Species identification and morphology of fish eggs from Jiangmen coastal waters in spring using DNA barcoding
-
摘要: 江门位于珠江口西南部,其近海海域是多种小型鱼类的产卵场和育幼场。以珠江口江门海域春季采集到的鱼卵为研究对象,基于DNA条形码技术分析鉴定了鱼卵种类,描述了鱼卵的形态特征,并初步研究了其形态分类。共采获13种鱼卵,分属于3目10科,其中4种鉴定至种水平,分别为眶棘双边鱼 (Ambassis gymnocephalus)、缘边银鲈 (Gerres limbatus)、多鳞 (Sillago sihama) 和斑头舌鳎 (Cynoglossus puncticeps);8种鉴定至属水平,分别为沙丁鱼属、小公鱼属、棘鲷属、副叶鲹属、叫姑鱼属、属和舌鳎属;1种鉴定至科水平,为鲾科。结果发现,江门海域大部分鱼卵可通过形状与大小、卵周隙宽窄、油球数量和色素分布等形态特征进行分类;对于胚体发育良好的鱼卵,胚体上色素胞颜色、数量及分布也是种类鉴定的重要依据。然而相近种类难以通过单一发育阶段形态特征进行准确区分,更深入的形态学研究尚待开展。Abstract: Jiangmen is located in the southwest of the Pearl River Estuary. It is the spawning ground and nursery ground for various small fish. We identified the species of fish eggs from Jiangmen coastal waters of the Pearl River Estuary in sping based on DNA barcoding analysis, then described and preliminarily classified the morphological characteristics of fish eggs. We acquired a total of 13 taxa, which belonged to three orders and ten families. Four and eight taxa were identified to species and genus levels, respectively (Ambassis gymnocephalus, Gerres limbatus, Sillago sihama, Cynoglossus puncticeps, Sardinella sp., Stolephorus sp., Acanthopagrus sp., Alepes sp., Johnius sp., Sillago sp. and Cynoglossus sp.). One taxon was identified in family (Leiognathidae sp.). The results demonstrate that most fish eggs collected in the survey area can be classified by morphological characteristics such as shape, fish eggs size, perivitelline space, number and pigment distribution of oil globules. In addition, the colour, amount and distribution of pigments of the embryo are also important in species identification when the embryo is well developed. However, it is difficult to distinguish the closely related species only by the morphological characteristics of a single developmental stage. Further morphological studies should be conducted in the future.
-
近年来,在南太平洋海域进行商业捕捞作业的船队主要为中国大陆和中国台湾船队[1]。有研究表明环境变化对于长鳍金枪鱼 (Thunnus alalunga) 的分布和洄游有显著影响[2-3],由于长鳍金枪鱼的高度洄游性使商业捕捞作业船队对其渔场的寻找成为一项高成本生产活动。因此,了解长鳍金枪鱼的资源分布与环境因子的关系对提高该渔业的生产效率具有重要意义。南太平洋长鳍金枪鱼作为延绳钓渔船的主要捕捞对象,一般栖息在200~300 m水层[4]。而目前国内外学者多选择表层环境因子作为研究对象[5-7],较少采用不同水层的环境数据。广义可加模型 (Generalized additive model, GAM) 作为定量分析渔获率与环境要素之间关系的方法,目前已得到广泛应用。而这些研究在变量选择中多加入了时空因子[8-10],忽略了时空因子与环境因子之间和不同环境因子之间的多重共线性[11]。此外,由于缺少该鱼种完整的渔捞日志数据,研究多采用5°方格数据[7,10],但这种较低空间分辨率的环境数据往往会弱化数值分析的效果。
本文根据中国大陆地区所有渔船2015—2017年在南太平洋的渔捞日志,整理出了空间分辨率为1°×1°的月渔获数据,用GAM模型逐步回归分析各环境因子与长鳍金枪鱼资源的关系,以探讨环境因子的变化对长鳍金枪鱼资源分布的影响,以期为南太平洋长鳍金枪鱼的合理开发利用和资源养护管理提供参考。
