历史渔获量统计偏差对资源评估的影响:以西大西洋蓝鳍金枪鱼为例

冯佶, 朱江峰, 张帆, 李亚楠, 耿喆

冯佶, 朱江峰, 张帆, 李亚楠, 耿喆. 历史渔获量统计偏差对资源评估的影响:以西大西洋蓝鳍金枪鱼为例[J]. 南方水产科学, 2023, 19(1): 1-11. DOI: 10.12131/20220037
引用本文: 冯佶, 朱江峰, 张帆, 李亚楠, 耿喆. 历史渔获量统计偏差对资源评估的影响:以西大西洋蓝鳍金枪鱼为例[J]. 南方水产科学, 2023, 19(1): 1-11. DOI: 10.12131/20220037
FENG Ji, ZHU Jiangfeng, ZHANG Fan, LI Yanan, GENG Zhe. Influence of statistical deviation of historical catch on stock assessment: a case study of western Atlantic Thunnus thynnus[J]. South China Fisheries Science, 2023, 19(1): 1-11. DOI: 10.12131/20220037
Citation: FENG Ji, ZHU Jiangfeng, ZHANG Fan, LI Yanan, GENG Zhe. Influence of statistical deviation of historical catch on stock assessment: a case study of western Atlantic Thunnus thynnus[J]. South China Fisheries Science, 2023, 19(1): 1-11. DOI: 10.12131/20220037

历史渔获量统计偏差对资源评估的影响:以西大西洋蓝鳍金枪鱼为例

基金项目: 国家自然科学基金项目 (41676120, 32002393)
详细信息
    作者简介:

    冯 佶 (1993—),男,博士研究生,研究方向为渔业资源评估。E-mail: 276828719@qq.com

    通讯作者:

    朱江峰 (1978—),男,教授,博士,研究方向为渔业资源评估与种群生态学。E-mail: jfzhu@shou.edu.cn

  • 中图分类号: S 932

Influence of statistical deviation of historical catch on stock assessment: a case study of western Atlantic Thunnus thynnus

  • 摘要: 渔获量数据是资源评估所需的最基本数据,同时也最易出现报告和统计误差。误报问题是导致历史渔获量偏差的原因之一,普遍存在于全球各类渔业资源评估中。根据历史数据,分析渔获量偏差对资源评估的影响有助于建立合理的管理目标,促进渔业资源可持续利用。以西大西洋蓝鳍金枪鱼 (Thunnus thynnus) 为例,运用年龄结构模型 (Age-Structured Assessment Program, ASAP),分析历史渔获量统计偏差对当前资源状态判定的影响。结果表明,捕捞死亡系数 (Fishing mortality, F) 和产卵亲体生物量 (Spawning stock biomass, SSB) 的估计值会随着调整后的实际渔获量同向变化;随着统计偏差幅度增大,F和SSB相关生物学参考点的相对偏差率也随之增大。所有8种假定的渔获量统计偏差情况下,F相关参考点的相对偏差率均小于1%;当渔获量统计偏差为−20%时,SSB相关参考点的最大相对偏差率约为4%。历史渔获量统计偏差对SSB相关参考点的影响相比F相关参考点更为明显。根据该研究结果,建议加强渔获量数据质量问题的来源分析,从而进行历史渔业数据的科学重建,以提高评估结果的精确性与可信度。
    Abstract: Catch data, which is the most basic data for stock assessment, is also most likely to cause reporting and statistical errors. Misreporting is one of the causes for statistical deviation of historical catch, which is currently prevalent in all types of fisheries worldwide. Analyzing the influence of statistical deviation of historical catch on stock assessment based on historical data helps to establish reasonable management objectives, and promote sustainable utilization of fishery resources. In this study, we selected western Atlantic bluefin tuna (Thunnus thynnus) as an example to evaluate the influence of statistical deviation of historical catch on its stock assessment. We carried out a stock assessment by using Age-Structured Assessment Program (Age-Structured Assessment Program, ASAP), and investigated the effects of catch information inaccuracy on the assessment results by setting different levels of statistical deviation of historical catch. The results indicate that the estimated values of fishing mortality (F) and spawning stock biomass (SSB) changed in the same direction with the adjusted catch. With the increase of statistical deviation of catch, the relative difference of biological reference points also increased. The relative deviation rate of F-related biological reference points was less than 1% under all eight assumed statistical deviations of catch. When the statistical deviation of the historical catch was assumed as −20%, the maximum relative difference of SSB-related biological reference points was about 4%. The statistical deviation of catch had a more obvious impact on SSB-related biological reference points than F-related biological reference points. In conclusion, it is suggested to strengthen the source analysis of catch data quality issues, so that the scientific reconstruction of historical fishery data can be conducted to improve the accuracy and reliability of the stock assessment results.
  • 由于鱼类染色体相较于其他脊椎动物具有较强的“可塑性”,所以鱼类最易进行杂交[1]。远缘杂交是一种应用广泛且效果较显著的育种方法,在杂交种的优质利用、诱导雌核发育以及抗逆性能的选育[2-4]等方面发挥着重要作用。虽然现在各种新育种手段不断应用于鱼类遗传育种,但是杂交育种仍是应用广泛且效果较为明显的一种育种方法。通过杂交育种可以使不同品种之间优良性状结合,研究显示很多杂交种均表现出了明显的杂种优势[5-12]。一般来说,分布地区距离越远、外部形态差异越大、基因型纯化程度越高的种间杂交,出现杂交优势的可能性越高。

    短须裂腹鱼(Schizothorax wangchiachii)属鲤形目、鲤科、裂腹鱼亚科、裂腹鱼属,为长江上游特有鱼类,是金沙江及其支流、雅砻江和乌江的主要经济鱼类之一[13],其肉质细嫩、味道鲜美、营养丰富、深受青睐。近十多年来,野生短须裂腹鱼因过度捕捞、环境污染、水电站开发等,资源量越来越少。刘跃天等[14]于2006年首次报道短须裂腹鱼人工繁殖成功,获鱼苗7 508尾。随后由于其经济效益尚且产卵率和孵化成功率较高[15-17],人工繁殖数量越来越多,但在养殖过程中发现其易受小瓜虫、水霉病等侵袭,从而带来严重的经济损失。鲈鲤(Percocypris pingipingi)属鲤形目、鲤科、鲃亚科、鲈鲤属,主要分布于黔、川、滇长江上游及其支流,以及广西右江、珠江水系上游[18],是我国特有的珍稀野生鱼类,也是四川省和重庆市的重点保护动物[13]。鲈鲤的抗病能力较强,但在人工繁殖过程中产卵率和孵化成功率较低。

