历史渔获量统计偏差对资源评估的影响:以西大西洋蓝鳍金枪鱼为例

Influence of statistical deviation of historical catch on stock assessment: a case study of western Atlantic Thunnus thynnus

  • 摘要: 渔获量数据是资源评估所需的最基本数据,同时也最易出现报告和统计误差。误报问题是导致历史渔获量偏差的原因之一,普遍存在于全球各类渔业资源评估中。根据历史数据,分析渔获量偏差对资源评估的影响有助于建立合理的管理目标,促进渔业资源可持续利用。以西大西洋蓝鳍金枪鱼 (Thunnus thynnus) 为例,运用年龄结构模型 (Age-Structured Assessment Program, ASAP),分析历史渔获量统计偏差对当前资源状态判定的影响。结果表明,捕捞死亡系数 (Fishing mortality, F) 和产卵亲体生物量 (Spawning stock biomass, SSB) 的估计值会随着调整后的实际渔获量同向变化;随着统计偏差幅度增大,F和SSB相关生物学参考点的相对偏差率也随之增大。所有8种假定的渔获量统计偏差情况下,F相关参考点的相对偏差率均小于1%;当渔获量统计偏差为−20%时,SSB相关参考点的最大相对偏差率约为4%。历史渔获量统计偏差对SSB相关参考点的影响相比F相关参考点更为明显。根据该研究结果,建议加强渔获量数据质量问题的来源分析,从而进行历史渔业数据的科学重建,以提高评估结果的精确性与可信度。

     

    Abstract: Catch data, which is the most basic data for stock assessment, is also most likely to cause reporting and statistical errors. Misreporting is one of the causes for statistical deviation of historical catch, which is currently prevalent in all types of fisheries worldwide. Analyzing the influence of statistical deviation of historical catch on stock assessment based on historical data helps to establish reasonable management objectives, and promote sustainable utilization of fishery resources. In this study, we selected western Atlantic bluefin tuna (Thunnus thynnus) as an example to evaluate the influence of statistical deviation of historical catch on its stock assessment. We carried out a stock assessment by using Age-Structured Assessment Program (Age-Structured Assessment Program, ASAP), and investigated the effects of catch information inaccuracy on the assessment results by setting different levels of statistical deviation of historical catch. The results indicate that the estimated values of fishing mortality (F) and spawning stock biomass (SSB) changed in the same direction with the adjusted catch. With the increase of statistical deviation of catch, the relative difference of biological reference points also increased. The relative deviation rate of F-related biological reference points was less than 1% under all eight assumed statistical deviations of catch. When the statistical deviation of the historical catch was assumed as −20%, the maximum relative difference of SSB-related biological reference points was about 4%. The statistical deviation of catch had a more obvious impact on SSB-related biological reference points than F-related biological reference points. In conclusion, it is suggested to strengthen the source analysis of catch data quality issues, so that the scientific reconstruction of historical fishery data can be conducted to improve the accuracy and reliability of the stock assessment results.

     

/

返回文章
返回