1. 材料与方法
1.1 数据来源
1.1.1 渔业数据
来自中国大陆地区2015—2017年所有渔船渔捞日志,选取在南太平洋海域 (140°E—130°W,0°N—50°S,图1) 且捕捞对象为长鳍金枪鱼的渔捞日志数据 (具体数据总量见表1),包括日期、作业位置、投钩数、各鱼种渔获量尾数和千克数等。
表 1 南太平洋长鳍金枪鱼延绳钓渔业作业天数情况Table 1. Fishing days of longline fishery of T. alalunga in South Pacific年份
Year总渔船数
Total vessels累计作业天数
Total fishing days2015 107 18 070 2016 115 20 591 2017 136 26 291 1.1.2 水文环境数据
包括海表温度 (Sea surface temperature,SST) 及不同深度水温、海表盐度 (Sea surface salinity,SSS) 及不同水层盐度、叶绿素a浓度 (Chlorophyll a concentration,Chla)、海表风场 (Sea surface wind,SSW)、海表面高度 (Sea surface height,SSH)、混合层深度 (Mixed layer depth,MLD) 的月数据。其中海表温度及不同水深温度、海表盐度及不同水层盐度、混合层深度来自中国Argo实时资料中心提供的《全球海洋Argo网格数据集 (BOA_Argo) 》,空间分辨率为1°。叶绿素a浓度来自美国国家海洋和大气管理局 (National Oceanic and Atmospheric Administration, NOAA) 的Ocean Watch网站,空间分辨率为0.05°。海表风场来自美国宇航局物理海洋学数据分发存档中心 (PO.DAAC) 提供的CCMP风速,空间分辨率为0.25°,海表面高度来自德国汉堡大学的综合气候数据中心提供的ORA-S4资料,空间分辨率为1°。
1.2 数据预处理
1) 单位捕捞努力量渔获量 (Catch per unit effort,CPUE) 可以作为代表长鳍金枪鱼渔业资源状态的指标。其计算公式为:
$$ {\rm{CPUE}} = \dfrac{{{U_{{\rm{catch}}}}}}{{{f_{{\rm{hooks}}}}}} $$ (1) 式中Ucatch表示1°×1°单位渔区内的累计渔获量 (kg),fhooks是1°×1°单位渔区内的累计投钩数 (千钩),时间尺度为月。
2) 用Matlab读取海表温度、叶绿素a浓度、海表风场数据,并与单位渔区进行数据匹配。受云层遮挡等因素影响,环境数据尤其是叶绿素a浓度数据存在缺失情况。本文采用计算周围变量均值的方法对缺失数据进行处理。
1.3 分析方法
1.3.1 相关性分析
利用Pearson相关系数计算环境因子之间的相关系数[12],其公式为:
$$ r = \frac{{\displaystyle\sum\nolimits_{i = 1}^n {\left( {{x_i} - \bar x} \right)\left( {{y_i} - \bar y} \right)} }}{{\sqrt {\displaystyle\sum\nolimits_{i = 1}^n {{{\left( {{x_i} - \bar x} \right)}^2}{{\displaystyle\sum\nolimits_{i = 1}^n {\left( {{y_i} - \bar y} \right)} }^2}} } }} $$ (2) 式中r表示相关系数,xi表示环境因子x的第i个观测值,
$\bar x $ 表示环境因子的均值,yi表示环境因子y的第i个观测值,${\bar y}_i $ 表示环境因子y的均值。1.3.2 GAM模型
GAM模型能够较好地处理响应变量和一组解释变量之间高度非线性和非单调关系的能力,被广泛用于渔获率与环境关系研究[13-14]。其一般表达式为:
$$ g\left( {\rm{\mu}} \right) = {\beta _0} + \sum\nolimits_{i = 1}^k {{f_i}} \left( {{x_i}} \right) + \varepsilon \left[ {{\rm{\mu}} = E\left( {Y/X} \right)} \right] $$ (3) 式中g(μ) 表示联系函数,β0表示常数截距项,fi(xi) 表示用来描述g(μ) 与第i个解释变量关系的平滑函数。
GAM模型和逐步回归计算在R-3.5.0中实现。
2. 结果
2.1 环境因子之间的相关性
本研究在不同水深环境数据中选择了60、120、180、240、300 m深度水温和盐度与其他表层环境因子进行了相关性分析。计算表明各层之间温度和盐度相关性较大 (由于篇幅所限,结果未列出),最后选取了相关性较小的三层 (表层、120 m300 m) 参与最后的要素分组中。通常认为如果相关系数大于0.75为强相关[15],介于0.5~0.75为中等程度相关,小于0.5为弱相关。SST和t120,t300和s300,SST与SSH,t120与SSH为高度相关因子;SST与s120,SST与MLD,SST与Uwnd,t120与s120,t120与Uwnd均中度相关;SSS、Chla、Vwnd与其他环境因子之间的相关性均较小 (表2)。
表 2 各环境变量相关系数矩阵Table 2. Correlation coefficients matrix of environmental factors变量
