拉尼娜事件前后北部湾鱼类群落结构变化研究

李淼, 许友伟, 孙铭帅, 范江涛, 李佳俊, 张魁, 陈作志

李淼, 许友伟, 孙铭帅, 范江涛, 李佳俊, 张魁, 陈作志. 拉尼娜事件前后北部湾鱼类群落结构变化研究[J]. 南方水产科学, 2023, 19(2): 1-11. DOI: 10.12131/20220144
引用本文: 李淼, 许友伟, 孙铭帅, 范江涛, 李佳俊, 张魁, 陈作志. 拉尼娜事件前后北部湾鱼类群落结构变化研究[J]. 南方水产科学, 2023, 19(2): 1-11. DOI: 10.12131/20220144
LI Miao, XU Youwei, SUN Mingshuai, FAN Jiangtao, LI Jiajun, ZHANG Kui, CHEN Zuozhi. Variation in fish community structure in Beibu Gulf before and after La Niña event[J]. South China Fisheries Science, 2023, 19(2): 1-11. DOI: 10.12131/20220144
Citation: LI Miao, XU Youwei, SUN Mingshuai, FAN Jiangtao, LI Jiajun, ZHANG Kui, CHEN Zuozhi. Variation in fish community structure in Beibu Gulf before and after La Niña event[J]. South China Fisheries Science, 2023, 19(2): 1-11. DOI: 10.12131/20220144

拉尼娜事件前后北部湾鱼类群落结构变化研究

基金项目: 国家重点研发计划项目 (2018YFD0900906);广州市基础与应用基础研究项目 (202201010639);中国水产科学研究院基本科研业务费专项资金 (2020TD05)
详细信息
    作者简介:

    李 淼 (1996—),男,硕士研究生,研究方向为海洋生态学。E-mail: 1771568464@qq.com

    通讯作者:

    张 魁 (1987—),男,副研究员,博士,研究方向为渔业资源和海洋生态学。E-mail: zhangkui@scsfri.ac.cn

    陈作志 (1978—),男,研究员,博士,研究方向为渔业资源和海洋生态学。E-mail: zzchen2000@163.com

  • 中图分类号: S 931.1

Variation in fish community structure in Beibu Gulf before and after La Niña event

  • 摘要: 拉尼娜事件会影响鱼类的生活史和多样性,导致不同海域鱼类群落结构的演替。为掌握拉尼娜事件对北部湾鱼类群落结构的潜在影响,根据2006年7月和2008年7月北部湾海域底拖网渔业资源调查数据,分析拉尼娜事件发生前后鱼类群落结构的变化特征。结果表明,2006年夏季优势种为发光鲷 (Acropoma japonicum)、竹荚鱼 (Trachurus japonicus),2008年夏季优势种为竹荚鱼、蓝圆鲹 (Decapterus maruadsi)、发光鲷,竹荚鱼和发光鲷为两航次共有优势种。多样性指数 (H') 与均匀度指数 (E1E2) 在年际间差异不显著,丰富度指数 (D') 差异显著。以发光鲷为代表的暖温性鱼类资源密度下降;以竹荚鱼、蓝圆鲹为代表的暖水性鱼类资源密度升高,并向北部湾沿岸方向移动,北部湾沿岸站点 (C1—C22) 的各指数在拉尼娜事件发生前后具有显著性差异 (P<0.05)。聚类分析和非线性多维尺度排序结果表明,鱼类群落空间分布较为稳定,主要差异在海南岛西部沿岸。拉尼娜事件引起北部湾海域水温降低、初级生产力升高,导致竹䇲鱼、蓝圆鲹等小型中上层鱼类资源密度升高。在捕捞压力相对稳定的情况下,研究认为北部湾鱼类群落结构在拉尼娜事件前后存在显著的年际变化和物种更替现象。
    Abstract: La Niña events will affect the life history and diversity of fish, leading to the succession of fish community structure in different sea areas. To understand the potential impact of La Niña events on the fish community structure in the Beibu Gulf, based on the bottom trawl survey data of fishery resources in July 2006 and July 2008, we analyzed the variation in the fish community structure in the Beibu Gulf before and after La Niña event. The results show that the dominant species were Acropoma japonicum and Trachurus japonicus in summer of 2006, and T. japonicus, Decapterus maruadsi and A. japonicum in summer of 2008. T. japonicus and A. japonicum were the common dominant species in the two years. The diversity index (H') and evenness index (E1 and E2) did not differ significantly between years, but the richness index (D') differed significantly. After the La Niña event, the density of warm-water fish resources, such as A. japonicum, decreased, while that of warm-water fish resources, such as T. japonicus and D. maruadsi, increased. Besides, T. japonicus and D. maruadsi moved towards the coast of the Beibu Gulf. The diversity index of the Beibu Gulf coastal sites (C1–C22) was significantly different before and after the La Niña event (P<0.05). The results of cluster analysis and non-metric multidimensional scale ranking show that the fish community spatial distribution was more stable, and the main difference was in the western coast of Hainan Island. The La Niña event resulted in a decrease in water temperature and an increase in primary productivity in the Beibu Gulf, causing an increase of the density in small pelagic fish stocks such as T. japonicus and D. maruadsi. In conclusion, when the fishing pressure is relatively stable, the significant variation in the fish community structure in the Beibu Gulf is closely related to the La Niña event.
  • 浮游动物在河口生态系统结构和生源要素循环中起重要作用,其动态变化影响许多鱼类和无脊椎动物的种群生物量[1-3],它们通过捕食作用还控制浮游植物生物量[4-6]。浮游动物的种类组成、数量的时空变化对河口生态系统结构、功能运转、渔业资源和环境都产生重要影响[7]。因此,浮游动物的种类组成和群落结构等调查数据对了解河口生态系统的结构和功能有重要作用。

