar Biol: Inter J Life Oceans Coast Waters, 2020, 167(4): 911-921.
[30] COFFIN M R S, CLEMENTS J C, COMEAU L A, et al. The killer within: endogenous bacteria accelerate oyster mortality during sustained anoxia[J]. Limnol Oceanogr, 2021, 66(7): 2885-2900. doi: 10.1002/lno.11798
[31] 段娇阳, 刘慧, 陈四清, 等. 温度对皱纹盘鲍摄食和耗氧率的影响[J]. 中国农学通报, 2020, 36(27): 153-157. [32] 杨家林, 邹杰, 彭慧婧. 温度、盐度和体质量对钝缀锦蛤滤食率和同化率的影响[J]. 水产科学, 2019, 38(1): 104-108. doi: 10.16378/j.cnki.1003-1111.2019.01.016 [33] 李俊辉, 王庆恒, 杜晓东, 等. 温度和pH对马氏珠母贝肝胰脏消化酶活力的影响[J]. 水产科学, 2011, 30(2): 115-117. doi: 10.3969/j.issn.1003-1111.2011.02.013 [34] 聂鸿涛, 霍忠明, 侯晓琳, 等. 温度和盐度突变对菲律宾蛤仔斑马蛤耗氧率和排氨率的影响[J]. 水生生物学报, 2017, 41(1): 121-126. doi: 10.7541/2017.16 [35] 杨小东, 江兴龙, 乐普敏, 等. 南美洲鳗鲡 (Anguilla rostrata)的耗氧率 (ROC)、窒息点 (AP) 和适温范围 (RT) 及对非离子氨 (NIA)、NO2 – 的LC50和SC的研究[J]. 海洋与湖沼, 2019, 50(2): 455-464. doi: 10.11693/hyhz20181200295 [36] 刘海娟, 陈瑞芳, 聂振平, 等. 织锦巴非蛤苗种的海区中培方法: CN106719183A [P]. 2017-05-31. [37] 谢文海, 谢积慧, 阮桂文, 等. 广西北海不同生境海岸贝类群落调查[J]. 玉林师范学院学报, 2013, 34(2): 69-77. doi: 10.3969/j.issn.1004-4671.2013.02.016 [38] 徐凤山, 张素萍. 中国海产双壳类图志[M]. 北京: 科学出版社, 2008: 256. [39] 栗志民, 刘志刚, 梁春桥, 等. 广东流沙湾近岸和离岸育珠海区养殖环境的调查[J]. 海洋科学, 2014, 38(1): 46-53. -
期刊类型引用(1)
1. 程高,陈国宝,陈丕茂,佟飞,牛麓连,陈钰祥. 基于声学技术定点监测海洋牧场鱼类资源昼夜变化研究. 南方水产科学. 2024(05): 63-70 . 本站查看
其他类型引用(1)