Variablet120 t300 SSS s120 s300 MLD Uwnd Vwnd Chla SSH SST 0.916 0.005 −0.359 0.545 −0.091 −0.560 −0.541 −0.146 −0.316 0.753 t120 − −0.002 −0.239 0.582 −0.098 −0.307 −0.542 −0.137 −0.221 0.757 t300 − − 0.176 0.165 0.925 −0.152 −0.277 0.428 −0.068 0.440 SSS − − − 0.408 0.097 0.396 −0.056 −0.175 0.128 −0.432 s120 − − − − −0.008 −0.124 −0.504 −0.242 −0.150 0.258 s300 − − − − − −0.117 −0.127 0.451 0.114 0.407 MLD − − − − − − 0.255 0.004 0.326 −0.451 Uwnd − − − − − − − −0.308 0.178 −0.493 Vwnd − − − − − − − − 0.137 0.212 Chla − − − − − − − − − −0.238 注:SST. 海表温度;t120. 120 m水深温度;t300. 300 m水深温度;SSS. 海表盐度;s120.120 m水深盐度;s300. 300 m水深盐度;MLD. 混合层深度;Chla. 海表面叶绿素a浓度;Uwnd. 海表风场东西分量,即纬向风,以东为正;Vwnd. 海表风场南北分量,即经向风,以北为正;SSH. 海表面高度;下同 Note: SST. Sea surface temperature; t120. Sea temperature at depth of 120 m; t300. Sea temperature at depth of 300 m; SSS. Sea surface salinity; s120. Sea salinity at depth of 120 m; s300. Sea salinity at depth of 300 m; MLD. Mixed layer depth; Chla. Sea surface chlorophyll a concentration; Uwnd. Eastward Sea surface wind; Vwnd. Northward Sea surface wind; SSH. Sea surface height. The same case in the following table 2.2 GAM模型的构建与分析
本研究使用GAM模型分析长鳍金枪鱼CPUE与各环境因子之间的关系,其中CPUE作为响应变量,SST、t120、t300、SSS、s120、s300、Chla、Uwnd、Vwnd、SSH、MLD作为解释变量,根据相关性分析结果,将环境因子分为4组分别建立GAM模型,表达式为:
$$ \begin{array}{c} {\rm{log}}\left( {{\rm{CPUE}} + 1} \right)\sim s\left( {{\rm{SST}}} \right) + s\left( {{t_{300}}} \right) + s({\rm{SSS}}) + {\rm{ }}s\left( {{V_{{\rm{wnd}}}}} \right) + \\s\left( {{\rm{Chla}}} \right) + \varepsilon \\ {\rm{log}}\left( {{\rm{CPUE}} + 1} \right)\sim s({t_{120}}) + s\left( {{\rm{SSS}}} \right) + s\left( {{s_{300}}} \right) + s\left( {{\rm{MLD}}} \right) + \\s\left( {{V_{{\rm{wnd}}}}} \right) + s\left( {{\rm{Chla}}} \right) + \varepsilon \\ {\rm{log}}\left( {{\rm{CPUE}} + 1} \right)\sim s({t_{300}}) + s\left( {{\rm{SSS}}} \right) + s\left( {{s_{120}}} \right) + s({\rm{MLD}}) +\\ s\left( {{V_{{\rm{wnd}}}}} \right) + s\left( {{\rm{SSH}}} \right) + s\left( {{\rm{Chla}}} \right) + \varepsilon \\ {\rm{log}}\left( {{\rm{CPUE}} + 1} \right)\sim s\left( {{t_{300}}} \right) + s\left( {{\rm{SSS}}} \right) + s\left( {{\rm{MLD}}} \right) + s\left( {{U_{{\rm{wnd}}}}} \right) + \\s\left( {{V_{{\rm{wnd}}}}} \right) + s\left( {{\rm{SSH}}} \right) + s\left( {{\rm{Chla}}} \right) + \varepsilon \end{array} $$ 式中为了防止零值出现,采用CPUE加上1再进行对数化处理,s为自然立方样条平滑 (Natural cube spline smoother),ε为误差项。
结果显示,各模型的总偏差解释率介于30%~40% (表3)。各环境因子的平均可解释偏差大小依次为t120 (19.7%)、SST (18.5%)、t300 (12.5%)、t120 (12.3%)、SSH (7.0%)、s300 (4.9%)、SSS (3.3%)、MLD (2.4%)、Vwnd (2.4%)、Uwnd (1.8%)、Chla (0.8%)。