    珠江有8个入海口,位于东经113°33′至114°09′,北纬22°12′至22°45′之间,水域面积达2 210 km2,水文环境复杂,终年受沿岸冲淡水和南海表层咸水的交替影响,是受人类活动干扰严重的水域。近年来,随着珠江三角洲地区经济的飞速发展,珠江口水域的水文、水质及生态研究成为热点领域,但对河口咸淡水交汇锋面处的浮游动物状况研究鲜有报导。文章研究了珠江口8大入海口咸淡水交汇处浮游动物的种类组成和数量的空间分布,试图了解受咸淡水交替影响的浮游动物种群结构与分布特征。为深入研究珠江口的生产力水平、生态系统结构和环境质量状况提供基础资料,以期为珠江口生物资源的合理开发和河口环境的治理及保护提供参考。

    研究站位布设如图 1所示。S1~S8站位分别位于虎门,蕉门,洪沥门,横门,磨刀门,鸡啼门,虎跳门和崖门。

    图  1  珠江口调查站位分布
    S1.虎门;S2.蕉门;S3.洪沥门;S4.横门;S5.磨刀门;S6.鸡啼门;S7. 虎跳门;S8. 崖门
    Fig. 1  Distribution of sampling stations in Pearl River Estuary
    S1. Humen; S2. Jiaomen; S3. Honglimen; S4. Hengmen; S5. Modaomen; S6. Jitimen; S7. Hutiaomen; S8. Yamen

    采样时间为2006年8月24日至30日。浮游动物采集参照参考文献[8],大型甲壳类浮游动物定性样品用13号浮游生物网,由底至表垂直拖曳得到,小型及微型浮游动物定性采用浮游植物定性定量样品;定量样品采用HQM-1型有机玻璃采水器,取表层(离水面0.5 m)和底层(离水底0.5 m)水样各1 L混合后用25号浮游生物网过滤,并用5%的甲醛溶液固定,带回实验室镜检。

    种类鉴定依据《甲壳动物学》等相关资料[9-15]。其中桡足类、枝角类、轮虫类和原生动物鉴定到种,其它浮游动物如异足类、糠虾类、多毛类、被囊类、水母类等鉴定到类。

    新鲜样品带回实验室后,立即用已知重量的玻璃纤维膜过滤,再用6.5%的等渗甲酸铵溶液漂洗,并用滤纸将标本吸到没有水痕的程度,迅速在电子天平上先称其湿重;然后将它们放入烘箱(约60℃)中烘干24 h,放入干燥器中自然冷却至室温,最后在电子天平上称其干重(此文生物量数据均采用干重)。

