Effects of nanometer selenium on immune protection and antioxidant ability of Eriocheir sinensis under hypoxia stress
-
摘要: 低氧胁迫会减弱中华绒螯蟹 (Eriocheir sinensis) 的免疫机能和抗氧化能力。为揭示纳米硒 (nano-Se) 对低氧胁迫下中华绒螯蟹的免疫保护作用及抗氧化调控机制,在基础饲料中添加不同水平 (0、0.1、0.2、0.4、0.8和1.6 mg·kg−1) 的纳米硒饲喂中华绒螯蟹90 d。饲喂实验结束后,进行低氧胁迫实验并注射嗜水气单胞菌 (Aeromonas hydrophila)。结果表明:1) 低氧胁迫24 h和低氧胁迫下感染嗜水气单胞菌24 h的蟹死亡率分别可达62.45%和100%,低氧胁迫12 h使血淋巴中血蓝蛋白浓度、血细胞数量、组织中超氧化物歧化酶 (SOD)、过氧化氢酶 (CAT)、谷胱甘肽过氧化物酶 (GSH-Px) 活性显著升高 (P<0.05),胁迫至第24小时有下降趋势;乳酸 (LD) 和丙二醛 (MDA) 浓度在低氧胁迫12~24 h持续上升。2) 饲料中添加适量 (0.1~0.4 mg·kg−1) 纳米硒可显著降低低氧胁迫下蟹死亡率和低氧胁迫下嗜水气单胞菌的致死率 (P<0.05),显著提高低氧胁迫下血蓝蛋白浓度和血细胞数量以及抗氧化酶 (SOD、CAT、GSH-Px) 活性,降低LD和MDA浓度 (P<0.05);添加0.8~1.6 mg·kg−1纳米硒加剧了低氧胁迫损伤。结果表明饲料中添加适量纳米硒可改善低氧胁迫下中华绒螯蟹的免疫功能和抗氧化能力,且添加水平以0.2 mg·kg−1为宜。Abstract: Hypoxia stress will weaken the immune function and antioxidant capacity of Eriocheir sinensis. In order to reveal the immune protection and anti-oxidation regulation mechanism of nanometer selenium (nano-Se) on E. sinensis under hypoxia stress, we had fed E. sinensis with different doses of nano-Se (0, 0.1, 0.2, 0.4, 0.8 and 1.6 mg·kg−1) in basic diets for 90 d. After the feeding, we conducted a hypoxia stress test and injected Aeromonas hydrophila under hypoxia stress. The results show that: 1) The mortality of E. sinensis under hypoxia stress for 24 h and that infected with A. hydrophila under hypoxia stress reached 62.45% and 100%, respectively. The levels of hemocyanin and the hemocyte count in crab hemolymph, and the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in crab tissues increased significantly under hypoxia stress for 12 h (P<0.05), as well as there was a decreasing trend under stress to 24 h. The contents of lactic acid (LD) and malondialdehyde (MDA) continued to rise from 12 to 24 h under hypoxia stress. 2) Appropriate addition amount (0.1−0.4 mg·kg−1) of nano-Se reduced the mortality of E. sinensis significantly and the lethality of A. hydrophila under hypoxia stress (P<0.05), increasing the levels of hemocyanin, the hemocyte count and the activities of antioxidant enzymes (SOD, CAT, GSH-Px) under hypoxia stress significantly, but decreasing the contents of LD and MDA (P<0.05). The addition of 0.8−1.6 mg·kg−1 nano-Se had aggravated hypoxia stress injury. These results indicate that appropriate addition of nano-Se to the diets can improve the decrease of immune response and antioxidant ability of E. sinensis under hypoxia stress, and the optimal dose of nano-Se in basal diets is 0.2 mg·kg−1.
-
Keywords:
- Eriocheir sinensis /
- Nanometer selenium /
- Hypoxia stress /
- Immunity /
- Antioxidant
-
