低酸性和酸化即食紫菜热杀菌工艺优化研究

葛蒙蒙, 沈建东, 唐小航, 夏文水, 许艳顺

葛蒙蒙, 沈建东, 唐小航, 夏文水, 许艳顺. 低酸性和酸化即食紫菜热杀菌工艺优化研究[J]. 南方水产科学, 2022, 18(6): 127-136. DOI: 10.12131/20220003
引用本文: 葛蒙蒙, 沈建东, 唐小航, 夏文水, 许艳顺. 低酸性和酸化即食紫菜热杀菌工艺优化研究[J]. 南方水产科学, 2022, 18(6): 127-136. DOI: 10.12131/20220003
GE Mengmeng, SHEN Jiandong, TANG Xiaohang, XIA Wenshui, XU Yanshun. Optimization of thermal sterilization process for low-acid and acidified instant laver[J]. South China Fisheries Science, 2022, 18(6): 127-136. DOI: 10.12131/20220003
Citation: GE Mengmeng, SHEN Jiandong, TANG Xiaohang, XIA Wenshui, XU Yanshun. Optimization of thermal sterilization process for low-acid and acidified instant laver[J]. South China Fisheries Science, 2022, 18(6): 127-136. DOI: 10.12131/20220003

低酸性和酸化即食紫菜热杀菌工艺优化研究

基金项目: 江苏省重点研发计划项目 (BE2019328)
详细信息
    作者简介:

    葛蒙蒙 (1995—),女,硕士研究生,研究方向为水产品加工及贮藏。E-mail: 6190111018@stu.jiangnan.edu.cn

    通讯作者:

    许艳顺 (1981—),男,研究员,博士,研究方向为水产品加工及贮藏。E-mail: xuys@jiangnan.edu.cn

  • 中图分类号: S 986.1

Optimization of thermal sterilization process for low-acid and acidified instant laver

  • 摘要: 为优化即食紫菜 (Porphyra spp.) 的杀菌工艺、开发高品质即食湿态紫菜产品,分别测定了低酸性和酸化紫菜 (pH≤4.6) 两类产品高压热处理 (110、115、121 ℃) 和常压热处理 (85、90、95 ℃) 过程中的传热曲线,结合保藏实验和微生物分析确定了两种杀菌方式对应的产品安全杀菌时间 (F值),并进一步探究了相同杀菌强度F值下不同温度-时间组合对紫菜感官和营养品质的影响。结果表明,紫菜在高压热杀菌F0=3 min时可达到商业无菌,酸化后紫菜在常压热杀菌 ${F\,}_{93.3}^{8.89}$ =5 min时可满足保藏要求。与高压热杀菌相比,酸化结合常压杀菌有利于维持紫菜的色泽和质构。在相同杀菌强度F值下紫菜的韧性、硬度和感官评分随杀菌温度升高而增加。营养成分方面,高压加热组中,随温度升高可溶性糖和游离氨基酸总量降低,常压组中在90 ℃杀菌时游离氨基酸总量最高。综合比较,酸化组杀菌参数采用90 ℃、11.5 min,低酸性组杀菌参数采用115 ℃、10 min时即食紫菜的质构、感官和营养品质较优。
    Abstract: In order to optimize the sterilization process of laver (Porphyra spp.) and develop high-quality instant wet laver products, we measured the heat penetration curves during high-pressure heat treatment (110, 115, 121 ℃) and normal pressure heat treatment (85, 90, 95 ℃) for low-acid and acidified lavers (pH≤4.6). Combined with preservation experiment and microbial analysis, we determined the F-value (Safe sterilization heating time) corresponding to the two sterilization methods, and explored the effects of different temperature-time combinations on the sensory and nutritional quality of laver with the same F-value. Results show that low-acid laver could reach commercial sterility when F0 was 3 min under high-pressure heat sterilization, and acidified laver could also reach the preservation requirements when ${F\,}_{93.3}^{8.89}$ was 5 min under normal pressure heat sterilization. Compared with high-pressure heat sterilization, acidification combined with normal pressure sterilization could obtain better texture and color. The toughness, hardness and sensory score of laver increased with the increase of sterilization temperature with the same F-value. In terms of nutrients, the total soluble sugar and free amino acids decreased with the increase of temperature in the high-pressure group. The highest free amino acids content was obtained at 90 °C in the normal-pressure group. In general, the texture, sensory and nutritional quality were better when the sterilization parameters were 90 °C, 11.5 min (Acidified group) and 115 °C, 8 min (Low-acid group).
  • 鳗弧菌(Vibrio anguillarum)是水产养殖中最常见的致病菌之一[1]。当养殖环境恶化或机体受创时,养殖水产品极易感染鳗弧菌,进而导致体表“出血”,甚至全身性组织病变,最终死亡[2]。近年来,随着养殖技术不断提高,水产养殖向高密度、集约化发展的同时,养殖水产品弧菌病的爆发也日趋严重,给水产养殖业带来巨大损失[3]。由于鳗弧菌可对水产养殖造成严重危害,大量抗生素被用于防治该致病菌[4-5],这不仅导致细菌耐药性的产生,还给水产品质量安全带来巨大风险和隐患[6]