    浮游动物的多样性指数、均匀度指数和优势度采用以下计算公式:

    Shannon-Weaver多样性指数(H)

    $$ H=-\sum\limits_{i=1}^S\left(n_i / N\right) \log _2\left(n_i / N\right) $$

    式中,S为种数;ni为i种的个体数;N为总个体数。

    $$ \text { 均匀度指数 }(J) \quad J=H / \log _2 S $$

    式中,H为Shannon-Weaver多样性指数;S为种数。

    $$ \text { 优势度 }(Y) \quad Y=\left(n_{\mathrm{i}} / N\right) \times f_{\mathrm{i}} $$

    式中,ni为第i种的丰度,N为浮游动物总丰度,fi是该种在各站位中出现的频率。

    调查期间共鉴定浮游动物57种,桡足类最多,为20种,其次为轮虫类和枝角类,分别为18和8种,此外,被囊类2种,原生动物、多毛类、异足类、水母类、糠虾类各1种,桡足类幼虫和长尾类幼虫以及未知种类2种。

    其中枝角类的长额象鼻溞(Bosmina longirostris),轮虫类的萼花臂尾轮虫(Brachionus calyciflorus)和镰状臂尾轮虫(B.falcatus)为8个站位均出现的种类。

    浮游动物种类最高值出现在S1站位,为29种。最低值出现在S5站位,只有19种(图 2)。

    图  2  调查期间各站位浮游动物的种类丰富度
    Fig. 2  Distribution of zooplankton taxa abundance at each station

    各站位桡足类的种数总和为20种。种类最高值出现在S8站位,为12种。最低值出现在S4站位,只有6种(图 2)。

    各站位枝角类的种数总和为8种。种类最高值出现在S1站位,为6种。最低值出现在S8站位,只有1种(图 2)。

    各站位轮虫类的种数总和为18种。种类最高值出现在S1站位,为10种。最低值出现在S5和S8站位,都只有5种(图 2)。

    调查期间浮游动物8个站位密度的均值为12 086 ind · m-3,最高值出现在S1站位,为28 013 ind · m-3,最低值出现在S3站位,为2 288 ind · m-3(图 3)。

    图  3  调查期间各站位浮游动物的密度
    Fig. 3  Distribution of zooplankton density at each station

    桡足类8个站位密度的均值为5 431 ind · m-3,最高值出现在S5站位,为13 342 ind · m-3,最低值出现在S3站位,为292 ind · m-3(图 3)。

    枝角类8个站位密度的均值为708 ind · m-3,最高值出现在S1站位,为2 128 ind · m-3,最低值出现在S3站位,为146 ind · m-3(图 3)。

    轮虫类8个站位密度的均值为3 144 ind · m-3,最高值出现在S1站位,为12 322 ind · m-3,最低值出现在S5站位,为292 ind · m-3(图 3)。

    调查期间浮游动物8个站位生物量均值为61.78 mg · m-3。最高值出现在S5站位,实值为132.95 mg · m-3,最低值出现在S3站位,实值为10.03 mg · m-3(图 4)。

    图  4  调查期间各站位浮游动物的生物量
    Fig. 4  Distribution of zooplankton biomass at each station

    根据各调查站位浮游动物种类出现的频率和相对丰度,得出主要种的优势度(表 1)。

    表  1  珠江口浮游动物优势种
    Table  1  Dominant species of zooplankton in Pearl River Estuary
    优势种 dominant species 优势度 dominance
    中华异水蚤 Acartiella sinensis 0.224
    披针纺锤水蚤 Acartia southwelli 0.019
    矮小拟镖剑水蚤 Paracyclopina nana 0.017
    广布中剑水蚤 Mesocyclops leuckarti 0.017
    右突新镖水蚤 Neodiapt omus schmackeri 0.012
    球状许水蚤 Schmackeria forbesi 0.006
    中华窄腹剑水蚤 Limnoithona sinensis 0.003
    火腿许水蚤 Schmackeria poplesia 0.001
    指状许水蚤 S.inopinus 0.001
    萼花臂尾轮虫 Brachionus calyciflorus 0.156
    镰状臂尾轮虫 B.falcatus 0.064
    前节晶囊轮虫 Asplanchna priodonta 0.033
    剪形臂尾轮虫 B.forficula 0.015
    长额象鼻溞Bosmina longirostris 0.040
    下载: 导出CSV 
    | 显示表格