表 3 GAM模型拟合结果的偏差分析Table 3. Analysis of deviance for generalized additive models (GAM)分组
Group累加影响因子
Cumulative of influencing factorsP 决定系数
R2累计解释偏差
Cumulative of deviance explained可解释偏差
Deviance explainedAIC值
AIC value第一组 Group 1 +SST <2×10−16*** 0.185 18.5% 18.5% 24 376.49 +t300 <2×10−16*** 0.297 29.9% 11.4% 23 222.20 +SSS <2×10−16*** 0.306 30.8% 0.9% 23 136.20 +Vwnd <2×10−16*** 0.326 32.9% 2.1% 22 908.96 +Chla <2×10−16*** 0.341 34.3% 1.4% 22 746.25 第二组 Group 2 +t120 <2×10−16*** 0.196 19.7% 19.7% 24 265.62 +SSS <2×10−16*** 0.215 21.6% 1.9% 24 087.74 +s300 <2×10−16*** 0.263 26.5% 4.9% 23 599.79 +MLD <2×10−16*** 0.282 28.5% 2.0% 23 410.19 +Vwnd <2×10−16*** 0.295 29.8% 1.3% 23 276.47 +Chla <2×10−16*** 0.307 31% 1.2% 23 147.81 第三组 Group 3 +t300 <2×10−16*** 0.13 13.1% 13.1% 24 881.85 +SSS <2×10−16*** 0.18 18.2% 5.1% 24 428.97 +s120 <2×10−16*** 0.303 30.5% 12.3% 23 165.18 +MLD <2×10−16*** 0.319 32.1% 1.6% 23 000.88 +Vwnd <2×10−16*** 0.337 34% 1.9% 22 795.21 +SSH <2×10−16*** 0.393 39.6% 5.6% 22 110.88 +Chla 0.002 75** 0.394 39.8% 0.2% 22 100.98 第四组 Group 4 +t300 <2×10−16*** 0.13 13.1% 13.1% 24 881.85 +SSS 4.89×10-8*** 0.18 18.2% 5.1% 24 428.97 +MLD <2×10−16*** 0.214 21.7% 3.5% 24 105.96 +Uwnd 0.030 1* 0.231 23.4% 1.7% 23 942.02 +Vwnd <2×10−16*** 0.267 27.1% 3.7% 23 574.18 +SSH <2×10−16*** 0.352 35.5% 8.4% 22 626.40 +Chla 2.51×10−15*** 0.356 36% 0.5% 22 571.78 2.3 各因子对CPUE的影响和关系
GAM模型分析发现,SST、t120、t300、s120是对CPUE影响较大的环境变量 (表3)。SST与CPUE介于15~30 ℃整体呈现负相关,其中介于25~28 ℃显示正相关 (图2-a)。t120与SST的趋势一致,呈负效应关系,其中介于18~23 ℃保持平稳状态 (图2-b)。t300在10 ℃之前置信区间较大且数据量较小故不予讨论,在10 ℃之后呈现出明显的正相关 (图2-c)。s120与CPUE以35.5为中心总体呈开口向上的抛物线,在36.4之后呈负相关 (图2-e)。
对CPUE影响比较小的几个环境因子分别为SSS、s300、MLD、Uwnd、Vwnd、SSH、Chla。各模型得出的SSS对CPUE的影响略有差异,总体与CPUE保持平稳状态 (图2-d)。s300与CPUE以34.8为中心呈开口向上的抛物线 (图2-f),在35.0之后基本保持平稳。MLD与CPUE总体保持稳定 (图2-g),呈现轻微的正效应关系。Uwnd与CPUE基本保持平稳 (图2-h)。Vwnd与CPUE总体上呈现正效应关系 (图2-i),其中在−1~3 m·s−1保持平稳。Chla与CPUE整体上呈现轻微的负相关 (图2-j)。SSH与CPUE总体上呈负效应关系 (图2-k),在0.5 m之后这种负效应明显放缓。
在参与2个及以上模型的环境因子中,MLD、Vwnd、Chla在较小的置信区间内总体趋势相似,与CPUE基本保持平稳状态,t300、SSH对CPUE的影响较大,但依然表现出了较高的拟合度。SSS在对CPUE的影响略有差异,介于35.2~35.0拟合较好。
3. 讨论
3.1 环境因子的多重共线性
目前通过GAM模型分析环境因子与渔场的关系时通常会加入时空因子。然而时空因子的加入可能会影响环境因子与渔场关系的判断,如海表温度分布与纬度存在相关性,海表温度从低纬度向高纬度递减,纬度因素的加入会影响海表温度与渔场真实关系的推断。因此时空因子的加入对渔场与环境因子的关系分析可能会造成误判。
除了时空因子与环境因子的相互影响外,环境因子之间也存在不可避免的自相关和多重共线性问题[16]。长鳍金枪鱼的渔场分布与各环境因子显著相关,是各个环境因子综合作用的结果,而环境因子间的高度相关性又会掩盖单个环境因子与渔场分布的真实关系。本研究发现,海表温度除了与混合层深度、海表风场、海表面高度等海表面环境因素有较大的相关性外,与各水层的温度、盐度也具有较大的相关性,因此在构建模型探讨海表温度与长鳍金枪鱼渔场的关系前,需要进行环境因子的相关性分析,通过排除相关系数较大的环境因子,降低这种多重共线性的负面影响[17]。