    丁香酚是一种天然产物,广泛存在于丁香、月桂和罗勒等植物的茎、叶和花蕾中[7]。研究表明丁香酚具有良好的杀菌、抑菌效果[8-12],其不仅是一种传统口腔治疗剂,还被用于水产食品防腐以延长货架期[13-14]。同时,丁香酚还是一种良好的渔用麻醉剂,可以缓解转运过程的应激反应,大幅提高养殖生产和流通环节鲜活水产品的成活率[15-16]。近年来,有研究发现丁香酚对水产致病菌有一定的抑菌作用[17-18]。由于毒性低、消除快,有学者认为丁香酚有望替代抗生素成为一种安全、绿色的新型抗菌剂,用于防治水产养殖中的细菌性疾病[19]

    随着人民生活水平的不断提高,水产品质量安全日益受到重视。近年来水产品中的违禁药物添加屡禁不止,给水产业造成巨大冲击。因此,亟需一种安全、有效的渔用药物为水产养殖业的健康发展保驾护航。本文以鳗弧菌为研究对象,探索丁香酚对水产养殖业典型致病菌的抑菌效果,为水产养殖业中鱼类细菌性疾病的防控提供研究基础。

    生化培养箱(IC612C,日本Yamato);酶标仪(VERSMAX,美国MD);可见分光光度计(L2,上海仪电分析仪器有限公司);生物安全柜(MSC1.8,美国Thermo);多轨道恒温培养振荡器(ZHWY-200D,上海智诚分析仪器制造有限公司);比浊仪(WGZ-2XJ,上海昕瑞仪器仪表有限公司);天平(XS603S,瑞士梅特勒);移液枪(10~100 μL,100~1 000 μL,1~10 mL);中央纯水系统(Centra R-200/purilab classia,ELGA)。

    鳗弧菌ATCC43308 (广东环凯微生物科技有限公司);丁香酚(纯度≥99%,上海医疗器械有限公司);无水乙醇(广州化学试剂厂,99%);2216E琼脂(美国BD公司);2216液体培养基(美国BD公司);MH肉汤(青岛高科技园海博生物技术有限公司);游标卡尺(广陆数字测控股份有限公司);牛津杯(Φ 6 mm×8 mm×10 mm,上海精密仪器仪表有限公司);细菌培养板(96孔,海门市海克拉斯实验器材有限公司);生理盐水(广东环凯微生物科技有限公司)。实验所用试剂与耗材均作灭菌处理。

    称取0.64 mg丁香酚于烧杯中,以5 mL无水乙醇助溶后,转移至容量瓶中,超纯水稀释定容至100 mL,储备液质量浓度为6 400 μg·mL–1。实验所需系列浓度均用此储备液稀释配制。

    挑取一环鳗弧菌接种至2216液体培养基,30 ℃振荡培养24 h增菌。测定增菌液麦氏浊度值(McFarland,MCF),用生理盐水稀释至MCF值约为0.5 (0.5 MCF的菌液浓度相当于108 CFU·mL–1),继续稀释至菌液浓度为105 CFU·mL–1,备用。

    将牛津杯置于培养皿中央,吸取3 mL浓度为105 CFU·mL–1的菌液于90 mL的2216E培养基中混合均匀,倾注平板(约20 mL·平板–1),静置待平板凝固。凝固后用镊子将牛津杯轻轻拔出,吸取质量浓度为6 400 μg·mL–1的丁香酚150 μL注入孔中。丁香酚抑菌平板实验设置9个平行。由于丁香酚溶液配制过程中用到乙醇,故于平板孔中注入150 μL体积分数为5%的乙醇为背景比较。为比较分析丁香酚与抗生素的抑菌差异性,于平板孔中注入150 μL质量浓度为200 μg·mL–1的氯霉素溶液进行对比实验。平板孔中药物注入完成后,将平板置于培养箱中30 ℃培养24 h。培养完毕,以游标卡尺用十字交叉法测量抑菌圈直径。

    根据微量二倍稀释法,采用96孔微孔板(8行×12列)进行抑菌实验[17]。抑菌实验设实验组4平行(A、B、C、D行)、空白对照(E行)、阳性对照(F行)和阴性对照(G行)。预先于所有微孔中加入100 μL的MH肉汤,各组操作如下。

    实验组:于第1列微孔中加入100 μL质量浓度为6 400 μg·mL–1的丁香酚溶液,与预先添加的MH肉汤充分混合后,吸取100 μL混合液注入第2列,充分混合后再次吸取100 μL混合液注入第3列,逐级稀释至最后1列,吸取100 μL混合液弃去,最后于各微孔中添加100 μL菌液。

