Preparation of active peptide from Pinctada martensii adductor muscle and evaluation of its auxiliary hypoglycemic effect
-
摘要: 为挖掘贝类活性肽潜在的营养功能价值,选用复合蛋白酶和风味酶分别水解马氏珠母贝 (Pinctada martensii)、华贵栉孔扇贝 (Chlamys nobilis) 和栉江珧 (Atrina pectinate) 的闭壳肌,以α-葡萄糖苷酶抑制活性为主要考察指标,探讨了蛋白酶种类、酶解时间、pH、温度以及酶添加量对酶解产物α-葡萄糖苷酶抑制活性的影响,筛选出最佳酶解产物,通过动物实验进一步验证其辅助降血糖的活性。结果显示,3种贝类的酶解产物均具有良好的α-葡萄糖苷酶抑制活性,其中,马氏珠母贝闭壳肌酶解物 (Enzymatic hydrolysate of P. martensii adductor muscle, EHPA) 活性最强,在酶解条件时间为3 h、酶添加量为5 000 U·g−1、酶解温度为50 ℃、酶解pH为7.0的条件下,EHPA的α-葡萄糖苷酶抑制活性为24.54%,其抑制活性与短肽浓度有一定相关性。动物实验结果显示,EHPA具有辅助降血糖的活性。综上,EHPA具有开发辅助降血糖功能食品的潜在应用价值。
-
关键词:
- 马氏珠母贝 /
- 活性肽 /
- 降血糖 /
- α-葡萄糖苷酶抑制活性
Abstract: To explore the potential nutritional value of shellfish active peptides, we hydrolyzed the adductor muscles of Pinctada martensii, Chlamys nobilis and Atrina pectinate by compound protease and flavor protease, and investigated the effects of protease types, enzymolysis time, pH, temperature and enzyme dosage of the enzymatic hydrolysate on the inhibitory activity on α-glucosidase, so as to screen out the optimal enzymatic hydrolysate and further verify its auxiliary hypoglycemic activity through animal experiments. Results show that the hydrolysate of three kinds of adductor muscle had α-glucosidase inhibitory activity. The enzymatic hydrolysate of P. martensii adductor muscle (EHPA) was most active with enzymolysis time of 3 h, pH of 7.0, enzymolysis temperature of 50 ℃ and enzyme dosage of 5 000 U·g−1. Under these conditions, the inhibitory activity of α-glucosidase was 24.54%, which was related to the content of small molecular pepride. The results of animal experiments indicate that EHPA had the activity of auxiliary hypoglycemia. In summary, EHPA has potential application value in developing functional food for auxiliary hypoglycemic function. -