宽口裂腹鱼 (Schizothorax eurystomus) 属于鲤形目、鲤科、裂腹鱼亚科、裂腹鱼属,主要分布于土库曼斯坦和乌兹别克斯坦的阿姆河,乌兹别克斯坦、塔吉克斯坦和哈萨克斯坦的锡尔河[1],中国新疆北疆的伊犁河流域[2],南疆的阿克苏河、木扎提河、克孜尔河、渭干河、克孜尔水库、东方红水库、塔什库尔干河、叶尔羌河与提孜那普河,曾是中国新疆渔业产区的主要经济鱼类[3]。近年来,由于捕捞强度过大,生态环境遭到破坏,宽口裂腹鱼的种群数量明显下降,现已被列入新疆维吾尔自治区保护鱼类 [新疆维吾尔自治区重点保护水生野生动物名录〔新政发 (2004) 67号〕。关于宽口裂腹鱼的研究多集中于资源分布与分类[1-6]、外部形态[7-9]、不同组织RNA提取质量[10]、线粒体基因组全序列分析[11]、系统发育[12-13]等方面。目前,国内外学者在鱼类消化系统的胚后发育[14-16]、形态学、组织学与组织化学[17]、消化酶活性[18]、结构特征与食性的关系[19]等方面也开展了详细的研究,但尚未见有关宽口裂腹鱼消化系统外部形态与组织结构的相关报道,其消化器官形态结构与食性相适应方面的研究亦未见报道。因此,本文以宽口裂腹鱼为研究对象,运用解剖学方法和连续石蜡切片技术,研究其消化系统组织结构特征,旨在为宽口裂腹鱼消化系统的组织结构特征与其食性相适应性提供理论依据,丰富宽口裂腹鱼的基础生物学内容,为其人工繁殖和养殖研究奠定基础,从而有效保护该物种和塔里木河流域生物多样性。
1. 材料与方法
1.1 试验材料
笔者课题组于2017年6月,采用拖网在新疆渭干河收集宽口裂腹鱼样本66尾,现场进行体长 [(179.07±35.79) mm] 和体质量 [(76.26±49.23) g] 等常规生物学测量,活体运回实验室暂养1周后,随机取10尾健康鱼,用于消化系统解剖与组织学观察。
1.2 试验方法
活体解剖先观察颌齿、舌、鳃耙数、咽喉齿、口裂大小等特征,再取食道、肠 (前、中、后)、肝胰脏组织,分别固定于波恩氏液,固定时间24 h,组织固定后用70%乙醇清洗多余的波恩氏液,再保存于70%乙醇中备用。梯度乙醇脱水,二甲苯透明,连续石蜡切片,切片厚度为5~7 μm,HE染色,中性胶封片,Olympus显微镜下观察拍照。
用Image J软件测量10个个体肠道黏膜褶皱高度、黏膜下层、肌肉层 (内肌层、外肌层) 和浆膜层的厚度,并计算100 μm肠道黏膜上皮中杯状细胞、柱状上皮、淋巴细胞的数量。其中,黏膜褶皱高度取其顶端至基部凹陷处的垂直距离;黏膜下层厚度为肌层到黏膜层的垂直距离;肌肉层厚度分别测量内肌层和外肌层的厚度。试验数据采用Excel 2010及SPSS 22.0软件进行统计与分析。
2. 结果
2.1 消化系统解剖特征
宽口裂腹鱼消化系统由消化管和消化腺两部分组成,消化管包括口咽腔、食道、肠、肛门,消化腺则为弥散型肝胰腺 (图1-a)。
图 1 宽口裂腹鱼消化系统的解剖观察a. 消化系统解剖图;b. 口位;c. 咽齿;d. 消化道;A. 肛门;P. 腹膜;G. 性腺;I. 肠道;H. 肝胰腺;SN. 吻部;C. 角质;RB. 吻须;MB. 颌须;PT. 咽喉齿;HO. 弯钩;OE. 食道;FG. 前肠;MG. 中肠;HG. 后肠Figure 1. Anatomical observation of digestive system of S. eurystomusa. Dissection of digestive system; b. Mouth position; c. Pharyngeal teeth; d. Digestive tract; A. Anus; P. Peritonaeum; G. Gonad; I. Intestine; H. Hepatopancreas; SN. Snout; C. Cutin; RB. Rostra barbell; MB. Maxillary barbell; PT. Pharyngeal teeth; HO. Hooks; OE. Oesophageal; FG. Foregut; MG. Midgut; HG. Hindgut宽口裂腹鱼须2对,口下位,口裂小,口内不具颌齿、口腔齿和游离的舌。口须和下颌角质发达 (图1-b)、咽喉齿 (2.3.5/5.3.2) 末端有较发达的弯钩 (图1-c)、鳃耙稀疏,食道粗短,食道与鳔之间有鳔管相连。肠道盘曲在腹腔内,肠道弯曲处比其他部位略细,共3个弯曲 (图1-d)。肠道黏膜层向肠管内表面突出形成许多Z形的黏膜褶皱。肠道由发达的肠系膜与腹腔壁相连,肠系膜上有大量的脂肪包裹肠壁。腹膜为黑色。肠长是体长的 (2.55±0.36) 倍。肝胰脏分左右两叶,每叶分支借脂肪和肠系膜包绕于消化管外。胆囊绿色,埋于肝胰脏内。
2.2 消化管的组织结构
宽口裂腹鱼消化管壁均由黏膜层、黏膜下层、肌层、浆膜4层组成,主要差别在黏膜层和肌层。食道黏膜上皮为复层扁平上皮,上皮间分布有大量杯状细胞;前肠和中肠黏膜上皮为单层柱状上皮,明显可见其间有刷状缘、杯状细胞和淋巴细胞分布;后肠黏膜上皮为假复层柱状上皮,其间亦有杯状细胞核淋巴细胞分布,且杯状细胞明显多于前肠和中肠。食道肌层为内环外纵的骨骼肌;前肠肌层为内环外纵的平滑肌;中肠和后肠为内螺旋外环行的平滑肌。
2.2.1 食道
食道黏膜上皮为复层扁平上皮 (图2-a),表层为扁平上皮,中层细胞呈多角形,基层细胞呈单层立方或矮柱状。复层扁平上皮细胞间分布有4~8层呈空泡状的杯状细胞,某些部位可见杯状细胞从基底层一直抵达表层扁平上皮。上皮下方是固有膜,由较细密的结缔组织构成 (图2-b)。固有膜缺少黏膜肌。黏膜下层为松散的结缔组织,食管前段的黏膜下层含大量纵行骨骼肌纤维 (图2-c),部分可伸向固有膜中 (图2-a),因此固有膜与黏膜下层界限不清。食道后段骨骼肌纤维逐渐减少,近肠处消失。肌层为内环行外纵行的骨骼肌束组成,内环肌较厚 (图2-a、d)。浆膜由结缔组织及其外的单层扁平上皮组成 (图2-e)。