    关于短须裂腹鱼与鲈鲤的胚胎及胚后发育均有报道[19-24],但目前尚未见有关短须裂腹鱼和鲈鲤杂交后代胚胎及仔稚鱼发育的研究报道。本研究利用隶属不同亚科的鲈鲤与短须裂腹鱼杂交,系统地观察了杂交F1代的胚胎及仔稚鱼发育,记录其发育特征及生长指数,旨在为短须裂腹鱼和鲈鲤的杂交育种以及今后优良性状养殖品种的选育提供基础资料。

    实验于2017年3月在凉山科华水生态工程有限公司进行,实验用短须裂腹鱼、鲈鲤亲鱼均为3~4龄,体质量为1 500~2 000 g,短须裂腹鱼(♀)×鲈鲤(♂) (DL)母本短须裂腹鱼的怀卵量约19 000粒,鲈鲤(♀)×短须裂腹鱼(♂) (LD)母本鲈鲤的怀卵量约12 000粒。

    实验鱼养殖于约25 m2的鱼塘中,水温(14.5±1.0) ℃,pH 8.10~8.52,分别对性成熟的短须裂腹鱼和鲈鲤雌雄个体注射人绒毛膜促性腺激素(HCG)和促黄体激素释放激素类似物(LHRH-A2)人工催产,48~72 h后取成熟亲鱼轻压腹部,顺产获得成熟卵和精子,采用干法授精进行杂交。

    分别将短须裂腹鱼卵和鲈鲤的精液,以及短须裂腹鱼的精液和鲈鲤的卵进行干法授精,待受精卵充分吸水膨胀后,在直径74 cm、高28 cm的孵化盒中流水孵化培育,密度为2 000~3 000粒·m–2,流量为60~70 mL·s–1,温度(14.5±1.0) ℃,pH 8.10~8.81,出膜后的仔鱼饲养于淡水鱼类资源与生殖发育教育部重点实验室室内循环系统,定期换水并排污。早期仔鱼以丰年虫为开口饵料,后混合投喂鱼苗专用微粒配合饲料S1,饵料和饲料分别购自山东爱家宠物水族用品有限公司和山东升索渔用饲料研究中心。

    利用体式显微镜(Nikon 6000)对DL和LD的胚胎及仔稚鱼发育过程进行观察拍照。参考国内外学者的研究[19-28],胚胎发育过程中每次随机取30~60粒胚胎,前12 h内每10 min取样1次,后每0.5~1 h取样1次,取样至出膜为止,胚胎发育的时间以60%以上的胚胎明显进入该发育阶段为准,观察期间水温为(14.5±1.0) ℃;仔稚鱼阶段每次随机取10尾,前20 d取样每天1次,之后间隔5 d取样1次,取样至鳞被覆盖完毕,用稀释的乙醇麻醉,同样采用体式显微镜进行观察、拍照并记录,然后测定其生长指数。

    以有效积温描述整个发育过程[29],各阶段积温的计算方法为:胚胎发育各阶段的积温(h·℃)=该阶段胚胎发育时间(h)×水温(℃)。

    使用Excel 2017对实验数据进行处理,利用Photoshop CS5对图像进行编辑。

    短须裂腹鱼的成熟卵为浅黄色、沉性、微黏性。在平均水温(14.5±1.0) ℃条件下,胚胎发育历时144.33 h,受精率为95.33%,孵化率为71.12%,参考短须裂腹鱼与鲈鲤的研究结果[19-24],将其胚胎发育过程分为6个阶段,共28个时期(表 1)。

    表  1  短须裂腹鱼与鲈鲤杂交F1 代胚胎发育时序表
    Table  1  Embryonic development schedule of hybrid of S. wangchiachii and P. pingipingi
    胚胎发育时期
    embryonic developmental stage
    主要特征
    developmental characteristics
    短须裂腹鱼 (♀) ×鲈鲤 (♂)
    S. wangchiachii (♀) ×
    P. pingipingi (♂) (DL)
    鲈鲤 (♀) ×短须裂腹鱼 (♂)
    P. pingipingi (♀) ×
    S. wangchiachii (♂) (LD)
    时间
    time
    积温/h·℃
    accumulated temperature
    时间
    time
    积温/h·℃
    accumulated temperature
    受精卵阶段 
    fertilized egg period
    受精卵期 受精卵呈球形,卵间隙小 0 0 0 0
    吸水膨胀期 受精卵吸水膨胀,卵间隙增大,卵膜呈透明状 45 min 10.88 1 h 1 min 14.79
    胚盘隆起期 原生质向动物极集中并隆起形成胚盘 3 h 35 min 51.77 3 h 7 min 54.81
    卵裂阶段 
    cleavage period
    2细胞期 胚盘表面凹陷形成分裂沟,将胚盘分裂为大小相似的2个分裂球 4 h 50 min 69.89 4 h 11 min 60.76
    4细胞期 分裂球再次分裂,形成大小相似的4个细胞 5 h 44 min 83.09 4 h 47 min 69.31
    8细胞期 分裂球呈几何级数增加,形成大小相似的8个细胞 6 h 30 min 94.25 5 h 44 min 83.09
    16细胞期 继续分裂,形成16个细胞 7 h 53 min 114.41 6 h 39 min 96.43
    桑葚胚期 卵裂速度加快,分裂球越来越小,细胞界限开始模糊,形成多细胞胚体,呈桑葚状 16 h 50 min 244.18 9 h 51 min 142.83
    囊胚阶段 
    blastula period
    囊胚早期 细胞团高高隆起,形似帽状,细胞界限模糊不清 19 h 47 min 286.81 16 h 43 min 242.44
    囊胚中期 细胞层向下扩散,囊胚高度下降,呈小丘状,胚层边缘逐渐平滑 21 h 1 min 304.79 18 h 40 min 270.72
    囊胚晚期 囊胚继续下降,与卵黄囊形成一个近球形 26 h 23 min 382.51 20 h 9 min 292.18
    原肠胚阶段 
    gastrula period
    原肠早期 胚层下包卵黄囊约1/2 42 h 45 min 620.02 38 h 34 min 559.27
    原肠中期 胚盾出现,胚层下包卵黄囊约2/3 49 h 53 min 723.41 42 h 28 min 615.67
    原肠晚期 胚层下包卵黄囊约3/4 53 h 3 min 769.23 51 h 15 min 743.13
    器官形成阶段 
    organogenesis period
    神经胚期 胚体可见,神经板雏形出现 55 h 19 min 802.14
    肌节出现期 胚体前段微隆起,中部出现肌节,胚孔仍可见 58 h 50 min 853.04
    眼囊期 眼囊出现,呈长梭形 61 h 15 min 888.13
    耳囊期 胚体眼囊后两侧出现一对卵圆形耳囊 68 h 37 min 997.99
    胚孔封闭期 胚层将卵黄栓完全包裹,胚孔封闭,胚体明显且超过卵黄囊一半 72 h 15 min 1 047.63
    肌肉效应期 胚体开始扭动,作缓慢的颤动式收缩 75 h 23 min 1 093.16
    尾芽期 尾端略突出,游离于卵黄,尾芽出现 79 h 8 min 1 147.39
    晶体形成期 眼囊中出现圆形、透明晶体 96 h 4 min 1 393.02
    耳石期 耳囊增大,其内可见2个小点,为耳石 101 h 16 min 1 468.27
    围心腔期 头部与卵黄连接处出现围心腔 109 h 22 min 1 586.01
    心脏原基期 围心腔内可见呈短管状的心脏原基 116 h 16 min 1 685.05
    心跳期 心脏开始有节律地搏动,频率52~
    58 次·min–1
    121 h 22 min 1 614.72
    出膜阶段 
    incubation period
    出膜前期 胚体运动加剧,运动幅度加大 139 h 59 min 2 029.71
    出膜期 胚体尾部击破卵膜,尾部伸出膜外,胚体脱离卵膜 144 h 20 min 2 092.79
    下载: 导出CSV 
    | 显示表格