罗非鱼(Oreochromis mossambicus)是我国大宗的养殖经济鱼类,具有繁殖力强,肉质细嫩有弹性,肌间刺少,营养成分均衡,市场售价适中,烹饪方法多样等特点,深受广大消费者喜爱[1]。近年来,在国际上罗非鱼的销售竞争日益激烈,但中国依然是最大的罗非鱼生产国和贸易国[2]。目前中国罗非鱼的销售形式以冻罗非鱼片出口为主,鲜活全鱼国内销售为辅[3]。在常规的保鲜条件下,受微生物作用,水产品极易腐败变质,从而大大降低商品的经济价值[4],因此在加工生产环节进行减菌化处理对维持产品的品质和货架期有重要作用。
微酸性电解水又称次氯酸水,是一种新型的杀菌剂,由日本科学家在20世纪90年代发现,并于2002年被日本指定为食品添加剂[5]。微酸性电解水是利用无隔膜的一室型微酸性电解水设备,通过低电压低电流电解电解质产生pH为5.0~6.5、有效氯质量浓度为10~80 mg·L–1的微酸性电解水,对水产品的副作用小[6]。微酸性电解水具有高效的杀菌性能[7-8],其有效氯成分为HCIO分子,它的杀菌效果是同浓度CIO–离子的80~150倍[9-10]。微酸性电解水不仅拥有高效杀菌性能,还具有安全、环保、低成本和易制取等优点,是一种绿色环保、安全可靠、符合国家可持续发展的绿色减菌剂[11-13],因此微酸性电解水在水产品加工方面具有巨大的应用前景。
罗非鱼加工行业常常采用含氯消毒剂、H2O2水、O3水及有机酸等化学消毒剂对罗非鱼片进行杀菌消毒[14-17],但是这些化学消毒剂处理鱼片后,鱼片上会残留化学物质且对鱼片品质有一定影响,不仅影响消费者健康安全,而且对环境造成破坏。近些年新兴的电解水尤其是强酸性电解水在水产品加工贮藏保鲜方面应用广泛,但是强酸性电解水生产成本高,pH值极低,对水产品加工设备以及水产品品质有较大影响,而且强酸性电解水因低pH值,易释放氯气,对加工人员和环境均不利。因此杀菌广谱、绿色安全环保的微酸性电解水逐渐得到关注[18]。目前国内外已有大量文献报道微酸性电解水对某种菌体纯培养物杀菌效果的研究,微酸性电解水已被广泛应用到果蔬加工厂、食品加工厂、医院等地,也已广泛应用于水产品杀菌消毒,但大多研究对象为虾贝类,李国威等[19]研究了微酸性电解水对活品虾夷扇贝的成活率及杀菌的影响,结果表明经过微酸性电解水处理后的活品虾夷扇贝成活率均大于80%,且微酸性电解水处理时间越长,对大肠菌群的杀灭作用越好。而微酸性电解水在鱼类上的应用寥寥无几,关于微酸性电解水应用于含有复杂菌体环境的罗非鱼片的研究更是鲜有报道,因此本研究以新鲜罗非鱼片为原料,探讨微酸性电解水对新鲜罗非鱼片的杀菌效果,以期为微酸性电解水应用于罗非鱼乃至其他水产品的加工提供基础理论数据和参考。
1. 材料与方法
1.1 实验原料与试剂
新鲜罗非鱼购于广州市海珠区华润万家超市,每条鱼体质量约为500~600 g。
试剂有浓盐酸、氯化钠、碘化钾、硫代硫酸钠、硫酸、可溶性淀粉和无水乙醇等,均为分析纯,PCA平板计数琼脂培养基。
1.2 实验仪器设备
方心牌微酸性电解水实验机(烟台方心水处理设备有限公司);SQ510C型立式压力蒸汽灭菌器(重庆雅马拓科技有限公司);SPX-320型生化培养箱(宁波江南仪器厂);IS128实验室pH计(上海仪迈仪器科技有限公司);MIR254低温恒温培养箱(日本Sanyo公司);Ultra Turrax T25D型均质机(德国IKA工业设备公司);HWS24型电热恒温水浴锅(上海一恒科学仪器有限公司);SW-CJ-1FD超净工作台(苏州净化设备有限公司);JJ500型电子天平(常熟市双杰测试仪器厂);BCD-171CH华凌牌冷冻箱(博西华家用电器有限公司)。
1.3 实验方法
1.3.1 原材料预处理