    空白对照:第1列加入100 μL体积分数为5%的乙醇溶液,与预先添加的MH肉汤充分混合后,与实验组操作类似,逐级稀释,最后于各微孔中添加100 μL菌液。

    阴性对照:第1列加入6 400 μg·mL–1丁香酚溶液,逐级稀释后,于各微孔中添加100 μL生理盐水。

    阳性对照:各微孔中添加100 μL菌液,与预先添加的MH肉汤充分混合。

    最后将微孔板置于培养箱中30 ℃培养24 h。培养结束后,将微孔板置于酶标仪中于560 nm波长下读取吸光值,并根据吸光值确定丁香酚对鳗弧菌的MIC值。

    吸取MIC所在列及其之前两列微孔中的培养液100 μL于预先添加2216E培养基的平板上均匀涂布,随后置于培养箱中30 ℃培养24 h。培养结束后根据细菌生长情况判定MBC值。

    取1 mL鳗弧菌菌液分别接种到丁香酚质量浓度为0 μg·mL–1(空白对照组)、400 μg·mL–1(MIC组)和800 μg·mL–1(MBC组)的2216培养液中,每组双平行。30 ℃振荡培养36 h。在培养过程中,每隔2 h于波长为560 nm处测定培养液的吸光值。

    抑菌圈直径≥20 mm为极敏,15~20 mm为高敏;10~15 mm为中敏;小于10 mm为低敏[20]。结果显示,丁香酚质量浓度为6 400 μg·mL–1时,抑菌圈直径为 (21.13±0.74) mm,相对标准偏差为3.50% (表1)。表明鳗弧菌对丁香酚极敏,此浓度丁香酚具有良好的抑菌活性。5%的乙醇溶液抑菌圈直径为8 mm,即鳗弧菌对其不敏感,证明丁香酚溶液助溶剂背景对其抑菌敏感性几乎没有影响。从氯霉素的抑菌圈直径 [(44.38±0.75) mm] 看,鳗弧菌对其极敏,相对标准偏差为1.69%,抑菌效果明显强于丁香酚,这也可能是氯霉素禁而不绝的原因之一。

    表  1  丁香酚对鳗弧菌的抑菌圈直径
    Table  1.  Inhibition zone diameter of eugenol on V. anguillarum mm
    直径
    diameter
    平均
    mean
    标准差
    tandard deviation
    相对标准偏差/%
    relative standard deviation
    丁香酚 eugenol21.0622.2420.8620.6420.5621.6320.0520.9422.1621.130.743.50
    氯霉素 (200 μg·mL–1) chloramphenicol44.3245.2343.2643.3444.6445.2843.8644.8844.6244.380.751.69
    5%乙醇 ethanol8.008.008.008.008.008.008.008.008.008.000.000.00
    下载: 导出CSV 
    | 显示表格

    丁香酚对鳗弧菌的MIC实验结果显示(图1),当丁香酚质量浓度≥400 μg·mL–1时,30 ℃条件下培养24 h实验组吸光值与阴性对照基本一致,表明鳗弧菌没有生长;当丁香酚质量浓度<400 μg·mL–1时,实验组吸光值与阳性对照基本一致,表明鳗弧菌的生长没有受到抑制。因此,丁香酚对鳗弧菌的MIC值为400 μg·mL–1。从空白对照组结果来看,丁香酚溶液助溶剂背景对鳗弧菌生长基本没有影响。

    图  1  丁香酚对鳗弧菌的MIC
    Figure  1.  Minimum inhibitory concentration of eugenol against V. anguillarum

    丁香酚对鳗弧菌的MBC实验结果显示(图2),涂抹丁香酚质量浓度为400 μg·mL–1的菌液的平板上,鳗弧菌生长良好,而涂抹丁香酚质量浓度为800 μg·mL–1和1 600 μg·mL–1的菌液的平板上,无鳗弧菌生长。根据《食品中抗菌药物残留的化学分析》[21],以无菌生长的最低浓度为丁香酚对鳗弧菌的MBC值。即该实验条件下丁香酚对鳗弧菌的MBC为800 μg·mL–1

    图  2  30 ℃培养24 h平板上鳗弧菌的生长状况
    Figure  2.  Growth of V. anguillarum on plate incubated at 30 ℃ for 24 h

    丁香酚对鳗弧菌的抑菌时效实验结果显示(图3),与空白对照相比,MIC组中鳗弧菌的生长状况存在较大差异。4~18 h鳗弧菌基本没有生长(OD560 nm为0.05~0.06),18~32 h鳗弧菌开始缓慢生长(OD560 nm为0.06~0.39),32 h后处于稳定生长(OD560 nm为0.37~0.39)。各阶段相应时间MIC组中培养液的吸光值远小于空白对照组。MIC组中鳗弧菌在18 h后开始生长,但是与空白对照相比十分缓慢,32~36 h的吸光值仅为空白对照组的1/5。即使鳗弧菌开始生长,但是丁香酚对其生长依然存在较大的抑制作用。相对于空白对照组和MIC组,MBC组培养液所测吸光值极小(0.003~0.01),表明鳗弧菌基本没有生长。