    1) 受精卵阶段。刚受精时,受精卵呈黄色球形,卵径约3.24 mm (图1-1);然后开始吸水膨胀,卵周隙增大,受精后45 min,受精卵吸水膨胀到最大,直径约为4.05 mm,卵膜呈透明状(图1-2)。受精后3 h 35 min,原生质不断向动物极集中并隆起形成类似盘状结构,即为胚盘,此时进入胚盘期(图1-3)。

    图  1  短须裂腹鱼 (♀) ×鲈鲤 (♂) 的F1 胚胎发育
    1. 受精卵期;2. 吸水膨胀;3. 胚盘隆起期;4. 2 细胞期;5. 4 细胞期;6. 8 细胞期;7. 16 细胞期;8. 桑葚胚期;9. 囊胚早期;10. 囊胚中期;11. 囊胚晚期;12. 原肠早期;13. 原肠中期;14. 原肠晚期;15. 神经胚期;16. 肌节出现期;17. 眼囊期;18. 耳囊期;19. 胚孔封闭期;20. 肌肉效应期;21. 尾芽期;22. 晶体形成期;23. 耳石期;24. 围心腔期;25. 心脏原基期;26. 心跳期;27. 出膜前期;28. 出膜期;标尺=1 mm
    Fig. 1  Embryonic development of hybrid S. wangchiachii (♀)×P. pingiping (♂)
    1. fertilized egg; 2. swelling stage; 3. blastoderm stage; 4. 2-cell stage; 5. 4-cell stage; 6. 8-cell stage; 7. 16-cell stage; 8. multi-cell stage; 9. early-blastula stage; 10. mid-blastula stage, 11. late-blastula stage; 12. early-gastrula stage; 13. mid-gastrula stage; 14. late-gastrula stage; 15. neurula stage; 16. muscle burl stage; 17. eye vesicle stage; 18. otocyst stage; 19. blastopore closing stage; 20. muscular contraction stage; 21. tailbud formed stage; 22. eye lens formed stage; 23. otolithes stage; 24. pericardiac coelom stage; 25. rudiment of heart stage; 26. heart-beating stage; 27. pre-hatching stage; 28. hatching stage; bar=1 mm

    2) 卵裂阶段。受精后4 h 50 min,胚盘向两边拉伸,其表面凹陷形成分裂沟,随着发育不断加深,分裂沟将胚盘一分为二,形成大小相似的2个细胞,即为2细胞期(图1-4);受精后5 h 44 min分裂球再次分裂,分裂沟与第一次分裂沟垂直,形成大小相似的4个细胞,进入4细胞期(图1-5);分裂球继续呈几何级数增加,受精后6 h 30 min形成大小相似的8个细胞,即为8细胞期(图1-6);受精后7 h 53 min分裂形成16个细胞,即为16细胞期(图1-7);随后分裂速度加快,依次形成32个细胞、64个细胞,随着细胞数目增多,细胞界限开始模糊,受精后16 h 50 min形成多细胞胚体,呈桑葚状,即为桑葚胚期(图1-8)。

    3) 囊胚阶段。细胞继续分裂,细胞层数和数量不断增加,受精后19 h 47 min细胞团高高隆起,形似帽状,细胞界限模糊不清,即为囊胚早期(图1-9);隆起的细胞层向下扩散,逐渐变低,并开始下包,囊胚高度下降,受精后21 h 1 min呈小丘状,胚层边缘逐渐平滑,即为囊胚中期(图1-10);囊胚继续下包,受精后26 h 23 min囊胚细胞紧贴卵黄,与卵黄一起近似球形,进入囊胚晚期(图1-11)。

    4) 原肠胚阶段。随着细胞的进一步分裂,动物极细胞数目越来越多并逐渐向植物极方向延伸,受精后42 h 45 min胚层下包卵黄囊约1/2,即为原肠胚早期(图1-12);受精后49 h 53 min胚盾出现,胚层下包卵黄囊约2/3,为原肠胚中期(图1-13);受精后53 h 3 min胚层下包卵黄囊3/4,进入原肠胚晚期(图1-14)。