图 2 宽口裂腹鱼消化系统显微图a. 食道横切;b. 食道黏膜上皮;c. 食道固有膜与黏膜下层;d. 食道肌层;e. 食道肌层与浆膜;f. 前肠肠绒毛;g. 前肠肌层与浆膜;h. 中肠横切;i. 中肠肠绒毛;j. 中肠固有膜、肌层与浆膜;k. 后肠横切;l. 后肠肠绒毛;m. 肝胰脏;n. 肝脏;o. 胰脏;BB. 纹状缘;CSM. 环形骨骼肌;GC. 杯状细胞;LP. 固有膜;LSM. 纵形骨骼肌;MC. 肌肉层;MF. 黏膜褶皱;M. 黏膜层;MM. 黏膜肌;S. 浆膜;SE. 复层黏膜上皮;SMC. 黏膜下层;CL. 中央乳糜管;SCE. 单层柱状黏膜上皮;MFB. 肌纤维束;SMS. 骨骼肌;L. 淋巴细胞;RC. 红细胞;SM. 平滑肌;CSMM. 环形平滑肌;LSMM. 纵行平滑肌;MT. 肠系膜;HSM. 螺形平滑肌层;BC. 毛细血管;PIV. 初级肠绒毛;SIV. 次级肠绒毛;CN. 细胞核;LV. 肝脏;CV. 中央静脉;HS. 肝血窦;PA. 胰脏腺泡;PI. 胰岛;PC. 胰岛细胞;ID. 闰管;HC. 肝细胞;KC. 肝巨噬细胞;HSEC. 肝血窦内皮;PS. 窦周隙;AC. 脂肪细胞Figure 2. Microstructure of digestive system of S. eurystomusa. Transverse section of esophagus; b. Epithelium of esophageal mucosa; c. Lamina propria and submucosa of esophagus; d. Muscularis of esophagus; e. Muscularis and serosa of esophagus; f. Intestinal villus of foregut; g. Muscularis and serosa of foregut; h. Transverse section of midgut; i. Intestinal villus of midgut; j. Lamina propria, muscularis and serosa of midgut; k. Transverse section of hindgut; l. Intestinal villus of hindgut; m. Epatopancreas; n. Liver; o. Pancreas; BB. Brush border; CSM. Circular layers of striated muscle; GC. Goblet cell; LP. Lamina propria; LSM. Longitudinal layers of striated muscle; MC. Muscular coat; MF. Mucosal fold; M. Mucosa; MM. Muscularis mucosa; S. Serosa; SE. Stratified epithelium; SMC. Submucosa; CL. Central lacteal; SCE. Single columnar epithelium; MFB. Muscular fibril beam; SMS. Skeletal muscle; L. Lymphocyte; RC. Red cell; SM. Smooth muscle; CSMM. Circular layers of smooth muscle; LSMM. Longitudinal layers of smooth muscle; MT. Mesentery;HSM. Helical layers of smooth muscle; BC. Blood capillary; PIV. Primary intestinal villus; SIV. Secondary intestinal villus; CN. Cell nucleus; LV. Liver; CV. Central veins; HS. Hepatic sinusoid; PA. Pancreas acinus; PI. Pancreatic islets; PC. Islet cell; ID. Intercalated duct; HC. Hepatocyte; KC. Kupffer cells; HSEC. Hepatic sinusoidal endothelial cell; PS. Perisinusoidal space; AC. Adipocyte2.2.2 前肠
黏膜上皮细胞为单层柱状,主要由高柱状的吸收细胞构成,长椭圆形核位于柱状细胞的基部偏下,细胞核内核仁明显,因细胞排列紧密,椭圆形的细胞核呈上下2~3层分布,吸收细胞游离面的刷状缘明显 (图2-f)。黏膜上皮中除吸收细胞外,还含有呈高脚杯样的杯状细胞和核圆球形染成蓝色的淋巴细胞 (图2-f)。淋巴细胞浸润于黏膜上皮细胞间,杯状细胞数量相对吸收细胞较少,散于吸收细胞之间。固有膜中有毛细血管分布,管内血细胞可见,未见黏膜肌,固有膜与黏膜下层界限不清 (图2-f)。肌层为外纵、内环2层平滑肌,其间有少量疏松结缔组织,可见肌间神经丛及毛细血管内的红细胞 (图2-g)。外膜为较薄的浆膜,是由较为疏松的结缔组织和间皮组成 (图2-g)。
2.2.3 中肠
中肠结构与前肠相似,也是由黏膜层、肌层、黏膜下层和浆膜组成 (图2-h)。单层柱状上皮细胞变矮,细胞核随之变成卵圆形,核仁明显,杯状细胞和淋巴细胞增多 (图2-i)。黏膜下层由结缔组织组成,其间可见毛细血管及管内的红细胞。肌层有2层,均由平滑肌组成,但内肌层的平滑肌呈螺旋形排列,外肌层呈环形排列 (图2-j)。浆膜外可见肠系膜 (图2-h)。
2.2.4 后肠
后肠黏膜层上皮与前肠、中肠差异较大。由切片可见,肠绒毛有初级分支和次级分支 (图2-k)。柱状上皮的细胞核呈多层排列,和假复层纤毛柱状上皮细胞的细胞核排列类似,表层为高柱状上皮细胞,深部为较矮的基底细胞;高柱状上皮细胞中分布较多的杯状细胞,基底层细胞中分布有大量淋巴细胞 (图2-l);上皮表面较平坦,微绒毛较短而密,细胞界限不清楚。固有膜中有丰富的毛细血管,而黏膜下层中较少。肌层与中肠类似,有内螺旋外环行的平滑肌组成。浆膜层很薄,由少量结缔组织和间皮组成 (图2-k)。
2.3 消化管的组织形态指数
消化管中食道中黏膜层与黏膜下层界限不清 (图2-a),因此消化管组织形态指数只统计前、中、后肠各层高度 (表1) 及其黏膜上皮中柱状上皮、淋巴细胞及杯状细胞的数量 (表2)。