    图  3  丁香酚对鳗弧菌的抑菌时效
    Figure  3.  Antibacterial aging effect of eugenol on V. anguillarum

    随着养殖池塘的老化以及种质资源的退化,水产养殖病害日趋严重[22-23]。因此,大量抗生素类药物被用于鱼病防治[24]。然而,随着研究的不断深入,抗生素的危害也逐渐被人们认识。研究表明,一些抗生素如氯霉素、呋喃西林等对人体产生“三致”作用,严重危害人体健康[25]。抗生素能持久存在于养殖环境中,使得细菌产生耐药性,不仅使得药物对鱼病的治疗效力降低,也使得人体的抗病能力下降[19,26]。为确保水产品质量安全,保护人体健康,近年来多种抗生素药物已被禁止用于水产养殖业。研究发现多种中草药具有抑菌作用[27-28],但从中草药抑菌效果来看,难以在水产养殖业中广泛应用[29]。丁香酚作为一种天然的植物提取物,因其具有良好的抑菌效果,且毒副作用小、不易产生耐药性且价格低廉受到研究者的广泛关注。

    目前,在食品领域丁香酚已被广泛用于食品贮藏保鲜,以延长货架期[13]。并且在水产领域十分重视丁香酚对鲜活水产品的麻醉效果,但是关于丁香酚对养殖和流通环节鲜活水产品致病菌的抑菌作用的研究甚少[15-16]。本研究显示丁香酚对鳗弧菌的MIC和MBC分别为400 μg·mL–1和800 μg·mL–1,表明其对水产养殖环境中广泛存在的主要致病菌鳗弧菌具有良好的抑菌效果。且抑菌时效实验表明(图3),400 μg·mL–1的丁香酚在18 h内基本抑制了鳗弧菌的生长。即使在18 h后鳗弧菌开始缓慢生长,但是与空白对照组相比,对应时间(32~36 h)的吸光值仅为空白对照组的1/5,表明丁香酚依然对鳗弧菌的生长存在较大的抑制作用。

    与食源性致病菌研究结果相比(表2),鳗弧菌对丁香酚的敏感性与金黄色葡萄球菌 (Staphylococcus aureus)、沙门氏菌(Salmonella anatum)、李斯特菌(Listeria monocytogenes)、大肠杆菌(Escherichia coli)相似,表明丁香酚不仅可以应用于食品领域贮藏保鲜,也可应用于水产行业细菌性疾病防控。与水产致病菌研究结果相比(表2),鳗弧菌对丁香酚的敏感性高于嗜水气单胞菌(Aeromonas hydrophila)、维氏气单胞菌(A. veronii)、弗氏柠檬酸杆菌(Citrobacter freundii),低于格氏乳球菌(Lactococcus garvieae),由此可见鳗弧菌对丁香酚的敏感性相对较高,具有较高的研究价值。

    表  2  丁香酚对不同细菌MIC和MBC
    Table  2.  Minimum inhibitory concentration and minimum bactericidal concentration of eugenol against different bacteria
    细菌种类
    bacterial species
    最低抑菌浓度/μg·mL–1
    MIC
    最小杀菌浓度/μg·mL–1
    MBC
    文献
    Reference
    金黄色葡萄球菌 Staphylococcus aureus600700[30]
    128~512[31]
    400600[32]
    李斯特菌 Listeria monocytogenes500800[33]
    弯曲空肠杆菌 Campylobacter jejunni1.25[34]
    沙门氏菌 Salmonella anatum400600[32]
    大肠杆菌 Escherichia coli400600[32]
    嗜水气单胞菌 Aeromonas hydrophila8001 600[18]
    800~3 2001 600~3 200[17]
    维氏气单胞菌 Aeromonas veronii8001 600[18]
    格氏乳球菌 Lactococcus garvieae30[35]
    弗氏柠檬酸杆菌 Citrobacter freundii1 6001 600[18]
    鳗弧菌 Vibrio anguillarum400800本研究
    下载: 导出CSV 
    | 显示表格

    从本研究结果与相关研究结果的差异性来看(表2),不同水产致病菌对丁香酚的敏感性差异明显,这可能与丁香酚的抑菌机理有关。目前关于丁香酚抑菌机制的说法尚不统一。有研究认为丁香酚通过作用于细菌细胞内酶系统或功能蛋白,进而抑制细胞新陈代谢,从而起到抑菌作用[30];还有研究认为丁香酚通过改变细菌毒力达到抑菌效果[31];然而普遍接受的理论是丁香酚通过破坏细菌细胞膜产生抑菌作用[10-11,36]。因此,深入了解丁香酚对鳗弧菌的抑菌机理,对其未来应用于水产养殖业细菌性疾病防控和在鲜活水产品流通环节中如何起到麻醉和抑菌双重作用至关重要。