    5) 器官形成阶段。受精后55 h 19 min胚层即将包完卵黄,胚体可见,神经板雏形出现,此时为神经胚期(图1-15);受精后58 h 50 min进入肌节形成期,胚体前段微微隆起,中部出现约8节肌节(图1-16),此时胚孔仍可见;受精后61 h 15 min头部两侧分化出2个眼囊,呈长梭形,即为眼囊期(图1-17);受精后68 h 37 min肌节进一步增多,约20节,胚体眼囊后两侧出现一对卵圆形耳囊,比眼囊小,进入耳囊期(图1-18);受精后72 h 15 min胚层将卵黄栓完全包裹,胚孔封闭,胚体长超过卵黄囊一半,此时为胚孔封闭期(图1-19),在胚孔封闭期观察到轻微的卵黄运动(图 2)。受精后75 h 23 min胚体开始扭动,频率和幅度都较小,约15次·min–1,作缓慢的颤动式收缩,进入肌肉效应期(图1-20);受精后79 h 8 min尾端略突出,游离于卵黄,尾芽出现,即为尾芽期(图1-21),此时胚体运动加剧,约40次·min–1;受精后96 h 4 min眼囊中出现圆形、透明晶体,进入晶体形成期(图1-22);受精后101 h 16 min耳囊增大,其内可见2个小点,为耳石,胚体发育至耳石期(图1-23);受精后109 h 22 min头部与卵黄连接处出现空的围心腔,即为围心腔期(图1-24);受精后116 h 16 min围心腔增大,其内可见呈短管状的心脏原基,即为心脏原基期(图1-25);受精后121 h 22 min心脏进入心跳期,开始有节律地搏动,频率为52~58次·min–1 (图1-26)。

    图  2  短须裂腹鱼 (♀) ×鲈鲤 (♂) 的F1 代卵黄运动过程
    Fig. 2  Yolk movement process of hybrid of S. wangchiachii (♀) and P. pingipingi (♂)

    6) 出膜阶段。受精后139 h 59 min胚体运动剧烈,运动幅度大,胚体即将出膜,此时为出膜前期(图1-27);受精后144 h 20 min胚体尾部将卵膜击破,尾部随即伸出卵膜外,伴随着不停摆动,胚体逐渐脱离卵膜,即为出膜期,初孵仔鱼长度约为(10.85±0.21) mm (图1-28)。

    1) 仔稚鱼发育特征。短须裂腹鱼(♀) ×鲈鲤(♂)杂交的F1代仔稚鱼发育良好(图3),参照国内外的划分方法将其发育时期划分为3个阶段:卵黄囊期仔鱼(刚出膜仔鱼至卵黄囊消失时),历时17 d;晚期仔鱼(从卵黄囊消失至鳍条发育完整),历时45 d;稚鱼期(从鳍条发育完成至鳞被覆盖完毕),历时105 d (表 2)。

    图  3  短须裂腹鱼 (♀) ×鲈鲤 (♂) 的F1 代仔稚鱼发育
    1. 1 d 仔鱼;2. 2 d 仔鱼;3. 3 d 仔鱼;4. 4 d 仔鱼;5. 5 d 仔鱼;6. 6 d 仔鱼;7. 7 d 仔鱼;8. 8 d 仔鱼;9. 9 d 仔鱼;10. 10 d 仔鱼;11. 11 d 仔鱼;12. 12 d 仔鱼;13. 13 d 仔鱼;14. 14 d 仔鱼;15. 15 d 仔鱼;16. 16 d 仔鱼;17. 17 d 仔鱼;18. 45 d 仔鱼;19. 105 d 稚鱼;标尺=1 mm
    Fig. 3  Larvae and juveniles development of hybrid S. wangchiachii (♀)×P. pingipingi (♂)
    1. 1 d larvae; 2. 2 d larvae; 3. 3 d larvae; 4. 4 d larvae; 5. 5 d larvae; 6. 6 d larvae; 7. 7 d larvae; 8. 8 d larvae; 9. 9 d larvae; 10. 10 d larvae; 11.11 d larvae; 12. 12 d larvae; 13. 13 d larvae; 14. 14 d larvae; 15. 15 d larvae; 16. 16 d larvae; 17. 17 d larvae; 18. 45 d larvae; 19. 105 d juveniles; bar=1 mm
    表  2  短须裂腹鱼 (♀) ×鲈鲤 (♂) 仔稚鱼发育特征表
    Table  2  Larval and juvenile development schedule of hybrid of S. wangchiachii (♀) and P. pingipingi (♂)
    时间
    time
    特征
    characteristic
    全长/mm
    total length
    体长/mm
    body length
    图序
    No. of picture
    第1天 1st day 内源性营养,卵黄囊占鱼体比值较大,前段膨大呈球状,大小约1.96 mm×1.76 mm,头部与球状卵黄囊夹角约为30°,后端呈棒状,仔鱼活动较少,多卧于水底 11.36±0.26 8.47±0.31 图3-1
    第2天 2nd day 前卵黄囊与头部夹角约45°,心脏搏动微弱,心率约55 次·min–1,心脏附近可见红色血液流动,耳石明显 11.49±0.27 8.53±0.24 图3-2
    第3天 3rd day 前卵黄囊与头部夹角约为90°,眼球出现黑色素 12.71±0.13 9.02±0.12 图3-3
    第4天 4th day 眼球黑色素明显增多,卵黄囊体积进一步缩小 12.98±0.29 9.68±0.23 图3-4
    第5天 5th day 卵黄囊上出现一条明显的血管,胸鳍原基出现,上下颌开始张合,约8 次·min–1 13.37±0.57 9.78±0.48 图3-5
    第6天 6th day 鳃可见明显红色血液流动 14.12±0.42 10.11±0.37 图3-6
    第7天 7th day 背部出现少量呈星芒状的黑色素,全身血液颜色加深,心脏搏动有力,心率约75 次·min–1 14.41±0.36 10.28±0.44 图3-7
    第8天 8th day 胸鳍形成,背鳍原基出现,上下颌张合明显,约35 次·min–1 14.79±0.59 10.49±0.61 图3-8
    第9天 9th day 上下颌张合剧烈,约97 次·min–1,心率85 次·min–1 15.04±0.64 10.52±0.41 图3-9
    第10天 10th day 胸鳍充分伸展,可摆动,头顶和背部黑色素增多,卵黄囊上也出现黑斑,心跳更剧烈,约105 次·min–1 15.09±0.68 10.54±0.52 图3-10
    第11天 11th day 尾部出现少量黑色素,尾鳍下叶出现4~8个鳍条 15.18±0.32 10.58±0.31 图3-11
    第12天 12th day 尾部黑色素增多,游泳迅速,鳔充气 15.33±0.48 10.61±0.36 图3-12
    第13天 13th day 背鳍原基隆起呈三角形,卵黄囊吸收约1/2 15.45±0.66 10.66±0.57 图3-13
    第14天 14th day 尾鳍鳍条分支增多,约8~14个 15.85±0.61 10.82±0.48 图3-14
    第15天 15th day 卵黄囊吸收约2/3 15.95±0.72 11.07±0.57 图3-15
    第16天 16th day 背鳍出现2~4个鳍条 16.02±0.57 11.13±0.46 图3-16
    第17天 17th day 卵黄消耗完,尾鳍鳍膜边缘开始内凹,肠道有明显排遗,进入后期仔鱼 16.11±0.43 11.19±0.36 图3-17
    第45天 45th day 胸鳍、尾鳍、背鳍、臀鳍、腹鳍鳍条基本发育完整,躯干呈半透明状,进入稚鱼期 25.84±0.82 19.46±0.62 图3-18
    第105天 105th day 鳞被已覆盖完毕,背部呈青黑色,腹部灰白色,已基本具备成鱼的身体特征,进入幼鱼期 56.74±0.53 45.87±0.67 图3-19
    下载: 导出CSV 
    | 显示表格