    按照Y≥0.02来确定优势种。由上表可见,桡足类的中华异水蚤,枝角类的长额象鼻溞以及轮虫类的萼花臂尾轮虫、前节晶囊轮虫和镰状臂尾轮虫为主要优势种。这与其他一些河口有些差别[16],主要原因在于此次采样点的布设比较靠近口内,盐度较低。

    Shannon-Wiener多样性指数(H)和均匀度是一种反映生物群落种类组成和结构特点的数值指标。珠江口8个站位浮游动物多样性指数和均匀度的变化见表 2

    表  2  珠江口浮游动物的多样性指数和均匀度
    Table  2  Diversity index and evenness of zooplankton in Pearl River Estuary
    S1 S2 S3 S4 S5 S6 S7 S8
    种数taxa number 28 24 20 19 16 20 18 17
    多样性指数diversity index 3.2280 3.5303 3.1482 3.1733 2.1251 3.0142 2.6406 2.4797
    均匀度evenness 0.6715 0.7699 0.7284 0.7470 0.5312 0.6974 0.6332 0.6066
    下载: 导出CSV 
    | 显示表格

    S1、S2、S3和S4站位的多样性指数和均匀度较高,而S5、S6、S7和S8站位的多样性指数和均匀度相对较低,反映了前4个站位的浮游动物群落组成比后4个站位要复杂些,浮游动物种数普遍多于后4个站位,这主要是由于后4个站位的浮游动物优势种相当显著,种间数量分布不均匀所造成的。

    珠江口浮游动物的种类丰富度的平面分布呈现由S1到S8递减的趋势,而浮游动物生物量的空间分布呈现从S1到S8递增的趋势,这主要是由于8个站位浮游动物群落结构之间的差异。S1和S2站位种类丰富度和种群密度都很高,是由于这2个站位轮虫类和枝角类种类比较丰富,桡足类不占优势,主要由小型浮游动物组成的浮游动物群落导致其生物量较低。S3和S4站位浮游动物的种类数和其它站位相当,但种群密度很低,所以其生物量最低。分析原因可能由于S3和S4站位的上游有较多大的炼油厂,水质污染较重所致。S6和S7站位浮游动物生物量都较前4个站位要高,因为在这2个站位中大型浮游动物桡足类在浮游动物群落中的比重有所提升,而且种群密度也较高。S5和S8站位浮游动物的种群密度虽然不是最高,但生物量却是8个站位中最高的,因为在这2个站位中桡足类占绝对优势,特别是大型浮游动物中华异水蚤为绝对优势种,所以生物量最高。

    与以往的调查结果相比[17-19],此次珠江口浮游动物种类组成和群落结构变化不大,浮游甲壳动物占优势,且桡足类种类和数量最多,在8月的丰水期,浮游幼虫也比较丰富,但中小型浮游动物的比例有所升高。在所调查的8个站位都出现的种类有长额象鼻溞、萼花臂尾轮虫和镰状臂尾轮虫。

    由于潮流携带河口半咸水种类进入口门内与淡水种类混杂,珠江口浮游动物群落明显可分为河口类群、近岸类群、和近外海类群。由于采样点设置及丰水期的原因,8个站位浮游动物主要以河口类群占优势,近岸类群和近外海类群都较少。在所鉴定出的20种桡足类中,有不少种类为咸淡水皆能生存的种类,大体分为3类:(1)中华异水蚤、短角异剑水蚤(Apocyclops royi)、矮小拟镖剑水蚤等种类在咸淡水中都能生存;(2)锥肢蒙镖水蚤(Mongolodiaptomus birulai)、长日华哲水蚤(Sinocalanus solstitialis)、球状许水蚤等种类在淡水、咸淡水及低盐度海水都能生存,但以淡水为主;(3)披针纺锤水蚤、海洋伪镖水蚤(Pseudodiaptomus marinus)以及火腿许水蚤在咸淡水中也能生存,但以海水为主。