    由于丁香酚具有广泛的药理和生物学特性[37],用丁香酚防控水产养殖细菌性疾病已成为新兴的研究热点。但在实验室得出的体外抑菌实验结果应用于实际生产时,要考虑到水产动物对该药的承受能力,正确的用药范围应是既能防控细菌性疾病又不超过水产动物对该药的耐受力。本研究进行了丁香酚对鳗弧菌的体外抑菌实验,其结果可作为防控水产养殖和鲜活水产品流通过程中鳗弧菌感染的依据,但在实际生产中的应用效果有待进一步验证。

    作为一种高效、安全的渔用麻醉剂,丁香酚已在许多国家和地区广泛应用,在中国也已用于鲜活水产品的转移和运输环节[38-39]。本研究表明丁香酚对水产养殖业典型致病菌鳗弧菌具有抑菌和杀菌效果,存在防止活体感染和降低违禁药物使用的潜力。但如何充分发挥丁香酚的麻醉效果,深入发掘丁香酚对水产致病菌的抑菌潜力,还有待进一步的研究。

  • 图  1   不同温度下紫菜的杀菌曲线

    Figure  1.   Sterilization curve of laver at different temperatures

    图  2   不同杀菌温度下紫菜的感官得分

    Figure  2.   Sensory scores of laver under different sterilization temperatures

    图  3   不同杀菌条件下紫菜的可溶性糖质量分数

    注:不同小写字母表示各样品具有显著差异 (P<0.05)。

    Figure  3.   Mass fraction of soluble sugar of laver under different sterilization conditions

    Note: Different lowercase letters indicate significant differences among the samples (P<0.05).

    图  4   不同杀菌条件下紫菜的滋味活度值

    Figure  4.   TAV value of laver under different sterilization conditions

    表  1   即食紫菜的感官评分表

    Table  1   Sensory evaluation of instant laver

    评分标准
    Scoring standard
    级别 (分值) Type (Point)
    一级 First grade 二级 Second grade 三级 Third grade
    色泽 Color 紫黑色,光泽明亮 (7~9) 紫绿色,无光泽 (4~6) 黄绿色 (1~3)
    外观 Appearance 组织坚实,结构完整 (7~9) 组织松软,结构较完整 (4~6) 组织软烂,结构不完整 (1~3)
    滋味 Taste 有紫菜特有鲜香味 (7~9) 稍有其他异味,能接受 (4~6) 有腥味等令人不悦的味道 (1~3)
    质地 Texture 有韧性,不黏牙 (7~9) 较有韧性,微黏可接受 (4~6) 软烂或干硬,难以接受 (1~3)
    喜爱度 Preference 非常喜欢 (7~9) 较喜欢,整体可接受 (4~6) 不喜欢 (1~3)
    下载: 导出CSV

    表  2   不同杀菌强度对即食紫菜安全性的影响

    Table  2   Effect of different sterilization intensity on safety of laver

    温度
    Temperature/℃
    F
    F-value/min
    t/min 结果
    Result
    菌落总数
    Total plate count
    大肠菌群
    Total coliform
    90 5 11.5 商业无菌 nd nd
    6 12.5 商业无菌 nd nd
    7 14 商业无菌 nd nd
    8 15.5 商业无菌 nd nd
    115 3 10 商业无菌 nd nd
    4 13 商业无菌 nd nd
    5 16 商业无菌 nd nd
    6 19 商业无菌 nd nd
    注:nd. 未检测到。 Note: nd. Undetected.
    下载: 导出CSV

    表  3   不同杀菌条件下紫菜的色差和pH

    Table  3   Color and pH value of laver under different sterilization conditions

    杀菌方式   
    Sterilization method   
    组别
    Group
    明暗度
    L*
    红绿度
    a*
    黄蓝度
    b*
    pH
    常压 Normal pressure A0 28.98±0.74b 1.04±0.06b 0.27±0.16f 4.29±0.03d
    85 ℃, 26 min 28.79±0.49b 0.43±0.07d 0.8±0.15d 4.19±0.01e
    90 ℃, 11.5 min 28.71±0.44b 0.58±0.07c 0.75±0.2d 4.21±0.02e
    95 ℃, 6.8 min 29.05±0.55b 0.61±0.03c 0.51±0.12e 4.22±0.02e
    高压 High pressure H0 30±0.5a 1.48±0.26a 0.86±0.25d 6.36±0.02b
    110 ℃, 32 min 29.83±1.08a 0.02±0.06f 2.62±0.24a 6.16±0.06c
    115 ℃, 10 min 29.92±0.51a 0.12±0.06ef 2.26±0.23b 6.4±0.04ab
    121 ℃, 2.7 min 29.9±0.78a 0.14±0.07e 1.4±0.17c 6.45±0.01a
    注:H0指未杀菌样品,A0指酸化后未杀菌样品;同列中不同字母间存在显著性差异 (P<0.05);下表同此。 Note: H0 refers to non-sterilized sample; A0 refers to the sample not sterilized after acidification. Values with different superscript letters within the same column have significant difference (P<0.05). The same case in the following tables.
    下载: 导出CSV