    2) 仔稚鱼生长情况。初孵仔鱼全长为(10.85±0.21) mm,体长为(8.23±0.18) mm,出膜第17天仔鱼全长为(16.11±0.43) mm,体长为(11.19±0.36) mm,出膜第105天幼鱼全长为(56.74±0.53 mm),体长为(45.87±0.67) mm,总体呈明显增长趋势(图 4)。

    图  4  短须裂腹鱼 (♀) ×鲈鲤 (♂) 仔稚鱼生长指数图
    Fig. 4  Growth index of larvae and juveniles of hybrid of S. wangchiachii (♀) and P. pingipingi (♂)

    鲈鲤的成熟卵为金黄色、沉性、微黏性。在平均水温(14.5±1.0) ℃条件下,前期发育较正常,发育至原肠期所需时间为51 h 15 min,所需积温为743.13 h·℃ (表 1)。

    刚受精时,受精卵呈球形,卵径约为2.32 mm,然后开始吸水膨胀,受精后1 h 1 min,受精卵吸水膨胀到最大,直径约为3.26 mm,此后发育过程除时间长短外均与正交一致。

    囊胚期开始死亡个体增多,原肠期末有85.83%的胚胎死亡,原因多为下包过程中卵黄膜破裂,卵黄物质溢出导致胚胎死亡,另外在囊胚期和原肠期卵黄内出现异常团块(图 5)。经过原肠期的胚胎,个体之间发育时间相差较大,最后仅12尾出膜,且出膜后的仔鱼均畸形,多为围心腔肿大、体轴弯曲和棒状卵黄囊细短或无(图 5),出膜3 d后畸形个体全部死亡。

    图  5  鲈鲤 (♀) ×短须裂腹鱼 (♂) F1 代死亡胚胎和仔鱼
    a. 卵黄外出现不明团块;b. 卵黄膜破裂,卵黄物质溢出;c. 围心腔肿大仔鱼;d. 棒状卵黄囊细短仔鱼;e. 体轴弯曲仔鱼;标尺=1 mm
    Fig. 5  Dead embryos and larvae of hybrid of P. pingipingi (♀) and S. wangchiachii (♂)
    a. an unidentified mass appears outside the yolk; b. membrane of yolk rupture; yolk is leaking; c. pericardial swelling in the larvae; d. the clavicularyolk is short; e. the body axis of fish bends; bar=1 mm

    温度是鱼类胚胎发育过程中的重要因素。左鹏翔等[22]在(19±1) ℃条件下观察的鲈鲤胚胎发育时间为101 h 40 min,赖见生等[23]在(18.0±0.5) ℃时观察的鲈鲤胚胎发育时间为126 h 28 min,王永明等[24]在(15.0±0.7) ℃时观察鲈鲤胚胎发育时间为164 h;左鹏翔等[20]在(14±1) ℃条件下观察的短须裂腹鱼的胚胎发育时间为254 h 40 min,刘阳等[19]在12.7~14.0 ℃时观察到短须裂腹鱼胚胎发育时间为192 h。由此可见,适当的温度范围内,两亲本胚胎发育时间受发育温度的影响,且温度越高,发育时间越短。本研究在水温(14.5±1.0) ℃条件下,短须裂腹鱼(♀) ×鲈鲤(♂)的F1代胚胎发育时间为144.33 h。发育温度相近时,杂交F1代的胚胎发育速度快于短须裂腹鱼与鲈鲤。推测是由于杂种优势导致其胚胎发育速度增快,或不同地区水质不同以及孵化条件的差异等导致胚胎发育时间的不同。

    在黄河裸裂尻鱼(Schizopygopsis pylzovi)[30]、胡子鲇(Clarias fuscus)[31]的胚胎发育过程中均有强烈的卵黄运动,短须裂腹鱼(♀) ×鲈鲤(♂)的F1代在胚孔封闭期观察到轻微的卵黄运动。在短须裂腹鱼[19-21]和鲈鲤[22-24]的胚胎发育及裂腹鱼亚科其他鱼类,如尖裸鲤(Oxygymnocypris stewartii)[32]、小裂腹鱼(S. parvus)[33]、细鳞裂腹鱼(S. chongi)[34]等中均未见有卵黄运动的报道。刘文生等[31]认为卵黄运动有助于细胞在卵黄囊上排列以及对以后细胞分化的调整,推测杂交F1代胚胎发育速度快于亲本可能与卵黄运动有关,但卵黄运动具体形成原因及其对胚胎发育的影响机制有待进一步研究。

    短须裂腹鱼(♀) ×鲈鲤(♂)的F1代胚胎发育过程与亲本基本一致,但也有其自身特点,尤其是器官发育阶段,鲈鲤和短须裂腹鱼均是在胚孔封闭后开始出现肌节、眼囊和耳囊,而其杂交F1代是出现肌节和眼囊、耳囊后胚孔才封闭,可能由于不同鱼类的胚胎发育具有其独特性[35],所以具体发育过程不尽相同。