表 1 宽口裂腹鱼肠道组织形态指数Table 1. Features of tissue on digestive tract of S. eurystomusμm 项目
Item前肠
Foregut中肠
Midgut后肠
Hindgut黏膜褶皱高
Spiral valve height1 207.36±170.85ab 1 333.96±239.79a 979.14±275.83c 黏膜下层厚
Sub mucosa thick382.37±110.10a 192.12±68.80cd 144.01±37.59cd 内肌层厚
Intimal muscle thick499.37±85.32a 290.08±96.81c 155.70±37.44e 外肌层厚
Outer muscle thick166.06±16.52a 82.72±32.41c 80.22±25.28c 浆膜层厚
Serosa thick70.48±17.62a 39.90±15.44c 28.31±8.91c 注:同一肠道性状同行肩标有相同字母者表示组间差异不显著 (P>0.05),字母相邻者表示组间差异显著 (P<0.05),字母相隔者表示组间差异极显著 (P<0.01);下表同此 Note: The same intestinal traits with the same superscript letters indicate no significant difference between groups (P>0.05), while there was significant difference for those with adjacent letters (P<0.05) and very significant difference for those with separated letters (P<0.01); the same case in the following table 表 2 宽口裂腹鱼肠道黏膜上皮各类细胞的相对密度比较Table 2. Number of mucosal epithelial cells in digestive tract of S. eurystomus100 μm 项目
Item前肠
Foregut中肠
Midgut后肠
Hindgut柱状上皮
Cylindrical epithelium18.80±3.71a 30.70±6.29c 53.50±7.04e 淋巴细胞 Lymphocyte 10.10±2.81a 16.40±5.56b 23.50±6.80e 杯状细胞 Goblet cell 3.30±0.67a 6.70±2.45c 7.20±2.20c 黏膜褶皱高为中肠>前肠>后肠,但前肠与中肠差异不显著,与后肠差异显著,中肠与后肠差异极显著;黏膜下层厚为前肠>中肠>后肠,前肠与中肠、后肠均差异极显著,但中肠和后肠差异不显著;内肌层厚为前肠>中肠>后肠,三者两两间均差异极显著;外肌层厚为前肠>中肠>后肠,前肠与中肠、后肠均差异极显著,中肠与后肠差异不显著;浆膜层厚为前肠>中肠>后肠,前肠与中肠、后肠均差异极显著,中肠与后肠差异不显著(表1)。
100 μm长度的肠道黏膜上皮中,柱状上皮的数量为后肠>中肠>后肠,且三者数量均差异极显著;淋巴细胞数量为后肠>中肠>后肠,且前肠与中肠差异显著,前肠、中肠与后肠均差异极显著;杯状细胞数量为后肠>中肠>后肠,前肠与中肠、后肠均差异极显著,中肠与后肠差异不显著(表2)。
2.4 消化腺的组织结构
宽口裂腹鱼的消化腺主要为肝胰脏,胰腺弥散分布于肝脏中 (图2-m)。肝胰脏由实质和间质两部分组成,外包结缔组织的被膜,被膜伸入实质,将实质分成许多小叶,小叶间界限不明显,即肝小叶不明显。肝小叶的中央静脉形状、大小不一,但清晰可见。中央静脉周围的肝细胞呈放射状排列,组成肝细胞索 (图2-n)。肝细胞形状不规则,细胞排列紧密,界线不清,核大而圆呈空泡状,核仁明显,位于细胞中央。脂肪细胞丰富,散在分布于肝细胞间,经HE染色后,呈空泡状,扁圆形的细胞核被挤于细胞一侧 (图2-n)。相邻肝细胞索间为肝血窦,肝血窦狭窄、形状各异。高倍镜下可见肝血窦内皮细胞为单层扁平上皮,血窦间可见肝巨噬细胞、淋巴细胞和红细胞,肝血窦内皮与肝细胞索围成窦周隙 (图2-n)。胰腺呈条索状分布在肝脏中,由外分泌部和内分泌部组成 (图2-m)。外分泌部的腺泡细胞呈立方形或锥体形,腺泡细胞内有许多粗大紫红色的酶原颗粒将圆形的细胞核挤向细胞的一侧,细胞染色较深,核仁明显。可观察到腺泡细胞间由单层扁平上皮构成的闰管和静脉管。内分泌部的胰岛染色较浅呈淡粉色,胰岛细胞呈团索状盘绕在一起,细胞间遍布毛细血管和红细胞 (图2-o)。
3. 讨论
3.1 消化系统形态特征与食性的适应性
根据殷名称[20]对鱼类食性的分类可知,鱼类口的大小及比肠长 (肠长与体长的比例) 与食性的关系密切。一般肉食性鱼类口裂大,肠无弯曲或个别弯曲;草食性和杂食性鱼类肠盘曲较多。林浩然[21]报道了鲢 (Hypophthalmichthys molitrix)、鳙 (Aristichthys nobilis)、鲤 (Cyprinus carpio)、草鱼 (Ctenopharyngodon idellus) 和鳡 (Elopichthys bambusa) 5种鱼类中,肉食性鱼类肠没有盘曲,比肠长小于1;草食性和杂食性鱼类肠盘曲复杂,比肠长为1.64~7.77,肠长与盘曲数与具体的食物组成有关。王起等[22]研究指出怒江裂腹鱼 (S. nukiangensis) 和裸腹叶须鱼 (Ptychobarbus kaznakovi) 的比肠长分别为 2.96±0.92和 1.46±0.39,热裸裂尻鱼 (Schizopygopsis thermalis) 比肠长为3.41±1.26,前二者为杂食性偏动物食性,后者为杂食性偏植食性。宽口裂腹鱼口下位、口裂小、口不能伸缩,口须发达、下颌上的角质锐利,利于刮食砂石底质上的底栖硅藻和摄取水生昆虫;咽喉齿 (2.3.5/5.3.2) 与角质垫的磨擦有助于磨碎吞食的水生昆虫;咽喉齿末端有较发达的弯钩,可撕裂水生昆虫,肠长是体长的 (2.55±0.36) 倍。虽然同为杂食性鱼类,但不同鱼类具体的食物偏好有所不同,从宽口裂腹鱼消化道食物组成可知,其食性与怒江裂腹鱼不同,而与热裸裂尻鱼相似,均为杂食偏植食性鱼类。