    虽然以往有很多关于珠江口浮游动物的生态调查,但这些调查站位都比较偏向于珠江口的外海海域(伶仃洋及其以南海域),且未曾有过珠江8大入海口浮游动物的系统调查,所以该研究对于了解珠江口近岸的水域生态情况具有一定意义。为了能更好地预测河口浮游动物的分布情况和变动规律,在以后的研究中还应该增加采样点的数目和采样频度,为珠江口水域的生态管理提供依据。

  • 图  4   北部湾鱼类群落空间分布

    Figure  4.   Spatial distribution of fish comunity in Beibu Gulf

    图  1   北部湾海域渔业资源采样站位图

    Figure  1.   Map of sampling sites of fishery resources in Beibu Gulf

    图  2   2006年夏季北部湾鱼类采样站点的聚类分析、NMDS排序图 (距离:相关性;聚类方式:平均法)

    Figure  2.   CLUSTER and NMDS analysis of fish in Beibu Gulf in summer of 2006 (Distance: correlation; Cluster method: average)

    图  3   2008年夏季北部湾鱼类采样站点的聚类分析、NMDS排序图 (距离:相关性;聚类方式:平均法)

    Figure  3.   CLUSTER and NMDS analysis of fish in Beibu Gulf in summer of 2008 (Distance: correlation; Cluster method: average)

    图  5   拉尼娜事件前后主要优势种生物量的分布变化

    注:a、b对应拉尼娜事件前后竹荚鱼生物量;c、d对应拉尼娜事件前后蓝圆鲹生物量。

    Figure  5.   Distribution of biomass of dominant species before and after La Niña event

    Note: The a and b represent T. japonicus biomass before and after La Niña event; c and d represent D. maruadsi biomass before and after La Niña event.

    图  6   2006年2—7月和2008年2—7月北部湾海表温度

    Figure  6.   Sea surface temperature Beibu Gulf from February to July of 2006 and from February to July of 2008

    图  7   拉尼娜事件前后总生物量的分布变化

    Figure  7.   Distribution of total biomass before and after La Niña event

    表  1   北部湾2006和2008年夏季主要鱼类物种变化

    Table  1   Variation in dominant species in Beibu Gulf in summer of 2006 and 2008

    2006年夏季 Summer of 20062008年夏季 Summer of 2008
    种类 Species相对重要性指数 IRI种类 Species相对重要性指数 IRI
    发光鲷 Acropoma japonicum 4 341.33 竹荚鱼 Trachurus japonicus 7 745.79
    竹荚鱼 Trachurus japonicus 3 550.31 蓝圆鲹 Decapterus maruadsi 4 457.01
    黄斑鲾 Leiognathus bindus 470.08 发光鲷 Acropoma japonicum 1 607.03
    粗纹鲾 Leiognathus lineolatus 453.90 二长棘犁齿鲷 Evynnis cardinalis 624.04
    二长棘犁齿鲷 Evynnis cardinalis 439.46 刺鲳 Psenopsis anomala 220.78
    蓝圆鲹 Decapterus maruadsi 328.12 大头白姑鱼 Pennahia macrocephalus 152.78
    鹿斑鲾 Leiognathus ruconius 295.36 多齿蛇鲻 Saurida tumbil 151.55
    带鱼 Trichiurus lepturus 257.75 粗纹鲾 Leiognathus lineolatus 120.54
    大头白姑鱼 Pennahia macrocephalus 219.87
    棕腹刺鲀 Gastrophysus spadiceus 204.41
    多齿蛇鲻 Saurida tumbil 157.50
    Terapon theraps 142.28
    下载: 导出CSV