在建模过程中为避免同一模型内环境因子之间的多重共线性,同时又要确保放入尽量多的环境因子,本研究将环境因子分为4组分别建立GAM模型。由于每组模型选择的环境因子不同,得出的总解释偏差也有所差异。而在参与多个模型的环境因子中,t300、MLD、Vwnd、Chla、SSH的总体趋势相似 (图2),验证了这种分组建模方式分析环境因子与渔场分布具有较高的可信度。海表面的盐度略有差异,可能是由于其与120 m水深盐度、混合层深度、海表面高度均呈中等程度相关,不同的环境因子的选择影响了海表盐度与CPUE的关系。
3.2 CPUE与环境因子的关系
作为影响海洋鱼类活动最重要的环境因子之一,温度的变化对鱼类的分布、洄游和集群等会造成直接或者间接的影响[18],在进行长鳍金枪鱼时空分布与主要环境因子的关系研究时,一般都会选用SST作为环境因子[19-20]。海表温度对南太平洋长鳍金枪鱼的分布有显著影响,由GAM模型结果可以发现,长鳍金枪鱼的主要作业渔区出现在SST介于20~30 ℃的海域 (图2-a),这与樊伟等[21]的南太平洋长鳍金枪鱼产量高密度区呈双峰型,出现在20 ℃和29 ℃海域的研究结果一致。同时发现,SST与CPUE总体上呈现负相关,在25 ℃之前随温度的升高CPUE逐渐降低,在25 ℃之后略有回升。说明相对低温海域的作业频率较低但CPUE较高,可以探寻相对低温海域的长鳍金枪鱼渔区并进行开发。
延绳钓渔船通常以长鳍金枪鱼成鱼为目标鱼种,主要在0~400 m深度设钩。水温垂直结构在长鳍金枪鱼渔场的形成过程中有直接影响[22]。研究结果显示,120~300 m水层,温度显著影响长鳍金枪鱼的产量,这可能是因为该水层是水温急剧下降的温跃层,温度和密度变化大,溶解氧含量高,饵料资源丰富。Hoyle等[23]发现,东南太平洋长鳍金枪鱼主要栖息于170~220 m水层,中西太平洋为150~300 m,与本文研究结果相似。Williams等[24]在汤加附近海域发现,长鳍金枪鱼高渔获率水深一般为200~300 m,与本文研究结果有一定差异,这可能是缘于研究海域不同。
海表面盐度对于长鳍金枪鱼渔获量的影响较小,这与范永超等[25]、蒋汉凌[26]的研究结果一致。本研究还发现,s120对长鳍金枪鱼渔获量有显著影响。这说明海表面盐度影响较小可能是因为其主要通过影响溶解气体、海流等其他海表面环境因素从而对长鳍金枪鱼CPUE间接造成影响,而各水深盐度是影响长鳍金枪鱼CPUE的一个重要因素,在以后的研究中不可忽略。120~300 m温度和盐度显著影响长鳍金枪鱼CPUE的分布,这也验证了本研究长鳍金枪鱼主要栖息于120~300 m水层的结果。
海面高度主要与水团、水系、海流、潮汐、中尺度涡等海洋动力信息有关。随着海面高度的增加,表层水团进行辐散或汇合[27],底层水上升进行补充,海水底层营养盐上升对表层营养盐进行补充,使海水表层初级生产力增加,浮游生物密度增加,长鳍金枪鱼资源量增加。本研究中,SSH与长鳍金枪鱼CPUE呈现负效应,可能是由于处于上升流的中心区域,营养盐浓度高,初级生产力高,浮游生物密度高,导致水体中氧气的大量消耗。
混合层深度会对栖息于混合层的长鳍金枪鱼造成垂直分布的限制[28]。本研究中混合层深度与CPUE呈现出轻微的正效应。以往的研究中,可能由于存在与混合层深度有较大相关性的环境因素,导致混合层深度与CPUE的关系并不明显,这与本文结果略有不同,未来可作进一步探究。
从食物链的角度看,叶绿素a浓度通常表征以浮游植物为食的浮游动物量,间接影响渔场分布[29]。以往的研究中,叶绿素a浓度通常是影响南太平洋长鳍金枪鱼CPUE的重要原因,而本研究中仅呈现出轻微的负相关,这可能是由于在叶绿素a浓度升高、浮游植物生物量增大、长鳍金枪鱼聚集增加的过程中存在时间延迟现象[30]。
国内外学者在长鳍金枪鱼CPUE与环境因子关系的研究中多使用海表面温度、海表面高度、叶绿素a浓度等,除此之外,海面风场也是影响鱼类活动的一个重要因子。
本研究表明,Uwnd与CPUE总体保持稳定,Vwnd与CPUE呈现正效应,其中在−2~4 m·s−1保持平稳状态。海面风场对长鳍金枪鱼CPUE的影响显著,总体呈正相关关系,可能是由于较大的风速导致海水的湍流混合加大、水柱混合加深以及海水浑浊度增加[31-32],使海域营养盐增加、生产力提高,因此形成了良好的渔场,也有可能是这种混合造成海域适宜的水温对长鳍金枪鱼资源有促进作用。
由于本文仅有3年 (2015—2017年)的渔捞日志数据,对环境关系的研究存在一些制约,未来将选择更长时间尺度的渔业数据并结合溶解气体、水系和海流、潮汐和潮流、气象因素等其他影响鱼类行为的环境因子作进一步研究。
-
图 2 珠江口江门海域 13种鱼卵不同发育阶段的图像
注:a. 小沙丁鱼属;b. 小公鱼属;c. 棘鲷属;d. 副叶鲹属;e. 眶棘双边鱼;f. 缘边银鲈;g. 叫姑鱼属;h. 鲾科;i. 属;j. 多鳞;k. 舌鳎属-1;l. 斑头舌鳎;m. 舌鳎属-2;比例尺均为 0.1 mm。
Figure 2. Photographs of different embryonic development stages of fish eggs of 13 species from Jiangmen coastal area of Pearl River Estuary
Note: a. Sardinella sp.; b. Stolephorus sp.; c. Acanthopagru sp.; d. Alepes sp.; e. A. gymnocephalus; f. G. limbatus; g. Johnius sp.; h. Leiognathidae; i. Sillago sp.; j. S. sihama; k. Cynoglossus sp.-1; l. C. puncticeps; m. Cynoglossus sp.-2. Scale bar is 0.1 mm.