3.2 消化系统组织结构特征与食性的适应性
宽口裂腹鱼食道粗短,食道黏膜层有发达的皱褶,在黏膜下层和肌层中具有伸展性强的横纹肌,能迅速而强劲地收缩,从而有力地推动较大食物团进入消化管下一段。食道黏膜上皮为复层扁平上皮,黏液细胞4~8层,多于大刺鳅 (Mastacembelue armatus)[23]的1~3层、中华刺鳅 (Sinobdella sinensis)[19]和黄石爬 (Euchiloglanis kishinouyei)[24]的2~4层、泥鳅 (Missgurnus arguillicaudatus)[25]的3~4层、切尾拟鲿 (Pseudobagrus truncatus)[26]和太门哲罗鱼 (Hucho taimen)[27]的3~5层,而黄唇鱼 (Bahaba flavolabiata)[28]的食道黏膜上皮中则没有黏液细胞分布,其食道主要作用是容纳食物,并将食物输送到胃里。对于食道黏膜上皮中有黏液细胞的鱼类,食道除容纳和输送食物外,还起润滑的作用[29]。宽口裂腹鱼在利用锐利的角质刮取砾石上的藻类时会携带大量泥沙,这些大量的黏液细胞可分泌丰富的黏液,将泥沙和藻类一起混合成润滑的团块,利于吞咽以减少食物对黏膜的机械损伤,因此宽口裂腹鱼食道黏膜层中的粘液细胞层数多余其他几种鱼类,这与其杂食性偏植食性的特点相适应。
宽口裂腹鱼食道的黏膜下层中有发达的纵行骨骼肌纤维,食道前段黏膜下层的骨骼肌纤维可伸达固有膜中,该结构可对食物进一步物理消化,这和云南盘 (Discogobio yunnanensis) 相似[17]。食道肌肉层的骨骼肌后段厚于前段,该结构在前人的研究中尚未见报道,这种结构结合4~8层黏液细胞分泌的大量黏液,更有利于将食物运送至肠管中。此外,食道肌肉层内环外纵的骨骼肌与黄唇鱼[29]食道肌肉层内纵外环的骨骼肌排列方式相反,这可能与宽口裂腹鱼为杂食性鱼类、而黄唇鱼是肉食性鱼类有关。宽口裂腹鱼的杯状细胞自前肠至后肠逐渐增多,这与同样具有锐利角质的湘华鲮 (Sinilabeo decorus tungting) 后肠黏液细胞减少相反[30],这种现象可能与湘华鲮为碎屑食性、而宽口裂腹鱼为杂食性有关。
宽口裂腹鱼肝胰脏的组织结构中肝小叶不明显,脂肪细胞丰富,中央静脉、肝血窦明显。鱼类肝脏中脂肪的积累始于仔鱼期,幼鱼期后肝脏成为主要贮脂场所[31];在鱼类的不同性别中,脂肪数量和作用也不同。如食蚊鱼 (Gambusia affinis) [32]雄性肝细胞排列紧密,肝细胞数量少,而雌性肝细胞排列疏松,其间的脂肪细胞数量多,这可为雌性的生殖活动提供足够的储备能量。宽口裂腹鱼肝脏中的脂肪细胞从生活史的哪个阶段开始积累,数量在不同生活阶段和不同性别间的变化规律还需进一步研究。
宽口裂腹鱼胰腺弥散分布在肝脏中,外分泌部的腺泡细胞游离端有大量红色粗大酶原颗粒,说明细胞分泌活动旺盛,酶原颗粒始于仔鱼开口时具有蛋白质分解酶的作用,这与宽口裂腹鱼杂食性相适应。宽口裂腹鱼胰腺的内分泌部胰岛周围毛细血管丰富,有利于分泌物及时运送至全身各个器官系统;胰岛部染色较浅,呈嗜酸性,这与哲罗鱼[33]的胰腺内分泌部相反;而与驼背鲈 (Cromileptes altivelis)[34]的胰岛细胞染色结果相似。由上所述,宽口裂腹鱼消化系统形态学、组织学与食性具有适应性。
3.3 肠道的分段
宽口裂腹鱼无胃、有鳔管,食道与肠的分界点即为鳔管与消化道的连接点,这与秉志[35]的观点一致。而有关鲤科鱼类肠道分段的问题,不同学者见解不同。Escaffre等[36]、倪达书和洪雪峰[37]将肠道分为前、中、后三段;Mevay和Kaan[38]把肠管分为肠球和肠本部两部分;林浩然[21]认为没有分段的必要,食道之后即是肠。Petrinec等[39]在研究白斑狗鱼 (Esox lucius L.) 和欧鲶 (Silurus glanis L.) 时也认为这两种鱼的胃后即为肠。何敏[40]在研究重口裂腹鱼 (S. davidi) 时发现,肠管各段管径粗细、黏膜皱褶和上皮细胞的高矮、肌肉层内环肌层数、黏液细胞与内分泌细胞的数量均有明显不同,从而将重口裂腹鱼的肠道分成前、中、后三段。Purushothaman等[41]则依据尖吻鲈 (Lates calcarifer) 杯状细胞数量的明显差异将肠道分成前肠、中肠、后肠、前直肠和后直肠。本研究发现宽口裂腹鱼肠的前段黏膜上皮为高柱状吸收细胞,杯状细胞少;中肠黏膜上皮为矮柱状细胞,杯状细胞增多;后肠黏膜上皮似假复层柱状上皮,杯状细胞数量最多,由此可见宽口裂腹鱼肠的黏膜上皮在不同肠段杯状细胞数量不同,而上皮细胞高矮与形态也各不同。此外,宽口裂腹鱼各肠段的肌层也有差异,前段为内环外纵的平滑肌,中段和后段则为内螺旋外环的平滑肌,这在其他鱼类中尚未见报道。因此,为更好地反映出各肠段的组织机能特性,本研究结果支持倪达书和洪雪峰[37]及何敏[40]的分段方法,即将宽口裂腹鱼肠道分为前、中、后3段。
-
图 1 纳米硒对低氧胁迫下中华绒螯蟹血淋巴耐低氧指标的影响 (N=6)
注:柱上不同英文字母表示相同低氧胁迫时间下显著差异 (P<0.05);*. 与对照组差异显著 (P<0.05);后图同此。
Figure 1. Effects of nano-Se on hemolymph hypoxia tolerance indexes of E. sinensis under hypoxia stress (N=6)
Note: Different lowercase letters on the bar indicate significant difference at the same hypoxia stress time (P<0.05); *. Significant difference compared with the control group (P<0.05); the same case in the following figures.