鲜活罗非鱼处理。用自来水冲净、击昏、放血、剖片、去皮、切片、冲洗、沥水,备用。
1.3.2 微酸性电解水的制备及其指标测定
微酸性电解水的制备。采用微酸性电解水实验机,根据所需电解水指标,调节微酸性电解水设备的电压和电流,电解质为质量分数3%的稀盐酸溶液,制备不同有效氯浓度(ACC)的微酸性电解水备用。制备后1 h内使用。
微酸性电解水理化指标的测定。微酸性电解水的pH、氧化还原电位值(ORP)采用pH计直接测定,微酸性电解水有效氯浓度的测定采用碘量法[20],对每个水样,以上每个指标重复测定3次,微酸性电解水的理化特性见表1。
表 1 微酸性电解水的理化特性Table 1. Physico-chemical properties of slightly acidic electrolyzed water有效氯质量浓度/mg·L–1
ACCpH 氧化还原电位值/mV
ORP12.48±0.47 6.39±0.06 882.93±9 19.85±1.71 6.16±0.09 898.54±19.03 31.39±1.48 6.053 3±0.19 900.63±14.3 35.22±0.98 5.912±0.07 906.43±12.12 40.270 4±1.36 5.895±0.09 910.23±15.83 49.24±1.24 5.33±0.08 950.43±13.23 1.3.3 单因素条件对微酸性电解水杀菌效果的影响
在室温(25±2) ℃条件下,以有效氯浓度、浸泡时间、料液比作为单因素,考察在不同条件下微酸性电解水对杀菌效果的影响,有效氯浓度为10 mg·L–1、20 mg·L–1、30 mg·L–1、40 mg·L–1、50 mg·L–1;浸泡时间为5 min、10 min、15 min、20 min、25 min、30 min;罗非鱼片与微酸性电解水的料液质量体积比为:1∶0、1∶2、1∶4、1∶6、1∶8、1∶10;对其中某一单因素进行考察时,其余因素均取固定水平值,以菌落总数为考察指标。同时以未用微酸性电解水处理的新鲜罗非鱼片为空白对照组。每组实验平行进行3次。
1.3.4 菌落总数的测定
菌落总数的测定参照GB 4789.2—2016食品微生物学检验 菌落总数测定进行。
杀菌率=(杀菌前菌落总数–杀菌后菌落总数)/杀菌前菌落总数×100%
杀菌对数值=杀菌前菌落对数值–杀菌后菌落对数值
1.3.5 响应面实验设计
在单因素实验的基础上,利用软件Design-Expert 10.0中的Box-Behn-ken进行响应面优化设计,以微酸性电解水的有效氯浓度、料液比和浸泡时间为因变量,响应值为杀菌对数值,实验因素和水平见表2。
表 2 响应面实验设计因素与水平Table 2. Factors and levels used in response surface experiments水平
level因素 factor 有效氯质量浓度/mg·L–1
available chlorine concentration浸泡时间/min
dipping time料液质量体积比
solid-liquid ratio–1 20 15 1∶4 0 30 20 1∶6 1 40 25 1∶8 1.3.6 数据分析
实验数据使用Excel 2016软件整理,采用SPSS 20.0软件进行方差与显著性分析,实验数据以“平均值±标准差(
$\overline X$ ±SD)”表示,利用Design-Expert 10.0软件进行响应面实验设计和结果统计分析,P<0.05为差异显著。2. 结果
2.1 单因素实验
2.1.1 微酸性电解水有效氯浓度对杀菌效果的影响
有效氯质量浓度按照1.3.3的因素水平,以料液比1∶4、浸泡时间15 min进行实验(图1)。实验组菌落总数明显比对照组少,且菌落总数随有效氯浓度的增加而逐渐减少。在有效氯质量浓度30.00 mg·L–1时,菌落总数减少了0.67 lg (CFU·g–1),此时杀菌率为78.62%;当有效氯质量浓度大于30.00 mg·L–1时,菌落总数减少缓慢。赵德锟等[21]用微酸性电解水处理鲜切云南红梨,结果表明微酸性电解水的有效氯质量浓度为0~20.00 mg·L–1,杀菌效果随浓度增加而逐渐增强,这与本研究结果一致。因此,选取30.00 mg·L–1为0水平进行响应面设计实验。