    表  2   北部湾鱼类群落各指数

    Table  2   Indexes of fish community in Beibu Gulf

    丰富度指数 Richness index多样性指数 Diversity index均匀度指数 Eveness index
    N0D'N1N2H'E1E2
    2006年夏季
    Summer of 2006
    均值 Mean 30.96 6.66 7.51 5.50 1.85 0.54 0.42
    标准误 SE 0.94 0.23 0.58 0.56 0.09 0.02 0.03
    置信区间 CI 29.08~32.84 6.19~7.13 6.35~8.67 4.38~6.61 1.67~2.02 0.49~0.59 0.36~0.48
    2008年夏季
    Summer of 2006
    均值 Mean 29.29 5.46 6.08 4.70 1.64 0.49 0.39
    标准误 SE 0.81 0.23 0.44 0.57 0.08 0.03 0.03
    置信区间 CI 27.66~30.91 5.00~5.92 5.20~6.95 3.56~5.83 1.48~1.81 0.43~0.54 0.33~0.44
    下载: 导出CSV
  • [1] 秦大河. 气候变化科学与人类可持续发展[J]. 地理科学进展, 2014, 33(7): 874-883. doi: 10.11820/dlkxjz.2014.07.002
    [2] 于道德, 宋静静, 吴海一, 等. 大型年长鱼类对海洋生态系统生物资源养护的作用[J]. 生态学报, 2021, 41(18): 7432-7439.
    [3] 徐姗楠, 郭建忠, 范江涛, 等. 夏季大亚湾鱼类群落结构与多样性[J]. 生态学杂志, 2020, 39(4): 1254-1264. doi: 10.13292/j.1000-4890.202004.036
    [4] 范江涛, 余为, 马胜伟, 等. 春季南海鸢乌贼栖息地时空分布及其年际差异分析[J]. 南方水产科学, 2022, 18(1): 1-9. doi: 10.12131/20210115
    [5]

    JEAN-CHARLES P, FABLAN B. The impact of climate change on the fish community structure of the eastern continental shelf of the Bay of Biscay[J]. ICES J Mar Sci, 2005, 62(7): 7225-7228.

    [6]

    ZSCHEISCHLER J, MARTIUS O, WESTRA S, et al. A typology of compound weather and climate events[J]. Nat Rev Earth Env, 2020, 1(7): 333-347. doi: 10.1038/s43017-020-0060-z

    [7]

    BERTRAND A, LENGAIGNE M, TAKAHASHI K, et al. El Niño Southern Oscillation (ENSO) effects on fisheries and aquaculture[R]. Rome: FAO, 2020: 31-101.

    [8] 冯志萍, 张艳婧, 陈新军, 等. 智利外海智利竹筴鱼与茎柔鱼栖息地变动对ENSO事件响应的差异[J]. 中国水产科学, 2021, 28(9): 1195-1207.
    [9]

    DOMINGUEZ E G, VAZQUEZ J R, PINA V G, et al. Changes in the structure of a coastal fish assemblage exploited by a small scale gillnet fishery during an El Niño-La Niña event[J]. Estuar Coast Shelf S, 2000, 51(6): 773-787. doi: 10.1006/ecss.2000.0724

    [10]

    GARCIA A M, VIEIRA J P, WINEMILLER K O, et al. Dynamics of the shallow-water fish assemblage of the Patos Lagoon estuary during cold and warm ENSO episodes[J]. J Fish Biol, 2001, 59(5): 1218-1238. doi: 10.1111/j.1095-8649.2001.tb00187.x

    [11] 官文江, 陈新军, 李纲, 等. 海表水温和拉尼娜事件对东海鲐鱼资源时空变动的影响[J]. 上海海洋大学学报, 2011, 20(1): 102-107.
    [12] 晏宏, 孙立广, 刘晓东, 等. 近50年来南海西沙群岛海域气候异常的ENSO效应[J]. 热带海洋学报, 2010, 29(5): 29-35. doi: 10.3969/j.issn.1009-5470.2010.05.005
    [13] 胡鹏, 陈文. 南海夏季风爆发与前期东亚冬季风异常的关系以及ENSO的作用[J]. 气候与环境研究, 2018, 23(4): 401-412. doi: 10.3878/j.issn.1006-9585.2017.17026
    [14] 邹玮, 徐峰, 张羽, 等. 南海近海面风场变化特征及其与ENSO的相关性研究[J]. 海洋气象学报, 2018, 38(3): 82-90.
    [15] 张公俊, 杨长平, 刘岩, 等. 北部湾防城港—钦州近岸海域鱼类群落格局及其与环境因子的关系[J]. 南方水产科学, 2022, 18(4): 20-33. doi: 10.12131/20210255
    [16] 张魁, 陈作志, 邱永松, 等. 北部湾短尾大眼鲷群体结构及生长、死亡和性成熟参数估计[J]. 热带海洋学报, 2016, 35(5): 20-28.
    [17] 王雪辉, 邱永松, 杜飞雁. 北部湾鱼类群落格局及其与环境因子的关系[J]. 水产学报, 2010, 34(10): 1579-1586.
    [18] 袁华荣, 陈丕茂, 贾晓平, 等. 北部湾东北部游泳生物资源现状[J]. 南方水产科学, 2011, 7(3): 31-38. doi: 10.3969/j.issn.2095-0780.2011.03.006
    [19] 蔡研聪, 陈作志, 徐姗楠, 等. 北部湾二长棘犁齿鲷的时空分布特征[J]. 南方水产科学, 2017, 13(4): 1-10. doi: 10.3969/j.issn.2095-0780.2017.04.001
    [20]