表 1 基础饲料配方组成
Table 1 Ingredients of composition of basal diets
原料
Ingredient质量分数
Mass fraction/%鱼粉 Fish meal 17 棉粕 Cotton seed meal 17 菜粕 Rape seed meal 16 次粉 Wheat flour 10.5 豆粕 Soybean meal 10 玉米 Corn 9 米糠 Rice bran 5 黏合剂 Adhesive 1 血粉 Blood meal 3 虾壳粉 Shrimp shell meal 3 豆油+菜油 (1∶1) Soybean oil+ Rapeseed oil 2 磷酸二氢钙 Ca(H2PO4)2 1.5 沸石粉 Zeolite powder 2 河蟹饲料添加剂 Crab feed additive 1 蟹用多维① Crab vit premix 1 蟹用多矿② Crab min premix 1 注:①. 每100 g蟹用多维预混料中含:维生素E 2.0 g、维生素C 3.0 g、维生素A 0.6 g、维生素D3 0.08 g、维生素B1 0.07 g、维生素B2 0.14 g、维生素B3 0.28 g、维生素B5 0.01 g、维生素B6 0.08 g、维生素B7 0.05 g、维生素B11 0.02 g、维生素H 0.04 g、烟酸0.3 g、叶酸0.05 g、氯化胆碱0.5 g、泛酸钙0.25 g、生物素0.05 g、肌醇0.7 g;②. 每100 g蟹用多矿预混料中含:磷酸二氢钠3.5 g、磷酸二氢钾6.0 g、碳酸钙3.5 g、氯化钾0.6 g、七水合硫酸镁3.2 g、六水合氯化铝0.55 g、七水合硫酸锌0.157 g、柠檬酸铁0.019 g、四水合硫酸锰0.043 g、碘化钾0.016 g、氯化铜0.014 g、六水合氯化钴0.055 g、乳酸钙5.15 g。 Note: ①. Per 100 g of crab multi vitamin premix contains: ${\rm{V}}_{\rm{E}} $ 2.0 g , ${\rm{V}}_{\rm{C}} $ 3.0 g, ${\rm{V}}_{\rm{A}} $ 0.6 g, ${\rm{V}}_{{\rm{D}}_3}$ 0.08 g, ${\rm{V}}_{{\rm{B}}_1}$ 0.07 g, ${\rm{V}}_{{\rm{B}}_2}$ 0.14 g, ${\rm{V}}_{{\rm{B}}_3}$ 0.28 g, ${\rm{V}}_{{\rm{B}}_5}$ 0.01 g, ${\rm{V}}_{{\rm{B}}_6}$ 0.08 g, ${\rm{V}}_{{\rm{B}}_7}$ 0.05 g, ${\rm{V}}_{{\rm{B}}_{11}}$ 0.02 g, VH 0.04 g, niacin 0.3 g, folic acid 0.05 g, choline chloride 0.5 g, calcium pantothenate 0.25 g, biotin 0.05 g, inositol 0.7 g; ②. Per 100 g of crab multi mineral premix contains: NaH2PO4 3.5 g, KH2PO4 6.0 g, CaCO3 3.5 g, KCl 0.6 g, MgSO4·7H2O 3.2 g, AlCl3·6H2O 0.55 g, ZnSO4·7H2O 0.157 g, FeC6H5O7 0.019 g, MnSO4·4H2O 0.043 g, KI 0.016 g, CuCl2 0.014 g, CoCl2·6H2O 0.055 g, C6H10CaO6 5.15 g. 表 2 纳米硒对低氧胁迫下中华绒螯蟹死亡率的影响 (N=10)
Table 2 Effects of nano-Se on mortality rate of E. sinensis under hypoxia stress (N=10)
纳米硒添加水平
Level of nano-Se/(mg·kg−1)死亡率
Mortality rate/%免疫保护率
Immune protection rate/%0 h 12 h 24 h 12 h 24 h 0 0 12.66±3.33c 62.45±8.57c* — — 0.1 0 6.25±1.50b 44.39±4.88b 50.63 28.92 0.2 0 2.50±0.30a 25.62±3.33a 80.25 58.98 0.4 0 12.34±2.05c 31.55±3.29b 2.53 49.48 0.8 0 19.36±2.67d 62.66±6.32c −52.92 −0.34 1.6 0 20.25±5.55d 87.73±10.34d −59.95 −40.48 注:同列不同上标字母表示差异显著 (P<0.05);*. 与对照组 (0 mg·kg−1纳米硒低氧胁迫0 h组) 差异显著 (P<0.05);—. 无数据;后表同此。 Note: Different superscript letters within the same column indicate significant difference (P<0.05); *. Significant difference compared with the control group (0 mg·kg−1 nano-Se group under hypoxia stress for 0 h) (P<0.05); —. No data. The same case in the following tables. 表 3 纳米硒对低氧胁迫下嗜水气单胞菌致死率的影响 (N=10)
Table 3 Effects of nano-Se on lethality of A. hydrophila under hypoxia stress (N=10)
纳米硒添加水平
Level of nano-Se/(mg·kg−1)嗜水气单胞菌致死率
Lethality of A. hydrophila/%免疫保护率
Immune protection rate/%0 h 12 h 24 h 12 h 24 h 0 0 50.36±6.72c* 100±0c* — — 0.1 0 25.22±3.51b 87.47±5.95b 49.92 12.53 0.2 0 12.48±2.39a 56.82±7.31a 75.22 43.18 0.4 0 25.78±3.64b 81.43±2.5b 48.81 18.57 0.8 0 50.33±4.52c 100±0c 0.06 0 1.6 0 75.29±6.15d 100±0c −49.5 0 -
[1] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021: 27-46. [2] BAO J, LI X D, XING Y N, et al. Effects of hypoxia on immune responses and carbohydrate metabolism in the Chinese mitten crab, Eriocheir sinensis[J]. Aquac Res, 2020, 51(7): 2735-2744. doi: 10.1111/are.14612
[3] GUO K, ZHAO Z G, LUO L, et al. Immune and intestinal microbiota responses to aerial exposure stress in Chinese mitten crab (Eriocheir sinensis)[J]. Aquaculture, 2021, 541: 736833. doi: 10.1016/j.aquaculture.2021.736833
[4] GRAVINESE P M. The tolerance of juvenile stone crabs to hypoxia: size matters[J]. J Exp Mar Biol Ecol, 2020, 523: 151269. doi: 10.1016/j.jembe.2019.151269
[5] 阮雯, 纪炜炜, 郑亮, 等. 鱼类低氧胁迫及营养调控和应对研究进展[J]. 海洋渔业, 2020, 42(6): 751. doi: 10.3969/j.issn.1004-2490.2020.06.011 [6] ADENIRAN S O, ZHENG P, FENG R, et al. The antioxidant role of selenium via GPx1 and GPx4 in LPS-induced oxidative stress in bovine endometrial cells[J]. Biol Trace Elem Res, 2022, 200(3): 1140-1155. doi: 10.1007/s12011-021-02731-0
[7] NKENGFACK G. Selenium and immunity[M]//MAHMOUDI M. Nutrition and immunity. Cham: Springer, 2019: 159-165.