2.1.2 浸泡时间对微酸性电解水杀菌效果的影响
按照1.3.3的浸泡时间因素水平,以料液比1∶4、有效氯质量浓度20.00 mg·L–1进行实验(图2)。实验组菌落总数明显比对照组少,菌落总数随浸泡时间的增加而减少;0~20 min内菌落总数随浸泡时间的增加显著减少(P<0.05),这可能是因为微酸性电解水对罗非鱼片表面微生物的灭杀需要一定的时间才能发挥其杀菌效果,浸泡时间为20 min时,菌落总数减少了0.52 lg (CFU·g–1),此时杀菌率为69.80%,浸泡时间超过20 min,菌落总数减少缓慢,这是因为微酸性电解水的有效氯浓度随着浸泡时间的延长逐渐下降,杀菌效果也逐渐减弱。叶章颖等[22]用微酸性电解水(ACC=19.82 mg·L–1)处理凡纳滨对虾(Penaeus vannamei),随着处理时间的延长,微酸性电解水对虾仁的杀菌效果也不断增强,与本研究结果一致。因此选取20 min为0水平进行响应面设计实验。
2.1.3 料液比的影响
料液比按照1.3.3的因素水平,以微酸性电解水有效氯质量浓度20.00 mg·L–1,浸泡时间15 min为条件进行实验,实验结果见图3。菌落总数随料液比的增大而逐渐减少,罗非鱼片与微酸性电解水的料液比小于1∶6时,菌落总数随料液比增大而显著减少(P<0.05),这是因为随着料液比的增大,鱼片可以充分地与微酸性电解水接触,从而有助于减菌;料液比为1∶6时菌落总数减少了0.42 lg (CFU·g–1),此时杀菌率为61.98%,当料液比大于1∶6之后菌落总数减少缓慢,可能是由于微酸性电解水与罗非鱼片的接触面积有限,从而一定程度上限制了菌落的减少。这与王潇等[23]研究酸性电解水对中华管鞭虾(Solenocera crassicornis)的杀菌效果,得到的随着电解水与中华管鞭虾料液比的增加,中华管鞭虾的菌落总数显著减少(P<0.05)的结果一致。因此,选取料液比1∶6为0水平进行响应面设计实验。
2.2 响应面分析
利用Box-Behnken设计响应面实验,以微酸性电解水有效氯浓度、浸泡时间和液料比为响应变量,以杀菌对数值为响应值进行响应面实验,实验结果见表3,对表中实验数据进行回归拟合,建立微酸性电解水处理罗非鱼片的工艺参数回归模型。回归方程为∶
表 3 Box-Behnken实验方案及结果Table 3. Box-Behnken design and results实验号
test No.有效氯浓度
available chlorine concentration浸泡时间
dipping time料液比
solid-liquid ratio杀菌对数值
lg colony killing value1 –1 –1 0 0.52 2 1 –1 0 0.66 3 –1 1 0 0.64 4 1 1 0 0.7 5 –1 0 –1 0.56 6 1 0 –1 0.67 7 –1 0 1 0.6 8 1 0 1 0.69 9 0 –1 –1 0.59 10 0 1 –1 0.65 11 0 –1 1 0.61 12 0 1 1 0.68 13 0 0 0 0.73 14 0 0 0 0.71 15 0 0 0 0.69 16 0 0 0 0.72 17 0 0 0 0.74 Y=0.718 0+0.05A+0.036 2B+0.013 7C–0.02AB–0.005AC+0.002 5BC–0.045 2A2–0.042 7B2–0.042 7C2
式中Y表示杀菌对数值,A表示有效氯浓度,B表示浸泡时间,C表示料液比。