    CHEN Z Z, QIU Y S, XU S N. Changes in trophic flows and ecosystem properties of the Beibu Gulf ecosystem before and after the collapse of fish stocks[J]. Ocean Coast Manage, 2011, 54(8): 601-611. doi: 10.1016/j.ocecoaman.2011.06.003

    [21]

    WANG X H, QIU Y S, DU F Y. Roles of fishing and climate change in long-term fish species succession and population dynamics in the outer Beibu Gulf, South China Sea[J]. Acta Oceanol Sin, 2019, 38(10): 1-8. doi: 10.1007/s13131-019-1484-5

    [22]

    PLANKA E R. Ecology of the agamid lizard Amphibolurus isolepis in Western Australia[J]. Copeia, 1971, 3(3): 527-536.

    [23] 王雪辉, 杜飞雁, 邱永松, 等. 1980—2007年大亚湾鱼类物种多样性、区系特征和数量变化[J]. 应用生态学报, 2010, 21(9): 2403-2410. doi: 10.13287/j.1001-9332.2010.0350
    [24]

    MARGALEF R. Information theory in ecology[J]. Gen Syst, 1958, 3: 36-71.

    [25]

    WILHM J L. Use of biomass units in Shannon's formula[J]. Ecology, 1968, 49(1): 153. doi: 10.2307/1933573

    [26]

    PIELOU E C. The use of information theory in the study of ecological succession[J]. J Theor Biol, 1966, 10: 370-383. doi: 10.1016/0022-5193(66)90133-0

    [27]

    HILL M O. Diversity and evenness: a unifying notation and its consequences[J]. Ecology, 1973, 54: 427-432. doi: 10.2307/1934352

    [28]

    JIN X S, TANG Q S. Changes in fish species diversity and dominant species composition in the Yellow Sea[J]. Fish Res, 1996, 26(3/4): 337-352.

    [29]

    FIELD J G, CLARKE K R, WARWICK R M. Apractical strategy for analysing multi-species distribution patterns[J]. Mar Ecol Prog Ser, 1982, 8: 37-52. doi: 10.3354/meps008037

    [30]

    KHALAF M A, KOCHZIUS M. Changes in trophic community structure of shore fishes at an industrial site in the Gulf of Aqaba, Red Sea[J ]. Mar Ecol Prog Ser, 2002, 239: 287-299.

    [31]

    YU H L, YANG W Z, FANG G J. Relationships between community structure and environmental factors in Xixiakou artificial reef area[J]. J Ocean U China, 2020, 19(4): 883-894. doi: 10.1007/s11802-020-4298-3

    [32] 刘淑德, 线薇微. 三峡水库蓄水前后春季长江口鱼类浮游生物群落结构特征[J]. 长江科学院院报, 2010, 27(10): 82-87. doi: 10.3969/j.issn.1001-5485.2010.10.017
    [33]

    ABDALLAH L B, GAAMOUR A. Small pelagic fish assemblages in relation to environmental regimes in the Central Mediterranean[J]. Hydrobiologia, 2018, 821(1): 113-134. doi: 10.1007/s10750-018-3540-0

    [34]

    PINCINATE R, ASCHE F, OGLEND A. Climate change and small pelagic fish price volatility[J]. Climatic Change, 2020, 161(4): 591-599. doi: 10.1007/s10584-020-02755-w

    [35]

    ALBEIT J, NIQUEN M. Regime shifts in the Humboldt Current ecosystem[J]. Prog Oceanogr, 2004, 60(2/3/4): 201-222.