    表  4   不同杀菌条件对紫菜质构的影响

    Table  4   Texture of laver under different sterilization conditions

    杀菌方式   
    Sterilization method   
    组别
    Group
    韧性
    Toughness/(g·s−1)
    硬度
    Hardness/(g·mm−1)
    黏度
    Adhesioness/(g·s)
    常压组 Normal pressure A0 21.03±2.21b 37.29±4.7bc 1.78±0.4b
    85 ℃, 26 min 12.36±1.51d 14.97±3.09de 3.75±0.79e
    90 ℃, 11.5 min 18.65±3.01bc 27.08±2.81c 2.92±0.4cd
    95 ℃, 6.8 min 18.69±3.32bc 30.51±7.75bc 2.39±0.48c
    高压组 High pressure H0 24.99±3.85a 41.05±12.93a 0.59±0.16a
    110 ℃, 32 min 12.55±1.83d 11.3±3.71e 4.58±0.78f
    115 ℃, 10 min 16.07±2.3c 22.38±5.33cd 3.21±0.44de
    121 ℃, 2.7 min 16.36±2.16c 25.77±9.04c 2.65±0.62cd
    下载: 导出CSV

    表  5   不同杀菌条件下每100 g紫菜中游离氨基酸的质量

    Table  5   Mass of free amino acids in per 100 g laver under different sterilization conditions mg

    组别
    Group
    天冬氨酸
    Asp
    谷氨酸
    Glu
    丝氨酸
    Ser
    组氨酸
    His
    苏氨酸
    Thr
    甘氨酸
    Gly
    精氨酸
    Arg
    A0 142.98±3.57c 434.82±4.88ab 7.78±0.34bc 9.79±1.44bc 24.19±0.47cd 64.92±0.45c 27.94±0.86d
    85 ℃, 26 min 140.57±1.40c 412.42±6.08c 7.83±1.08bc 7.05±1.62c 23.93±0.80cd 66.5±0.52bc 29.26±1.21cd
    90 ℃, 11.5 min 150.58±1.37b 426.15±4.90b 7.76±0.52bc 10.94±1.07b 25.38±0.54c 61.94±0.8d 28.73±0.30d
    95 ℃, 6.8 min 140.85±1.55c 400.32±5.24c 6.68±0.58cd 13.82±1.90a 22.95±0.71d 60.9±0.44d 27.33±1.24d
    H0 141.54±1.20c 440.15±5.82a 9.83±0.22a 13.91±1.69a 27.67±0.77b 68.26±0.45b 32.42±1.81b
    110 ℃, 32 min 160.49±5.79a 401.48±9.11c 8.56±0.49b 13.6±0.92a 32.15±2.40a 78.22±1.13a 36.37±2.43a
    115 ℃, 10 min 138.77±2.46c 401.04±5.04c 7.04±1.15cd 15.52±1.23a 28.85±1.13b 66.92±2.34bc 32.29±0.93b
    121 ℃, 2.7 min 141.04±4.41c 376.50±10.64d 6.27±0.18d 15.82±1.51a 27.63±1.39b 66.25±3.17bc 31.75±2.82bc
    组别
    Group
    丙氨酸
    Ala
    酪氨酸
    Tyr
    半胱氨酸
    Cys
    缬氨酸
    Val
    蛋氨酸
    Met
    苯丙氨酸
    Phe
    异亮氨酸
    Ile
    A0 255.87±8.85d 16.24±0.53b 2.67±0.04e 24.1±4.27abc 1.69±0.6a 12.72±2.03d 11.88±1.79d
    85 ℃, 26 min 246.00±4.10e 16.70±1.41b 4.73±0.09d 22.71±0.28bc 2.92±2.39a 16.01±0.43bc 13.92±1.05c
    90 ℃, 11.5 min 267.28±3.86bc 16.13±0.70b 5.71±0.23a 22.98±0.59bc 3.04±0.34a 16.30±0.86bc 15.24±0.22c
    95 ℃, 6.8 min 236.80±2.65f 16.19±0.65b 5.00±0.21cd 22.50±0.29c 2.22±0.58a 16.07±0.91bc 15.51±0.71c
    H0 273.25±3.36b 17.18±0.37b 4.64±0.25d 26.65±0.38a 2.33±0.28a 14.75±1.19c 11.17±0.52d
    110 ℃, 32 min 304.07±1.84a 20.03±1.00a 5.29±0.36abc 26.53±0.51a 2.48±0.36a 19.59±0.34a 20.08±0.68a
    115 ℃, 10 min 264.33±5.64cd 17.37±0.90b 5.22±0.42bc 25.61±0.96ab 2.55±0.6a 17.88±0.17ab 17.99±1.16b
    121 ℃, 2.7 min 260.32±4.38cd 16.86±0.61b 5.55±0.24ab 24.43±0.52abc 2.90±0.58a 17.27±1.07b 17.67±1.89b
    组别
    Group
    亮氨酸
    Leu
    赖氨酸
    Lys
    脯氨酸
    Pro
    牛磺酸
    Tau
    总氨基酸
    Total amino acid
    A0 18.01±1.47d 13.93±2.25cd 19.73±2.43bc 343.03±10.91d 1 432.30±37.78cde
    85 ℃, 26 min 19.38±0.34cd 14.87±0.53bcd 19.72±1.32bc 338.27±6.62d 1 402.81±19.95ef
    90 ℃, 11.5 min 18.73±0.13cd 13.59±0.77d 20.11±0.17bc 363.92±3.73c 1 474.49±14.97c
    95℃,6.8 min 17.95±1.09d 13.27±0.64d 18.26±0.82c 326.89±4.78e 1 363.52±15.56f
    H0 23.03±0.44a 15.7±0.66bc 22.02±0.83bc 377.59±3.76b 1 522.07±10.23b
    110 ℃, 32 min 23.62±0.85a 20.75±0.29a 27.78±1.42a 406.8±3.98a 1 607.89±15.13a
    115 ℃, 10 min 21.28±0.3b 16.42±1.24b 22.96±4.61b 362.11±7.60c 1 464.16±30.88cd
    121 ℃, 2.7 min 20.22±1.44bc 14.34±0.37cd 22.19±3.41bc 357.57±7.36c 1 424.58±30.26de
    注:同列中不同字母间存在显著性差异 (P<0.05)。 Note: Values with different superscript letters within the same column have significant difference (P<0.05).
    下载: 导出CSV
  • [1] 杨少玲, 戚勃, 杨贤庆, 等. 中国不同海域养殖坛紫菜营养成分差异分析[J]. 南方水产科学, 2019, 15(6): 75-80. doi: 10.12131/20190066
    [2] 江涛, 黄一心, 欧阳杰, 等. 大型海藻干燥技术研究进展[J]. 渔业现代化, 2017, 44(6): 80-88. doi: 10.3969/j.issn.1007-9580.2017.06.014
    [3]