由表4回归方程方差分析可知,此模型的显著性水平P<0.000 1,说明模型极显著,而表示模型数据变异情况的失拟项P值为0.948 2>0.05,失拟项不显著,说明模型数据比较稳定,可以充分反映实际情况,回归模型较好;由表4可知模型的决定系数R2=0.974 1,表示模型的实验结果与预测结果较接近,此实验模型的校正系数RAdj=0.941 0,表明实验的响应值有94.10%的几率受实验因素的影响,说明实验结果可靠。由表4中F值参数可知各因素对杀菌对数值影响的主次顺序为A>B>C,即微酸性电解水的有效氯浓度对杀菌对数值的影响最大,其次是浸泡时间,最后是料液比。由方差分析可知3个单因素对响应值影响的显著水平为:A和B的P<0.01,C的P<0.05,表示A和B因子对杀菌效果的影响差异极显著,C对响应值的影响差异显著;AB交互作用对响应值的影响显著(P<0.05),模型中二次型A2、B2和C2对响应值的影响达到极显著水平(P<0.01),其他影响均不显著(P>0.05)。
表 4 回归方程方差分析Table 4. Analysis of variances for developed regression equation方差来源
source平方和
SS自由度
df均方
MSF P 显著性
significance模型 model 0.061 9 0.006 29.36 <0.000 1 ** A-有效氯浓度 A-available chlorine concentration 0.02 1 0.02 87.23 <0.000 1 ** B-浸泡时间 B-dipping time 0.011 1 0.011 45.85 0.000 3 ** C-料液比 C-solid-liquid ratio 0.001 1 0.001 5 6.6 0.037 1 * AB 0.001 1 0.001 6 6.98 0.033 3 * AC 0.000 1 1 0.000 1 0.44 0.530 1 BC 0.000 025 1 0.000 02 0.11 0.750 9 A2 0.008 1 0.008 6 37.6 0.000 5 ** B2 0.007 1 0.007 6 33.56 0.000 7 ** C2 0.007 1 0.007 6 33.56 0.000 7 ** 残差 residual 0.001 7 0.000 2 失拟项 lack of fit 0.000 1 3 0.000 04 0.11 0.948 2 误差项 pure error 0.001 4 0.000 3 总和 cor total 0.062 16 R2=0.974 1 RAdj=0.941 0 注:*. P<0.05表示差异显著;**. P<0.01表示差异极显著 Note: *. significant difference (P<0.05); **. very significant difference (P<0.01) 由响应实验模型得到实验因子(A、B、C)两者相互作用对杀菌对数值(Y)影响的响应面等高线见图4~图6。等高线图和响应面图可以很直观地反映各因子对响应值的影响情况,一般等高线图越圆表示相互作用越不显著,越椭圆越显著[24]。由图4可以得出,有效氯浓度(A)和浸泡时间(B)的等高线图为椭圆形,这表明有效氯浓度和浸泡时间的交互作用对响应值的影响极显著,这与方差分析中的显著性水平结果一致,且曲面图的变化也较快,表明这两个因素对响应值的影响显著,这与方差分析的结果也较吻合;从图5和图6中的等高线可知AC、BC交互作用不显著,而从响应面图中可知A、B、C 3个因子对Y有显著的影响,这与方差分析的结果也一致。