表 1 研究海域鱼卵DNA序列对比及物种鉴定结果
Table 1 Results of DNA sequence comparison and species identification of fish eggs in survey area
物种名
Species序列登记号
GenBank ID匹配相似度
Similarity/%匹配种类序列号
Accession ID匹配序列来源
Source of reference沙丁鱼属 Sardinella OM142886—OM142888 99~100 HQ231359、HQ231357、EU595257 菲律宾、中国南海 小公鱼属 Stolephorus OM142808—OM142840 99~100 MW401810、MT734525、MZ436957 中国东海、南海 棘鲷属 Acanthopagrus OM142879 99~100 MW379787、OM957527 中国南海 副叶鲹属 Alepes OM142880 99~100 MN623875、KX254480 印度、中国台湾 眶棘双边鱼 A. gymnocephalus OM142865—OM142871 99~100 LC569709 中国南海 缘边银鲈 G. limbatus OM142861—OM142864 100 LC569720 中国南海 叫姑鱼属 Johnius OM142872—OM142877 99~100 EF607410、OK255542、OK271445 越南、中国台湾 鲾科 Leiognathidae OM142841—OM142853 99~100 KX254544、LC484871 中国台湾、南海 属 Sillago OM142854—OM142857 99~100 KY372171、OM048920、MW379766 中国南海 多鳞 S. sihama OM142878、OM142881—OM142885 100 LC484880 中国南海 舌鳎属-1 Cynoglossus-1 OM142858—OM142860 99~100 MW041882、EF607349 越南、中国南海 斑头舌鳎 C. puncticeps OM142889—OM142892 99~100 LC484873 中国南海 舌鳎属-2 Cynoglossus-2 OM142893 95 JN312935 越南 -
[1] RODRIGUEZ J M. A guide to the eggs and larvae of 100 common Western Mediterranean Sea bony fish species[R]. Rome, Italy: FAO, 2018: 1-3.
[2] KAWAKAMI T, AOYAMA J, TSUKAMOTO K. Morphology of pelagic fish eggs identified using mitochondrial DNA and their distribution in waters west of the Mariana Islands[J]. Environ Biol Fish, 2010, 87(3): 221-235. doi: 10.1007/s10641-010-9592-2
[3] KOSLOW J A, WRIGHT M J. Ichthyoplankton sampling design to monitor marine fish populations and communities[J]. Mar Policy, 2016, 68(6): 55-64.
[4] KESTER F W, HUWER B, KRAUS G, et al. Egg production methods applied to Eastern Baltic cod provide indices of spawning stock dynamics[J]. Fish Res, 2020, 227(6): 221-227.
[5] 万瑞景, 张仁斋. 中国近海及其邻近海域鱼卵与仔鱼[M]. 上海: 上海科学技术出版社, 2016: 2-4. [6] 邵广昭, 杨瑞森, 陈康青, 等. 台湾海域鱼卵图鉴[M]. 台北: 中央研究院动物所, 2001: 1-2. [7] HOFMANN T, KNEBELSBERGER T, KLOPPMANN M, et al. Egg identification of three economical important fish species using DNA barcoding in comparison to a morphological determination[J]. J Appl Ichthyol, 2017, 33(5): 925-932. doi: 10.1111/jai.13389
[8] STEINKE D, CONNELL A D, HEBERT P J G. Linking adults and immatures of South African marine fishes[J]. Genome, 2016, 59(11): 959-967. doi: 10.1139/gen-2015-0212
[9] 肖瑜璋, 王蓉, 郑琰晶, 等. 珠江口鱼类浮游生物种类组成与数量分布[J]. 热带海洋学报, 2013, 32(6): 80-87. doi: 10.3969/j.issn.1009-5470.2013.06.012 [10] 王迪, 林昭进. 珠江口鱼类群落结构的时空变化[J]. 南方水产, 2006, 2(4): 37-45. doi: 10.3969/j.issn.2095-0780.2006.04.007 [11] 李开枝, 尹健强, 黄良民. 珠江河口浮游动物的群落动态及数量变化[J]. 热带海洋学报, 2005, 24(5): 60-68. doi: 10.3969/j.issn.1009-5470.2005.05.007 [12] 黄吉万, 孙典荣, 刘岩, 等. 珠江口中华白海豚自然保护区鱼类群落多样性分析[J]. 南方农业学报, 2018, 49(5): 1-8. [13] 晏磊, 谭永光, 杨炳忠, 等. 基于张网渔业休渔前后的黄茅海河口渔业资源群落比较[J]. 南方水产科学, 2016, 12(6): 1-8. doi: 10.3969/j.issn.2095-0780.2016.06.001 [14] 田丰歌, 郑琰晶, 肖瑜璋, 等. 广海湾康氏小公鱼的产卵期及其鱼卵数量变动[J]. 应用海洋学学报, 2017, 36(3): 395-402. doi: 10.3969/J.ISSN.2095-4972.2017.03.013 [15] LIN H Y, CHIU M Y, SHIH Y M, et al. Species composition and assemblages of ichthyoplankton during summer in the East China Sea[J]. Cont Shelf Res, 2016, 126(1): 64-78.