    PARK H W, YOO J S. Computational fluid dynamics (CFD) modelling and application for sterilization of foods: a review[J]. Processes, 2018, 6(6): 62. doi: 10.3390/pr6060062

    [4]

    RSA C, DJA E, SAA C, et al. Assessment and outlook of variable retort temperature profiles for the thermal processing of packaged foods: plant productivity, product quality, and energy consumption[J]. J Food Eng, 2019, 275: 109839.

    [5] 漳州中罐协科技中心. 食品热力杀菌理论与实践[M]. 北京: 中国轻工业出版社, 2014: 93-104.
    [6] 宋恭帅, 陈康, 俞喜娜, 等. 热杀菌对即食鲟鱼鱼糜制品品质的影响[J]. 食品与发酵工业, 2019, 45(24): 153-160,167.
    [7]

    TOLA Y B, RAMASWAMY H S. Novel processing methods: updates on acidified vegetables thermal processing[J]. Curr Opin Food Sci, 2018, 23: 64-69. doi: 10.1016/j.cofs.2018.06.003

    [8]

    DEROSSO A, FIORE A G, de PILLI T, et al. A review on acidifying treatments for vegetable canned food[J]. Crit Rev Food Sci Nutr, 2011, 51(10): 955-964. doi: 10.1080/10408398.2010.491163

    [9]

    MAJUMDAR R K, DHAR B, ROY D, et al. Optimization of process conditions for rohu fish in curry medium in retortable pouches using instrumental and sensory characteristics[J]. J Food Sci Technol, 2015, 52(9): 5671-5680. doi: 10.1007/s13197-014-1673-3

    [10]

    TRIBUZI G, ARAGAO G M F, LAURINDO J B. Processing of chopped mussel meat in retort pouch[J]. Food Sci Tech-Brazil, 2015, 35(4): 612-619. doi: 10.1590/1678-457X.6698

    [11]

    TANG F, XIA W, XU Y, et al. Effect of thermal sterilization on the selected quality attributes of sweet and sour carp[J]. Int J Food Prop, 2014, 17(8): 1828-1840. doi: 10.1080/10942912.2012.745130

    [12] 姜启兴, 聂程芳, 高沛, 等. 斑点叉尾鮰鱼软罐头杀菌工艺研究[J]. 食品与生物技术学报, 2021, 40(3): 97-102. doi: 10.3969/j.issn.1673-1689.2021.03.012
    [13] 高沛, 曹雪, 姜启兴, 等. 接种发酵糟鱼的杀菌工艺[J]. 水产学报, 2021, 45(7): 1132-1139.
    [14] 周浩宇, 俞明君, 聂远洋, 等. 热加工方式对香菇营养特性和抗氧化活性的影响[J]. 食品科学, 2021, 42(15): 106-114. doi: 10.7506/spkx1002-6630-20200724-335
    [15]

    HUA Q, GAO P, XU Y, et al. Effect of commercial starter cultures on the quality characteristics of fermented fish-chili paste[J]. LWT, 2020, 122(1): 109016.