通过软件分析,得出最佳的处理条件为有效氯浓度34.74 mg·L–1,浸泡时间21.58 min,料液比1∶6.28,在此条件下杀菌对数值的理论值为0.737 lg (CFU·g–1),结合实际情况最终选取有效氯质量浓度为35.00 mg·L–1,浸泡时间为22 min,料液比为1∶6,在此优化条件下进行3次验证实验,3次验证实验的初始菌落数分别为4.95 lg (CFU·g–1)、4.97 lg (CFU·g–1)和4.93 lg (CFU·g–1),微酸性电解水处理后的鱼片菌落数分别为4.215 lg (CFU·g–1)、4.234 lg (CFU·g–1)和4.196 lg (CFU·g–1),得到杀菌对数值为(0.735±0.001) lg (CFU·g–1),杀菌率为(81.59±0.04)%,实验结果与预测结果基本一致,说明此模型优化得到的微酸性电解水处理罗非鱼片的杀菌工艺参数准确可靠,具有应用价值。测定3次验证实验前后电解水的有效氯浓度及鱼片残留余氯,结果显示电解水初始质量浓度为(35.22±0.98) mg·L–1,浸泡后电解水有效氯质量浓度为(13.03±0.36) mg·L–1,电解水有效氯质量浓度减少63.63%,而鱼片上余氯残留为(0.08±0.02) mg·L–1,小于我国相关标准(余氯残留质量浓度1.0 mg·L–1)[25],这可能是因为次氯酸与鱼片作用后降解,浸泡后再经净水漂洗可以去除更多的余氯,减少残留对鱼片品质的影响。
3. 讨论
3.1 有效氯浓度对电解水的减菌效果影响
微生物的作用是水产品腐败变质的主要原因,因此适当减少水产品表面附带的微生物数量,有利于维持产品良好品质。微酸性电解水是一种新型的减菌剂,具有高效、绿色环保的杀菌特性。本研究中采用的微酸性电解水有效氯质量浓度为10~50 mg·L–1,在10~30 mg·L–1范围内,电解水杀菌效果随有效氯浓度的增大而明显增强,而当浓度大于30 mg·L–1后,电解水杀菌效果随有效氯浓度的增大而缓慢增强,通过响应面得知有效氯质量浓度为35.00 mg·L–1,杀菌率超过80%。响应面研究结果也表明微酸性电解水的有效氯浓度对鱼片中微生物的影响最大,对杀菌效果影响显著。由此认为,增大电解水有效氯浓度可以增强电解水的杀菌效果,但不宜无限增大电解水浓度,这不仅达不到预期的杀菌效果,而且高浓度的电解水可能会影响鱼片品质,也增加了制备电解水的成本。
3.2 浸泡时间对电解水的减菌效果影响
微酸性电解水与鱼片作用一段时间后才发挥杀菌效果,随着时间延长,微酸性电解水可以杀灭更多鱼片表面的微生物。浸泡时间对电解水杀菌效果有着明显影响,但由于电解水的有效氯随浸泡时间的延长被不断分解消耗,故杀菌作用达到峰值后,增加浸泡时间对电解水杀菌效果的影响不显著,而且延长浸泡时间必然对鱼片品质不利。由上述结果可知浸泡时间对微酸性电解水杀菌效果有着明显影响,但不宜无限延长鱼片的浸泡时间,有关微酸性电解水减菌处理对鱼片品质的影响研究有待开展。
4. 结论
本研究利用微酸性电解水对新鲜罗非鱼片进行减菌处理,不仅可有效减少新鲜罗非鱼片上的微生物,提高罗非鱼片品质及安全性,而且可避免其他过激化学减菌剂可能带来的安全隐患。本实验在单因素实验的基础上,选择有效氯浓度、浸泡时间和料液比为影响因子,杀菌对数值为响应值进行响应面实验,最终得到最佳微酸性电解水杀菌条件的有效氯质量浓度为35.00 mg·L–1,浸泡时间为22 min,料液比为1∶6,在此优化条件下得到微酸性电解水对新鲜罗非鱼片的杀菌率为(81.59±0.04)%。在实际中可结合其他杀菌措施同时使用,可以和现有罗非鱼片加工生产工艺中的保水发色处理工序相结合,从而提升罗非鱼片的减菌效率。
-
图 1 不同蛋白酶对贝类闭壳肌酶解产物游离氨基酸态氮质量分数的影响
注:不同小写字母的组间差异显著 (P<0.05),后图同此。
Figure 1. Effect of different protease on mass fraction of free amino acid nitrogen in hydrolysate of shellfish adductor muscle
Note: Different lowercase letters indicate significant difference between groups (P<0.05); the same case in the following figures.