    短须裂腹鱼(♀) ×鲈鲤(♂)的F1代卵黄期仔鱼前期主要由卵黄囊提供营养物质,后期以丰年虫投喂,生长加快,其外形与双亲基本一致。仔鱼从孵化到卵黄囊吸收完毕历时17 d,其发育情况与生长指数均接近短须裂腹鱼[19-21]。目前未见短须裂腹鱼稚鱼发育的相关报道,杂交F1代仔稚鱼历时105 d发育完成,生长优势不明显,发育速度与生长速度均慢于鲈鲤[23]。推测杂交F1代后期仔鱼和稚鱼的生长速度更接近短须裂腹鱼,相较于亲本,短须裂腹鱼(♀) ×鲈鲤(♂)的F1代仔稚鱼生长发育的差异还有待进一步的实验验证。

    短须裂腹鱼和鲈鲤属于不同亚科之间的远缘杂交,具有一定的遗传多样性。目前,对短须裂腹鱼和鲈鲤杂交育种的研究有限,杂交F1代在对环境因子的耐受性、抗病力等方面是否优于亲本,还有待实验验证。本实验的研究结果将为以后的进一步研究提供理论基础。

  • 图  1   评估模型假设的西大西洋蓝鳍金枪鱼自然死亡系数与成熟度

    Figure  1.   Natural mortality and maturity at age as assumed in assessment models of T. thynnus

    图  2   基准模型年渔获量观测值与预测值

    Figure  2.   Observed and predicted values of annual catch for base case model

    图  3   基准模型丰度指数观测值与预测值

    Figure  3.   Observed and predicted values of abundance index for base case model

    图  4   测试 1—测试 3的年渔获量残差变化

    Figure  4.   Residual of annual total catch of Test 1 to Test 3

    图  5   测试 1—测试 3的丰度指数US_RR_66_114残差变化

    Figure  5.   Residual of abundance index US_RR_66_114 of Test 1 to Test 3

    图  6   基准模型有效样本量输入值和估算值

    Figure  6.   Input and estimated effective sample size for base case model

    图  7   不同渔获量统计偏差的捕捞死亡系数

    Figure  7.   Fishing mortality with different statistical deviation of catch for T. thynnus

    图  8   不同渔获量统计偏差的产卵亲体生物量

    Figure  8.   Spawning stock biomass with different statistical deviation of catch for T. thynnus

    图  9   不同测试的生物学参考点的相对偏差率

    Figure  9.   Relative difference of biological reference points with different test results

    表  1   西大西洋蓝鳍金枪鱼评估模型使用的丰度指数

    Table  1   Abundance index used in assessment models for T. thynnus

    丰度指数名称Name of abundance index时间跨度Time period/年描述Description
    US_RR_66_114 1993—2015 美国竿钓指数资料 (66~114 cm 体长组)
    US_RR_115_144 1993—2015 美国竿钓指数资料 (115~144 cm 体长组)
    US_RR<145 1980—1983、1985—1992 美国竿钓指数资料 (<145 cm 体长组)
    US_RR>195 1983—1992 美国竿钓指数资料 (>195 cm 体长组)
    US_RR>177 1993—2015 美国竿钓指数资料 (>177 cm 体长组)
    JLL_AREA_2 1976—2009 日本延绳钓指数资料 
    JLL_RECENT 2010—2015 日本延绳钓指数资料
    GOM_PLL 1992—2015 墨西哥湾 (Gulf of Mexico, GOM) 延绳钓指数资料
    CAN_Combined_RR 1984—2015 加拿大竿钓综合指数资料
    CAN_GSL_Acoustic 1994—2015 加拿大声学调查
    LARVAL 1977—1978、1981—1984、1986—2015 幼鱼调查
    下载: 导出CSV

    表  2   测试场景假设及敏感性分析

    Table  2   Test scenarios and sensitivity analysis models for T. thynnus

    测试Test渔获量统计偏差Statistical deviation of catch
    测试 1 Test 1无偏差
    测试 2 Test 2−20% (1950—1969 年)、0% (1970—2015 年)
    测试 3 Test 3−15% (1950—1969 年)、0% (1970—2015 年)
    测试 4 Test 4−10% (1950—1969 年)、0% (1970—2015 年)
    测试 5 Test 5−5% (1950—1969 年)、0% (1970—2015 年)
    测试 6 Test 65% (1950—1969 年)、0% (1970—2015 年)
    测试 7 Test 710% (1950—1969 年)、0% (1970—2015 年)
    测试 8 Test 815% (1950—1969 年)、0% (1970—2015 年)
    测试 9 Test 920% (1950—1969 年)、0% (1970—2015 年)
    下载: 导出CSV

    表  3   各测试的评估结果及其相对偏差率

    Table  3   Stock assessment results and relative differences for each test

    测试Test渔获量统计偏差Statistical deviation of catch目标函数Objective function生物学参考点及相对偏差率 Biological reference points and relative differences
    MSY/tRD/%FMSYRD/%Fcur/FMSYRD/%
    测试 1 Test 1 无偏差 2 576.88 4 861.48 0.00 0.045 861 0.000 0.751 3 0.00
    测试 2 Test 2 −20% 2 565.39 5 025.08 3.37 0.045 872 0.024 0.756 1 0.64
    测试 3 Test 3 −15% 2 568.40 4 974.02 2.31 0.045 872 0.023 0.754 7 0.45
    测试 4 Test 4 −10% 2 571.32 4 930.35 1.42 0.045 867 0.015 0.753 5 0.29
    测试 5 Test 5 −5% 2 574.14 4 893.21 0.65 0.045 862 0.002 0.752 4 0.15
    测试 6 Test 6 5% 2 579.55 4 828.90 −0.67 0.045 859 −0.002 0.750 2 −0.15
    测试 7 Test 7 10% 2 582.14 4 800.81 −1.25 0.045 853 −0.017 0.749 3 −0.27
    测试 8 Test 8 15% 2 585.16 4 772.35 −1.83 0.045 852 −0.018 0.748 1 −0.43
    测试 9 Test 9 20% 2 587.12 4 756.96 −2.15 0.045 848 −0.028 0.747 4 −0.52
    测试Test 渔获量统计偏差Statistical deviation of catch 目标函数Objective function 生物学参考点及相对偏差率 Biological reference points and relative differences
    SSBMSY/t RD/% SSBcur/SSBMSY RD/% SSBcur/SSB0 RD/%
    测试 1 Test 1 无偏差 2 576.88 99 681.1 0.00 0.510 3 0.00 0.193 1 0.000
    测试 2 Test 2 −20% 2 565.39 102 951.0 3.28 0.490 5 −3.88 0.185 6 −0.039
    测试 3 Test 3 −15% 2 568.40 101 920.0 2.25 0.496 5 −2.70 0.187 9 −0.027
    测试 4 Test 4 −10% 2 571.32 101 051.0 1.37 0.501 7 −1.69 0.189 9 −0.017
    测试 5 Test 5 −5% 2 574.14 100 316.0 0.64 0.506 3 −0.78 0.191 6 −0.008
    测试 6 Test 6 5% 2 579.55 99 028.4 −0.65 0.514 5 0.82 0.194 7 0.008
    测试 7 Test 7 10% 2 582.14 98 479.1 −1.21 0.518 2 1.55 0.196 1 0.016
    测试 8 Test 8 15% 2 585.16 97 910.1 −1.78 0.522 1 2.31 0.197 6 0.023
    测试 9 Test 9 20% 2 587.12 97 611.8 −2.08 0.524 3 2.74 0.198 4 0.027
    下载: 导出CSV
  • [1]