    [16] 温心怡. 红壳文蛤风味品质特性及传代对风味的影响[D]. 无锡: 江南大学, 2021: 10-11.
    [17]

    OEY I, LILLE M, van LOEY A, et al. Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: a review[J]. Trends Food Sci Technol, 2008, 19(6): 320-328. doi: 10.1016/j.jpgs.2008.04.001

    [18]

    PEREIRA T, BARROSO S, MENDES S, et al. Stability, kinetics, and application study of phycobiliprotein pigments extracted from red algae Gracilaria gracilis[J]. J Food Sci, 2020, 85(10): 3400-3405. doi: 10.1111/1750-3841.15422

    [19]

    BITO T, TENG F, WATANABE F. Bioactive compounds of edible purple laver Porphyra sp. (Nori)[J]. J Agric Food Chem, 2017, 65(49): 10685-10692. doi: 10.1021/acs.jafc.7b04688

    [20]

    MIYAMOTO E, YABUTA Y, KWAK C S, et al. Characterization of vitamin B12 compounds from Korean purple laver (Porphyra sp.) products[J]. J Agric Food Chem, 2009, 57(7): 2793. doi: 10.1021/jf803755s

    [21] 徐永霞, 李鑫晰, 赵洪雷, 等. 六种海水鱼类鱼汤的呈味物质比较分析[J]. 食品与发酵工业, 2021, 47(21): 240-245.
    [22] 汤凤雨. 可常温保藏即食糖醋鲤鱼食品的加工工艺研究[D]. 无锡: 江南大学, 2013: 5.
    [23] 张忠山, 王晓梅, 毛根祥, 等. 紫菜半乳聚糖结构与生物活性研究进展[J]. 食品工业科技, 2019, 40(11): 342-350.
    [24]

    CUBERO-CARDOSO J, TRUJILLO-REYES Á, MARIN-AYLLON P, et al. Solubilization of phenols and sugars from raspberry extrudate by hydrothermal treatments[J]. Processes, 2020, 8(7): 842. doi: 10.3390/pr8070842

    [25]

    OlIVEIRA A L M D, VILELA D R, ZITHA E Z M, et al. Cell wall break down of pitanga fruit (Eugenia uniflora L.) is associated with pectic solubilisation and softening[J]. Int J Food Sci Tech, 2021, 56: 4650-4657. doi: 10.1111/ijfs.15259

    [26]

    ARDO Y. Flavour formation by amino acid catabolism[J]. Biotechnol Adv, 2006, 24(2): 238-242. doi: 10.1016/j.biotechadv.2005.11.005

    [27] 杨贤庆, 黄海潮, 潘创, 等. 紫菜的营养成分、功能活性及综合利用研究进展[J]. 食品与发酵工业, 2020, 46(5): 306-313.
    [28] 王璋, 许时婴, 汤坚. 食品化学[M] 北京: 中国轻工业出版社, 2014: 147.
    [29]

    QI J, ZHANG W W, FENG X C, et al. Thermal degradation of gelatin enhances its ability to bind aroma compounds: investigation of underlying mechanisms[J]. Food Hydrocoll, 2018, 83(10): 497-510.

    [30] 颜廷才, 王前菊, 段肖杰, 等. 三种干燥方法对榴莲游离氨基酸和可溶性糖的影响[J]. 食品与发酵工业, 2021, 47(14): 137-144.
    [31] 徐永霞, 白旭婷, 曲诗瑶, 等. 蟹味菇添加量对鳕鱼汤风味特性的影响[J]. 食品与发酵工业, 2021, 47(10): 139-144.
    [32]

    LIOE H N A A, TAKARA K. Umami taste enhancement of MSG/NaCl mixtures by subthreshold L-α-aromatic amino acids[J]. J Food Sci, 2006, 70(7): s401-s405.

  • 期刊类型引用(1)

    1. 周玥祺,黄春红,刘玉媛,易弋. 基于比较转录组测序分析雨生红球藻对克氏原螯虾肝胰腺基因表达的影响. 河北渔业. 2024(02): 1-6+28+47 . 百度学术

    其他类型引用(2)

图(4)  /  表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-01-03
  • 修回日期:  2022-02-26
  • 录用日期:  2022-03-15
  • 网络出版日期:  2022-03-31
  • 刊出日期:  2022-12-04

目录

/

返回文章
返回