[8] YUAN L X, ZHANG R, MA X Z, et al. Selenium accumulation, antioxidant enzyme levels, and amino acids composition in Chinese mitten crab (Eriocheir sinensis) fed selenium-biofortified corn[J]. Nutrients, 2018, 10(3): 318. doi: 10.3390/nu10030318
[9] WANG X D, SHEN Z H, WANG C L, et al. Dietary supplementation of selenium yeast enhances the antioxidant capacity and immune response of juvenile Eriocheir sinensis under nitrite stress[J]. Fish Shellfish Immunol, 2019, 87: 22-31. doi: 10.1016/j.fsi.2018.12.076
[10] NEAMAT-ALLAH A N F, MAHMOUD E A, ABD EL HAKIM Y. Efficacy of dietary nano-selenium on growth, immune response, antioxidant, transcriptomic profile and resistance of Nile tilapia, Oreochromis niloticus against Streptococcus iniae infection[J]. Fish Shellfish Immunol, 2019, 94: 280-287. doi: 10.1016/j.fsi.2019.09.019
[11] 侍苗苗, 秦粉菊, 袁林喜, 等. 纳米硒对中华绒螯蟹生长性能、硒含量和营养组成的影响[J]. 饲料工业, 2015, 36(10): 21-25. doi: 10.13302/j.cnki.fi.2015.10.006 [12] 王璀红. 碘量法测定溶解氧[J]. 辽宁化工, 2012, 41(1): 107-108. doi: 10.3969/j.issn.1004-0935.2012.01.032 [13] NICKERSON K W, van HOLDE K E. A comparison of molluscan and arthropod hemocyanin-I. Circular dichroism and absorption spectra[J]. Comp Biochem Phys B, 1971, 39(4): 855-872. doi: 10.1016/0305-0491(71)90109-X
[14] 杨明, 孙盛明, 傅洪拓, 等. 低氧和复氧对日本沼虾抗氧化酶活力及组织结构的影响[J]. 中国水产科学, 2019, 26(3): 493-503. [15] 张静, 陈红莲, 鲍俊杰, 等. 水产养殖中嗜水气单胞菌拮抗菌的研究进展[J]. 江苏农业科学, 2020, 48(17): 21-33. [16] STRATEV D, ODEYEMI O A. An overview of motile Aeromonas septicaemia management[J]. Aquac Int, 2017, 25(3): 1095-1105. doi: 10.1007/s10499-016-0100-3
[17] 谢丽玲, 赵水灵, 余飞, 等. 黄连素对3种水产动物致病菌的抑制作用研究[J]. 南方水产科学, 2013, 9(4): 45-49. doi: 10.3969/j.issn.2095-0780.2013.04.008 [18] 程超, 肖敏, 李菁, 等. 嗜水气单胞菌刺激对中华绒螯蟹免疫的影响[J]. 水产科学, 2020, 39(4): 465-475. [19] KONG Y Q, DING Z L, ZHANG Y X, et al. Dietary selenium requirement of juvenile oriental river prawn Macrobrachium nipponense[J]. Aquaculture, 2017, 476: 72-78. doi: 10.1016/j.aquaculture.2017.04.010
[20] HAUTON C. The scope of the crustacean immune system for disease control[J]. J Invertebr Pathol, 2012, 110(2): 251-260. doi: 10.1016/j.jip.2012.03.005
[21] LIU S, ZHENG S C, LI Y L, et al. Hemocyte-mediated phagocytosis in crustaceans[J]. Front Immunol, 2020, 11: 268. doi: 10.3389/fimmu.2020.00268
[22] MITTA G, VANDENBULCKE F, ROCH P. Original involvement of antimicrobial peptides in mussel innate immunity[J]. FEBS Lett, 2000, 486(3): 185-190. doi: 10.1016/S0014-5793(00)02192-X
[23] 洪宇航, 杨筱珍, 成永旭, 等. 中华绒螯蟹的血细胞组成、分类及免疫学功能[J]. 水产学报, 2017, 41(8): 1213-1222. [24] SIVAKUMAR M R, DENIS M, SIVAKUMAR S, et al. Agglutination of plasma, hemocyanin, and separated hemocyanin from the hemolymph of the freshwater prawn Macrobrachium rosenbergii (de Man, 1879) (Decapoda: Caridea: Palaemonidae)[J]. J Crust Biol, 2020, 40(3): 309-315. doi: 10.1093/jcbiol/ruaa016
[25] XU Z N, LIU A, LI S K, et al. Hepatopancreas immune response during molt cycle in the mud crab, Scylla paramamosain[J]. Sci Rep, 2020, 10(1): 1-14. doi: 10.1038/s41598-019-56847-4
[26] le MOULLAC G, SOYEZ C, SAULNIER D, et al. Effect of hypoxic stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris[J]. Fish Shellfish Immunol, 1998, 8(8): 621-629. doi: 10.1006/fsim.1998.0166
[27] SONG Y M, WU M Y, PANG Y Y, et al. Effects of melatonin feed on the changes of hemolymph immune parameters, antioxidant capacity, and mitochondrial functions in Chinese mitten crab (Eriocheir sinensis) caused by acute hypoxia[J]. Aquaculture, 2021, 535: 736374. doi: 10.1016/j.aquaculture.2021.736374
[28] WANG J, XU Z, HE J P. The role of HIF-1α in the energy metabolism and immune responses of hypoxic Scylla paramamosain[J]. Aquac Rep, 2021, 20: 100740. doi: 10.1016/j.aqrep.2021.100740
[29] 李彦红, 张飞飞, 黄丽娟, 等. 纳米硒对齐口裂腹鱼生长、肌肉成分、血清生化及抗氧化指标的影响[J]. 中国水产科学, 2020, 27(6): 682-691. [30] LI Y H, WEI L, CAO J R, et al. Oxidative stress, DNA damage and antioxidant enzyme activities in the Pacific white shrimp (Litopenaeus vannamei) when exposed to hypoxia and reoxygenation[J]. Chemosphere, 2016, 144: 234-240. doi: 10.1016/j.chemosphere.2015.08.051
[31] STOREY K B. Oxidative stress: animal adaptations in nature[J]. Braz J Med Biol Res, 1996, 29(12): 1715-1733.
[32] LESSER M P. Oxidative stress in tropical marine ecosystems[M]//ABELE D. Oxidative stress in aquatic ecosystems. Chichester: John Wiley & Sons Ltd. , 2011: 7-19.