    ROUSSEAU D M. Is there such a thing as "evidence-based management"?[J]. Acad Manage Rev, 2006, 31(2): 256-269. doi: 10.5465/amr.2006.20208679

    [2]

    RUDD M B, BRANCH T A. Does unreported catch lead to overfishing?[J]. Fish Fish, 2017, 18(2): 313-323. doi: 10.1111/faf.12181

    [3]

    CHEN Y, CHEN L, STERGIOU K I. Impacts of data quantity on fisheries stock assessment[J]. Aquat Sci, 2003, 65(1): 92-98. doi: 10.1007/s000270300008

    [4]

    CHEN Y, RAJAKARUNA H. Quality and quantity of fisheries information in stock assessment[C]//American Fisheries Society Symposium. Bethesda: American Fisheries Society, 2003: 411-424.

    [5]

    DERRICK B, KHALFALLAH M, RELANO V, et al. Updating to 2018 the 1950−2010 Marine Catch Reconstructions of the Sea Around US: Part I-Africa, Antarctica, Europe and the North Atlantic[R] Vancouver: Fisheries Centre Research Reports, 2020, 28(5): 7-8.

    [6]

    BELHABIB D, KOUTOB V, SALL A, et al. Fisheries catch misreporting and its implications: the case of Senegal[J]. Fish Res, 2014, 151: 1-11. doi: 10.1016/j.fishres.2013.12.006

    [7]

    PAULY D, ZELLER D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining[J]. Nat Commun, 2016, 7(1): 1-9.

    [8]

    FOSSILE T, FERREIRA J, da ROCHA BANDEIRA D, et al. Pre-Columbian fisheries catch reconstruction for a subtropical estuary in South America[J]. Fish Fish, 2019, 20(6): 1124-1137. doi: 10.1111/faf.12401

    [9]

    TESFAMICHAEL D, PAULY D. Catch reconstruction for the Red Sea large marine ecosystem by countries (1950-2010)[R]. Vancouver: Fisheries Centre Research Report, 2012, 20(1): 244.

    [10]

    MOAZZAM M, AYUB S. Catch reconstruction of neritic tuna landings of Pakistan based on data collected by WWF-Pakistan's crew based Observer Programme[R]. Victoria Mahé: Seventh Session of IOTC Working Party on Neritic Tuna (WPNT07), 2017: 10-13.

    [11]

    van BEVEREN E, DUPLISEA D E, MARENTETTE J R, et al. An example of how catch uncertainty hinders effective stock management and rebuilding[J]. Fish Res, 2020, 224: 105473. doi: 10.1016/j.fishres.2019.105473

    [12] 吕翔, 黄硕琳. 大西洋蓝鳍金枪鱼资源开发与养护问题分析[J]. 上海海洋大学学报, 2016, 25(6): 936-944. doi: 10.12024/jsou.20160301717
    [13]

    FROMENTIN J M, POWERS J E. Atlantic bluefin tuna: population dynamics, ecology, fisheries and management[J]. Fish Fish, 2005, 6(4): 281-306. doi: 10.1111/j.1467-2979.2005.00197.x

    [14] 李亚楠, 戴小杰, 朱江峰, 等. 渔获量不确定性对印度洋大眼金枪鱼资源评估的影响[J]. 渔业科学进展, 2018, 39(5): 1-9. doi: 10.19663/j.issn2095-9869.20170627001
    [15]

    ANONYMOUS. Report of the 2017 ICCAT bluefin tuna data preparatory meeting[R]. Madrid: ICCAT Col Vol Sci Pap, 2018, 74(6): 2268-2731.

    [16]

    ANONYMOUS. Report of the 2017 ICCAT bluefin stock assessment meeting[R]. Madrid: ICCAT Col Vol Sci Pap, 2018, 74(6): 2372-2535.

    [17]

    LAURETTA M, KIMOTO A, PORCH C E, et al. A preliminary assessment of the status of the western Atlantic bluefin tuna stock (1970−2013)[R]. ICCAT Col Vol Sci Pap, 2015, 71(4): 1545-1603.

    [18]

    RODRIGUEZ-MARIN E, ORTIZ M, ORTIZ de URBINA J M, et al. Atlantic bluefin tuna (Thunnus thynnus) biometrics and condition[J]. PLoS One, 2015, 10(10): e0141478. doi: 10.1371/journal.pone.0141478

    [19]

    WALTER J, SHARMA R, ORTIZ M. Western Atlantic bluefin tuna stock assessment 1950−2015 using Stock Synthesis[R]. Madrid: ICCAT Col Vol Sci Pap, 2018, 74(6): 3305-3404.

    [20]

    BOENISH R, CHEN Y. Re-evaluating Atlantic cod mortality including lobster bycatch: where could we be today?[J]. Can J Fish Aquat Sci, 2020, 77(6): 1049-1058. doi: 10.1139/cjfas-2019-0313

    [21] 朱江峰, 戴小杰, 官文江. 印度洋长鳍金枪鱼资源评估[J]. 渔业科学进展, 2014, 35(1): 1-8. doi: 10.3969/j.issn.1000-7075.2014.01.001
    [22]

    KURIYAMA P T, ZWOLINSKI J P, HILL K T, et al. Assessment of the Pacific sardine resource in 2020 for US management in 2020−2021[R]. La Jolla: Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-628, 2020: 191.