    [36] 袁兴伟, 刘尊雷, 程家骅, 等. 冬季东海外海鱼类群落特征及其对拉尼娜事件的响应[J]. 中国水产科学, 2014, 21(5): 1039-1047.
    [37] 李渊, 张静, 张然. 南沙群岛西南部和北部湾口海域鱼类物种多样性[J]. 生物多样性, 2016, 24(2): 166-174. doi: 10.17520/biods.2015203
    [38] 江睿, 王友绍. 粤东沿岸生态系统对夏季沿岸上升流响应的生态模型初探[J]. 生态科学, 2017, 36(1): 25-34. doi: 10.14108/j.cnki.1008-8873.2017.01.004
    [39] 林智涛. 南海北部与西部初级生产力影响因子探究[D]. 湛江: 广东海洋大学, 2017: 1-45.
  • 期刊类型引用(4)

    1. 王凯,王冬雪,张骄骄,杨洋,刘琳. 基于网络药理学与试验验证探究柴胡-川芎“异病同治”抑郁症和肝损伤的相关机制. 特产研究. 2025(03): 134-142+149 . 百度学术
    2. 涂传灯,林米妮,黄雅瑜,蔡树芸,张怡评. 复方中药在水产养殖中的应用. 中兽医医药杂志. 2024(01): 39-42 . 百度学术
    3. 闫学成,孙学亮,方珍珍,毕相东,张震,尤宏争,郭慧玲,陈成勋. 饲料中添加柴胡及其提取物对锦鲤幼鱼生长、生理生化、肝脏抗氧化及抗菌能力的影响. 饲料研究. 2024(02): 46-52 . 百度学术
    4. 何浩斌,黄燕华,周萌,梁日深. 鱼类肝细胞培养技术与应用研究进展. 浙江海洋大学学报(自然科学版). 2024(06): 539-549 . 百度学术

    其他类型引用(2)

推荐阅读
低盐水体so4 2−/cl− 胁迫下凡纳滨对虾生长、肝胰腺与鳃组织结构及酶活力比较
贺铮 et al., 南方水产科学, 2025
恩诺沙星及其代谢物环丙沙星在方斑东风螺体内药代动力学及残留消除规律研究
邓东 et al., 南方水产科学, 2024
溶藻菌czbc1在氯化物型盐碱水中对铜绿微囊藻的溶藻效果研究
胡晓娟 et al., 南方水产科学, 2024
抗副溶血弧菌卵黄抗体制备及其与不同血清型菌株交叉反应研究
陈静妮 et al., 南方水产科学, 2024
肝豆补肾汤通过sirt3/foxo3α通路调节褪黑素合成改善wilson病模型tx小鼠认知障碍
王路瑶 et al., 四川大学学报(医学版), 2025
大柴胡汤辅助急性结石性胆囊炎lc手术的效果分析
李方喜 et al., 华夏医学, 2025
Graveoline attenuates d-galn/lps-induced acute liver injury via inhibition of jak1/stat3 signaling pathway
He, Jia et al., BIOMEDICINE & PHARMACOTHERAPY, 2024
Salicylic acid enhances thermotolerance and antioxidant defense in trigonella foenum graecum l. under heat stress
Choudhary, Sana et al., HELIYON, 2024
Protective effect of alpha-linolenic acid on cisplatin induced ototoxicity in mice
INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2023
Investigating the herb-drug interaction between danhong injection and dapagliflozin in rats
INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2024
Powered by
图(8)  /  表(2)
计量
  • 文章访问数:  782
  • HTML全文浏览量:  184
  • PDF下载量:  79
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-05-17
  • 修回日期:  2022-07-25
  • 录用日期:  2022-08-27
  • 网络出版日期:  2022-09-06
  • 刊出日期:  2023-04-04

目录

/

返回文章
返回