[16] BALDWIN C C, MOUNTS J H, SMITH D G, et al. Genetic identification and color descriptions of early life-history stages of Belizean Phaeoptyx and Astrapogon (Teleostei: Apogonidae) with comments on identification of adult Phaeoptyx[J]. Zootaxa, 2009, 26(2008): 1-22.
[17] KO H L, WANG Y T, CHIU T S, et al. Evaluating the accuracy of morphological identification of larval fishes by applying DNA barcoding[J]. PLoS One, 2013, 8(1): e53451. doi: 10.1371/journal.pone.0053451
[18] 张楠, 吴娜, 郭华阳, 等. 基于DNA条形码技术对江门沿岸海域夏季鱼卵的鉴定[J]. 中国水产科学, 2018, 25(4): 721-727. [19] 金雨婷, 蒋日进, 赵进, 等. 鱼卵和仔稚鱼鉴定技术研究进展[J]. 安徽农业科学, 2019, 47(15): 18-20,39. doi: 10.3969/j.issn.0517-6611.2019.15.005 [20] 陈永久, 陈定标, 蒋日进. DNA条形码在浙江沿海浮游鱼卵和仔鱼分类鉴定中的应用[J]. 浙江海学院学报(自然科学版), 2017, 36(3): 202-206,247. [21] 周美玉, 陈骁, 杨圣云. 采用DNA条形码技术对厦门海域鱼卵、仔稚鱼种类的鉴定[J]. 海洋环境科学, 2015, 34(1): 120-125. [22] HOU G, CHEN Y Y, LU J R, et al. Molecular identification of species diversity using pelagic fish eggs in spring and late autumn-winter in the eastern Beibu Gulf, China[J]. Front Mar Sci, 2022, 8: 13.
[23] BECKER R A, SALES N G, SANTOS G M G. DNA barcoding and morphological identification of neotropical ichthyoplankton from the upper Paraná and São Francisco[J]. J Fish Biol, 2015, 87(1): 159-168. doi: 10.1111/jfb.12707
[24] LABRADOR K, AGMATA A B, PALERMO J D, et al. Mitochondrial DNA reveals genetically structured haplogroups of Bali sardinella (Sardinella lemuru) in Philippine waters[J]. Reg Stud Reg Sci, 2021, 41: 1-13.
[25] SUKUMARAN S, SEBASTIAN W, GOPALAKRISHNAN A. Population genetic structure of Indian oil sardine, Sardinella longiceps along Indian coast[J]. Gene, 2016, 576(1P2): 372-378.
[26] CHOI H Y, OH J, KIM S, et al. Genetic identification of eggs from four species of Ophichthidae and Congridae (Anguilliformes) in the northern East China Sea[J]. PLoS One, 2018, 13(4): 1-17.
[27] NAUE J, HANSMANN T, SCHMIDT U, et al. High-resolution melting of 12S rRNA and cytochrome b DNA sequences for discrimination of species within distinct European animal families[J]. PLoS One, 2014, 9(12): 1-17.
[28] HOU G, CHEN W T, LU H S, et al. Developing a DNA barcode library for perciform fishes in the South China Sea: species identification, accuracy and cryptic diversity[J]. Mol Ecol Resour, 2018, 18(1): 137-146.
[29] HOU G, WANG J R, LIU L M, et al. Assemblage structure of the ichthyoplankton and its relationship with environmental factors in spring and autumn off the Pearl River Estuary[J]. Front Mar Sci, 2021, 8: 732970.