表 1 马氏珠母贝酶解产物对正常小鼠体质量的影响 (N=10)
Table 1 Effect of P. martensii hydrolysate on mass of mouse (N=10)
组别
Group给药剂量
Dosage/(mg·kg−1)体质量 Body mass/g 体质量增长
Mass gain/%0 d 3 d NC — 26.73±1.28a 29.65±1.55ab 11.05a PC 150 25.86±2.77a 27.92±2.26a 7.97a EHPA-L 500 25.42±0.94a 27.48±1.10a 8.10a EHPA-M 1 000 27.46±2.08a 31.39±3.07abc 14.31a EHPA-H 2 000 27.63±3.54a 32.36±2.92c 17.12a 注:同行数据的不同小写字母表示组间差异显著 (P<0.05),下表同此。 Note: Values with different lowercase letters within the same line indicate significant difference between groups (P<0.05); the same case in the following tables. 表 2 马氏珠母贝酶解产物对小鼠空腹血糖的影响 (N=10)
Table 2 Effect of P. martensii hydrolysate on fasting blood glucose of mouse (N=10)
组别
Group给药剂量
Dosage/(mg·kg−1)血糖浓度
Blood glucose value/(mmol·L−1)降糖率
Hypoglycemic rate/%FBG0 FBG1 NC — 4.18±1.33a 3.70±0.99a 11.48a PC 150 4.94±1.73a 3.21±0.45a 35.02a EHPA-L 500 4.57±1.33a 3.16±0.75a 30.85a EHPA-M 1 000 4.70±1.71a 3.67±0.75a 21.91a EHPA-H 2 000 4.88±1.32a 3.33±0.60a 31.76a 表 3 马氏珠母贝酶解产物对小鼠糖耐量的影响 (N=10)
Table 3 Effect of P. martensii enzymatic hydrolysate on glucose tolerance of mouse (N=10)
组别
Group给药剂量
Dosage/(mg·kg-1)血糖浓度
Blood glucose value/(mmol·L-1)血糖曲线下面积
AUC/(mmol·min·L-1)FBG0 0.5 h 2 h NC — 4.18±1.33a 11.38±1.58c 9.57±1.56b 19.60±2.16c PC 150 4.94±1.73a 8.56±1.19a 6.87±1.14a 14.84±1.59a EHPA-L 500 4.57±1.33a 9.82±1.08b 7.83±1.39a 16.88±1.23b EHPA-M 1 000 4.70±1.71a 9.92±1.11b 7.85±1.79a 16.97±1.36b EHPA-H 2 000 4.88±1.32a 9.79±1.51ab 7.15±1.30a 15.73±1.12ab 表 4 马氏珠母贝酶解产物对小鼠血清胰岛素的影响 (N=10)
Table 4 Effect of P. martensii hydrolysate on serum insulin of mouse (N=10)
组别
Group空腹血清胰岛素
Fasting serum insulin/(mIU·L-1)胰岛素敏感指数
Insulin sensitivity index胰岛素分泌指数
Insulin sensitivity indexNC 29.14±4.96a 2.14±0.47a 9.36±4.36a PC 29.82±5.50a 2.13±0.13a 8.50±1.12a EHPA-L 30.77±4.58a 2.29±0.22a 10.07±2.12a EHPA-M 31.00±5.42a 2.14±0.15a 8.61±1.27a EHPA-H 29.10±3.58a 2.16±0.23a 8.92±2.20a -
[1] ZHAO C, YANG C, LIU B, et al. Bioactive compounds from marine macroalgae and their hypoglycemic benefits [J]. Trends Food Sci Technol, 2017, 72(4): 1-12.
[2] ATLAS. IDF Diabetes atlas 9th edition 2019[EB/OL]. (2019-11-18). https://www.diabetesatlas.org/en.
[3] 延海莹, 刘盟梦, 乔乐克, 等. 扇贝裙边活性肽的制备及其降血糖活性研究[J]. 食品工业, 2018, 39(3): 117-121. [4] 陈爱花. 临床2类糖尿病治疗药物应用探析[J]. 中国医药指南, 2013, 11(6): 370-372. doi: 10.3969/j.issn.1671-8194.2013.06.298 [5] 李艳敏, 郁书怀, 仝艳军, 等. 裙带菜α-葡萄糖苷酶抑制活性肽的制备[J]. 食品工业科技, 2020, 41(20): 127-134. [6] 姜文杰. 杂色蛤降血糖功能性产品的研究开发 [D]. 大连: 大连海洋大学, 2015: 8-14. [7] 李佳芸, 王欣之, 韦源青, 等. 基于网络药理学与分子对接研究马氏珍珠贝降糖活性肽[J]. 食品与发酵工业, 2022,48 (15): 176-184. [8] 李佳芸, 王欣之, 韦源青, 等. 马氏珍珠贝软体酶法制备降糖肽的工艺优化及肽段分析[J]. 食品工业科技, 2021, 42(22): 202-211. [9] HARNEDY P A, FITZGERALD R J. Bioactive peptides from marine processing waste and shellfish: A review[J]. J Funct Foods, 2012, 4(1): 92-98.