[33] 虞为, 杨育凯, 林黑着, 等. 牛磺酸对花鲈生长性能、消化酶活性、抗氧化能力及免疫指标的影响[J]. 南方水产科学, 2021, 17(2): 78-86. doi: 10.12131/20200223 [34] 曾祥兵, 董宏标, 韦政坤, 等. 鸡内金多糖对尖吻鲈幼鱼生长、消化、肠道抗氧化能力和血清生化指标的影响[J]. 南方水产科学, 2021, 17(4): 49-57. doi: 10.12131/20210028 [35] NUGROHO R A, FOTEDAR R. Comparing the effects of dietary selenium and mannan oligosaccharide supplementation on the growth, immune function, and antioxidant enzyme activity in the cultured marron Cherax cainii (Austin, 2002)[J]. Aquac Int, 2014, 22(2): 585-596. doi: 10.1007/s10499-013-9682-1
[36] LIU Z M, ZHU X L, LU J, et al. Effect of high temperature stress on heat shock protein expression and antioxidant enzyme activity of two morphs of the mud crab Scylla paramamosain[J]. Comp Biochem Phys A, 2018, 223: 10-17. doi: 10.1016/j.cbpa.2018.04.016
[37] HONG Y H, HUANG Y, YAN G W, et al. Antioxidative status, immunological responses, and heat shock protein expression in hepatopancreas of Chinese mitten crab, Eriocheir sinensis under the exposure of glyphosate[J]. Fish Shellfish Immunol, 2019, 86: 840-845. doi: 10.1016/j.fsi.2018.12.020
[38] 管敏, 张德志, 唐大明. 慢性氨氮胁迫对史氏鲟幼鱼生长及其肝脏抗氧化、免疫指标的影响[J]. 南方水产科学, 2020, 16(2): 36-42. doi: 10.12131/20190191 [39] 谭连杰, 林黑着, 黄忠, 等. 当归多糖对卵形鲳鲹生长性能、抗氧化能力、血清免疫和血清生化指标的影响[J]. 南方水产科学, 2018, 14(4): 72-79. doi: 10.3969/j.issn.2095-0780.2018.04.009 [40] de OLIVEIRA U O, da ROSA ARAÚJO A S, BELLÓ-KLEIN A, et al. Effects of environmental anoxia and different periods of reoxygenation on oxidative balance in gills of the estuarine crab Chasmagnathus granulata[J]. Comp Biochem Phys B, 2005, 140(1): 51-57. doi: 10.1016/j.cbpc.2004.09.026
[41] 管越强, 李利, 王慧春, 等. 低氧胁迫对日本沼虾呼吸代谢和抗氧化能力的影响[J]. 河北大学学报(自然科学版), 2010, 30(3): 301-306. [42] NAM S E, HAQUE M N, LEE J S, et al. Prolonged exposure to hypoxia inhibits the growth of Pacific abalone by modulating innate immunity and oxidative status[J]. Aquat Toxicol, 2020, 227: 105596. doi: 10.1016/j.aquatox.2020.105596
[43] BUNDGAARD A, RUHR I M, FAGO A, et al. Metabolic adaptations to anoxia and reoxygenation: new lessons from freshwater turtles and crucian carp[J]. Curr Opin Endocr Metab Res, 2020, 11: 55-64. doi: 10.1016/j.coemr.2020.01.002
[44] WANG H L, ZHANG J S, YU H Q. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice[J]. Free Radic Biol Med, 2007, 42(10): 1524-1533. doi: 10.1016/j.freeradbiomed.2007.02.013
[45] 徐铭, 朱丹丹. 硒与动物免疫功能的关系[J]. 畜牧兽医科技信息, 2013(3): 16-17. [46] 赵亚伟, 汤加勇, 贾勇, 等. 不同硒源对肉鸡生长性能、血清和肌肉硒含量、抗氧化能力及肉品质的影响[J]. 动物营养学报, 2021, 33(4): 2024-2032. doi: 10.3969/j.issn.1006-267x.2021.04.022 [47] BAI K K, HONG B H, HUANG W W, et al. Selenium-nanoparticles-loaded chitosan/chitooligosaccharide microparticles and their antioxidant potential: a chemical and in vivo investigation[J]. Pharmaceutics, 2020, 12(1): 43. doi: 10.3390/pharmaceutics12010043
[48] 黄小红, 曹岩, 江俊勇, 等. 饲料中添加纳米硒对草鱼生长性能、免疫器官指数和抗氧化性能的影响[J]. 中国饲料, 2017(16): 30-34. -
期刊类型引用(9)
1. 王欢,路珂,褚志鹏,吴湘香,徐滨,孙铭雪,马宝珊. 硬刺松潘裸鲤消化系统形态与组织学结构特征及其消化酶活性. 淡水渔业. 2025(02): 33-42 . 百度学术
2. 宋霖,陈小江,高鹏,符江涵. 四川华吸鳅和汉水后平鳅消化系统形态组织结构. 水产科学. 2024(06): 934-943 . 百度学术
3. 史晋绒,王晓娣,周龙,王永明. 云南光唇鱼消化系统形态结构的初步观察. 内江师范学院学报. 2024(12): 46-51 . 百度学术
4. 李武辉,孙成飞,董浚键,杨超,胡婕,田园园,叶星. 大口黑鲈开口摄食与转食人工配合饲料期消化系统发育特征. 渔业科学进展. 2023(01): 80-89 . 百度学术
5. 代金彩,李丽,李学涛,魏杰,聂竹兰. 宽口裂腹鱼尾鳍细胞系的建立及其应用. 水产科学. 2023(01): 30-38 . 百度学术
6. 寇春妮,李捷,陈蔚涛,高尚,武智,刘亚秋. 珠江下游7种典型鲤科鱼类摄食器官形态特征比较. 中国水产科学. 2023(07): 907-920 . 百度学术
7. 曾祥兵,董宏标,韦政坤,段亚飞,陈健,张慧,孙彩云,许晓东,张家松. 鸡内金多糖对尖吻鲈幼鱼生长、消化、肠道抗氧化能力和血清生化指标的影响. 南方水产科学. 2021(04): 49-57 . 本站查看
8. 苏家齐,祝华萍,朱长波,张博,李婷,陈素文. 盐度和钠离子/钾离子对凡纳滨对虾幼虾存活与组织结构的影响. 南方水产科学. 2021(05): 45-53 . 本站查看
9. 代金彩,聂竹兰,刘洁雅,洪继彪. 宽口裂腹鱼中肾组织细胞系建立的初步研究. 渔业科学进展. 2021(06): 61-68 . 百度学术
其他类型引用(5)