    [23] 官文江, 田思泉, 朱江峰, 等. 渔业资源评估模型的研究现状与展望[J]. 中国水产科学, 2013, 20(5): 1112-1120.
    [24]

    NOAA Fisheries Toolbox. Technical documentation for ASAP version 3.0[Z]. Washington: NOAA, 2013: 2-10.

    [25]

    LEGAULT C M, RESTREPO V R. A flexible forward age-structured assessment program[R]. Madrid: ICCAT Col Vol Sci Pap, 1998, 49: 246-253.

    [26]

    ICCAT. Report of the 2004 ICCAT data exploratory meeting for east Atlantic and Mediterranean bluefin tuna[R]. Madrid: ICCAT Col Vol Sci Pap, 2005, 58(2): 662-699.

    [27]

    SAGARESE S R, HARFORD W J, WALTER J F, et al. Lessons learned from data-limited evaluations of data-rich reef fish species in the Gulf of Mexico: implications for providing fisheries management advice for data-poor stocks[J]. Can J Fish Aquat Sci, 2019, 76(9): 1624-1639. doi: 10.1139/cjfas-2017-0482

    [28]

    ARNOLD L M, HEPPELL S S. Testing the robustness of data-poor assessment methods to uncertainty in catch and biology: a retrospective approach[J]. ICES J Mar Sci, 2015, 72(1): 243-250. doi: 10.1093/icesjms/fsu077

    [29]

    WISE J P. Probable under estimates and misreporting of Atlantic small tuna catches, with suggestions for improvement[R]. Madrid: ICCAT Sci Pap, 1986, 25: 324-332.

    [30]

    PASCOE S. Bycatch management and the economics of discarding[M]. Rome: FAO, 1997: 13.

    [31]

    POLACHECK T. Assessment of IUU fishing for southern bluefin tuna[J]. Mar Policy, 2012, 36(5): 1150-1165. doi: 10.1016/j.marpol.2012.02.019

    [32] 童玉和, 陈新军, 田思泉, 等. 渔业管理中生物学参考点的理论及其应用[J]. 水产学报, 2010, 34(7): 1040-1050.
    [33] 张魁, 刘群, 廖宝超, 等. 渔业数据失真对两种非平衡剩余产量模型评估结果的影响比较[J]. 水产学报, 2018, 42(9): 1378-1389.
    [34]

    PRAGER M H. A suite of extensions to a nonequilibrium surplus-production model[J]. Fish Bull, 1994, 92: 374-389.

    [35]

    KELL L T, FROMENTIN J M. Evaluation of the robustness of maximum sustainable yield based management strategies to variations in carrying capacity or migration pattern of Atlantic bluefin tuna (Thunnus thynnus)[J]. Can J Fish Aquat Sci, 2007, 64(5): 837-847. doi: 10.1139/f07-051

    [36]

    ICCAT. Report of the 2002 Atlantic bluefin tuna stock assessment session[R]. Madrid: ICCAT Col Vol Sci Pap, 2003, 55: 710-937.

    [37]

    ICCAT. Recommendation by ICCAT on penalties applicable in case of non-fulfilment of reporting obligations[R]. Madrid: ICCAT, 2011, 11(15): 263.

    [38]

    ICCAT. Recommendation by ICCAT for an interim conservation and management plan for western Atlantic bluefin tuna[R]. Madrid: ICCAT, 2017, 17(6): 104-109.

  • 期刊类型引用(3)

    1. 左鹏翔,金方彭,王志飞,吴俊颉,赵静霞,赵利刚,王文玉,毕晓敏,沈智敏,李波,冷云. 细鳞裂腹鱼(♀)与鲈鲤(♂)杂交及生长对比试验初报. 中国农学通报. 2024(11): 159-164 . 百度学术
    2. 陈军平,沈方方,武慧慧,张佳鑫,于若梦,付永杰,谢国强,赵道全. 我国鱼类胚胎发育研究进展. 江苏农业科学. 2021(17): 45-52 . 百度学术
    3. 梁孟,魏开金,朱祥云,马宝珊,徐滨,徐进. 饥饿和再投喂对短须裂腹鱼幼鱼体组分、消化酶活性及RNA/DNA的影响. 中国农学通报. 2020(23): 151-160 . 百度学术

    其他类型引用(1)

推荐阅读
Structural and functional characteristics of intestinal bacterial community associated with red spotting disease ofstrongylocentroyus intermedius
CHEN Dongsheng et al., SOUTH CHINA FISHERIES SCIENCE, 2025
Effect of high temperature stress on intestinal tissues morphology and transcriptome ofprocambarus clarkii
BAO Zhiming et al., SOUTH CHINA FISHERIES SCIENCE, 2025
Isolation, identification and drug sensitivity ofedwardsiella tardafrompelteobagrus fulvidraco
GAO Xuan et al., SOUTH CHINA FISHERIES SCIENCE, 2024
Molecular identification and expression characteristics analysis ofsubfatingene from grass carp
YANG Boya et al., SOUTH CHINA FISHERIES SCIENCE, 2024
Isolation and identification of lactobacillus bacteria from culled hens meat for meat biopreservator
A. W. Lengkey et al., KNE LIFE SCIENCES, 2017
Identification and characterization indigenous of lactobacillus spfrom bovine rumen fluidof slaughterhouse
T. Nurhajati et al., KNE LIFE SCIENCES, 2017
Isolation and screening of thermophillic bacteria and its subsequent evaluation for lipases production
Bashir, Tehmina et al., PAKISTAN JOURNAL OF BOTANY, 2024
Strain specificity of lactobacilli with promoted colonization by galactooligosaccharides administration in protecting intestinal barriers during salmonella infection
Wu, Yujun et al., JOURNAL OF ADVANCED RESEARCH, 2024
Transcriptome and hormonal analysis of agaricus bisporus basidiome response to hypomyces perniciosus infection
PLANT DISEASE, 2024
Morphological and phylogenetical analyses of pathogenic hypomyces perniciosus isolates from agaricus bisporus causing wet bubble disease in china
PHYTOTAXA, 2021
Powered by
图(9)  /  表(3)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  144
  • PDF下载量:  74
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-02-20
  • 修回日期:  2022-04-17
  • 录用日期:  2022-04-17
  • 网络出版日期:  2022-10-19
  • 刊出日期:  2023-02-04

目录

/

返回文章
返回