[30] 张世义. 中国动物志硬骨鱼纲 (鲟形目, 海鲢目, 鲱形目, 鼠目)[M]. 北京: 科学出版社, 2001: 119-156. [31] 谢志超, 孙典荣, 刘永, 等. 江门海域游泳动物群落组成及其多样性初步分析[J]. 南方水产科学, 2018, 14(5): 21-28. [32] 吴光宗. 长江口海区鳀鱼和康氏小公鱼鱼卵和仔、稚鱼分布的生态特征[J]. 海洋与湖沼, 1989, 20(3): 217-229. [33] 张孝威, 沙学绅, 陈真然, 等. 青鳞鱼早期发育阶段形态和习性的观察[J]. 鱼类学论文集 (第一辑), 1981, 5(1): 57-64. [34] 商晓梅, 马爱军, 王新安. 中国鳎亚目鱼类的研究进展[J]. 海洋科学, 2014, 38(12): 142-148. doi: 10.11759/hykx20131014001 [35] 万瑞景, 姜言伟, 庄志猛. 半滑舌鳎早期形态及发育特征[J]. 动物学报, 2004, 50(1): 91-102. doi: 10.3969/j.issn.1674-5507.2004.01.014 [36] 张仁斋, 陆穗芬, 赵传絪. 中国近海鱼卵与仔鱼[M]. 上海: 上海科学技术出版社, 1985: 90-91. [37] 徐鹏, 谢木娇, 周卫国, 等. 近30年珠江口海域游泳动物经济物种群落结构变化特征[J]. 应用海洋学学报, 2021, 40(2): 239-250. doi: 10.3969/J.ISSN.2095-4972.2021.02.007 [38] 沖山宗雄. 日本産稚魚図鑑[M]. 東京: 東海大學出版會, 1988: 1064. [39] YOSHINAGA T, MILLER M J, YOKOUCHI K, et al. Genetic identification and morphology of naturally spawned eggs of the Japanese eel Anguilla japonica collected in the western North Pacific[J]. Fish Sci, 2011, 77(6): 983-992. doi: 10.1007/s12562-011-0418-8
[40] 金丹璐, 张清科, 王友发, 等. 鲤科经济鱼类马口鱼 (Opsariichthys bidens) 胚胎发育及仔稚鱼形态与生长观察研究[J]. 海洋与湖沼, 2017, 48(4): 838-847. [41] VALDEZ-MORENO M, VÁSQUEZ-YEOMANS L, ELÍAS-GUTIÉRREZ M, et al. Using DNA barcodes to connect adults and early life stages of marine fishes from the Yucatan Peninsula, Mexico: potential in fisheries management[J]. Mar Freshw Res, 2010, 61(6): 665-671.
-
期刊类型引用(12)
1. 赵诣,袁红春. 基于多通道单回归的太平洋长鳍金枪鱼渔场预测模型与可解释性研究. 水生生物学报. 2025(03): 15-27 . 百度学术
2. 杜艳玲,马玉玲,汪金涛,陈珂,林泓羽,陈刚. 基于ConvLSTM-CNN预测太平洋长鳍金枪鱼时空分布趋势. 海洋通报. 2024(02): 174-187 . 百度学术
3. 李东旭,邹晓荣,周淑婷. 中太平洋黄鳍金枪鱼CPUE时空分布及其与环境因子的关系. 南方水产科学. 2024(04): 68-76 . 本站查看
4. 丁鹏,邹晓荣,许回,丁淑仪,白思琦,张子辉. 基于BP神经网络的长鳍金枪鱼渔获量与气候因子关系研究. 海洋学报. 2024(09): 88-95 . 百度学术
5. 何露雪,付东洋,李忠炉,王焕,孙琰,刘贝,余果. 南海西北部蓝圆鲹时空分布及其与环境因子的关系. 渔业科学进展. 2023(01): 24-34 . 百度学术
6. 王志华,杨晓明,田思泉. 南太平洋长鳍金枪鱼资源不同尺度的空间格局特征. 南方水产科学. 2023(02): 31-41 . 本站查看
7. 韩霈武,王岩,方舟,陈新军. 北太平洋柔鱼不同群体耳石日增量对海洋环境的响应研究. 海洋学报. 2022(01): 101-112 . 百度学术
8. 宋利明,任士雨,洪依然,张天蛟,隋恒寿,李彬,张敏. 大西洋热带海域长鳍金枪鱼渔场预报模型的比较. 海洋与湖沼. 2022(02): 496-504 . 百度学术
9. 方伟,周胜杰,赵旺,杨蕊,胡静,于刚,马振华. 黄鳍金枪鱼5月龄幼鱼形态性状对体质量的相关性及通径分析. 南方水产科学. 2021(01): 52-58 . 本站查看
10. 周胜杰,杨蕊,于刚,吴洽儿,马振华. 青干金枪鱼和小头鲔循环水养殖生长研究. 水产科学. 2021(03): 339-346 . 百度学术
11. 宋利明,许回. 金枪鱼延绳钓渔获性能研究进展. 中国水产科学. 2021(07): 925-937 . 百度学术
12. 谢笑艳,汪金涛,陈新军,陈丕茂. 南印度洋长鳍金枪鱼渔获率与水深温度关系研究. 南方水产科学. 2021(05): 86-92 . 本站查看
其他类型引用(15)