[10] CUNHA S A, PINTADO M E. Bioactive peptides derived from marine sources: biological and functional properties[J]. Trends Food Sci Technol, 2022, 119(1): 348-370.
[11] 崔金会. 虾夷扇贝裙边水解蛋白的制备工艺与生物活性研究 [D]. 青岛: 中国科学院研究生院(海洋研究所), 2012: 9-11. [12] 罗齐军, 郑选梅, 李红, 等. 酶制备牡蛎蛋白水解物的抗氧化活性和功能特性分析[J]. 现代农业科技, 2020(15): 224-226,229. doi: 10.3969/j.issn.1007-5739.2020.15.142 [13] MANZOOR M, SINGH J, GANI A. Exploration of bioactive peptides from various origin as promising nutraceutical treasures: in vitro, in silico and in vivo studies[J]. Food Chem, 2021, 373(7): 131395.
[14] LIU P, LAN X, YASEEN M, et al. Purification, characterization and evaluation of inhibitory mechanism of ace inhibitory peptides from pearl oyster (Pinctada fucata martensii) meat protein hydrolysate[J]. Mar Drugs, 2019, 17(8): 463. doi: 10.3390/md17080463
[15] PUJIASTUTI D Y, AMIN M, ALAMSJAH M A, et al. Marine organisms as potential sources of bioactive peptides that inhibit the activity of angiotensin I-converting enzyme: a review[J]. Molecules, 2019, 24(14): 2541. doi: 10.3390/molecules24142541
[16] 杨发明, 林海生, 秦小明, 等. 珍珠贝外套膜酶解产物促进皮肤创伤愈合效果研究[J]. 南方水产科学, 2019, 15(5): 92-98. doi: 10.12131/20190079 [17] 钟佳佳, 章超桦, 高加龙, 等. 马氏珠母贝肉酶解产物的抗酒精性肝损伤作用[J]. 南方水产科学, 2020, 16(2): 107-114. doi: 10.12131/20190239 [18] 祝亚辉, 曹文红, 刘忠嘉, 等. 热加工处理对华贵栉孔扇贝柱特征风味形成的影响[J]. 食品科学, 2017, 38(20): 131-138. doi: 10.7506/spkx1002-6630-201720019 [19] 柏昌旺, 章超桦, 林海生, 等. 响应面法优化制备牡蛎短肽工艺[J]. 广东海洋大学学报, 2019, 39(6): 85-92. doi: 10.3969/j.issn.1673-9159.2019.06.011 [20] ZHANG H L, WU Q X, QIN X M. Camellia nittdissima Chi flower extracts inhibit α-amylase and α-glucosidase: in vitro by analysis of optimization of addition methods, inhibitory kinetics and mechanisms[J]. Process Biochem, 2019, 86(1): 177-185.
[21] 林海生, 廖津, 章超桦, 等. 华贵栉孔扇贝酶法制备α-葡萄糖苷酶抑制肽工艺优化[J]. 广东海洋大学学报, 2020, 40(5): 97-104. doi: 10.3969/j.issn.1673-9159.2020.05.012 [22] 林海生. 牡蛎蛋白肽的酶法制备及其改善小鼠学习记忆功能的研究 [D]. 湛江: 广东海洋大学, 2013: 22-23. [23] 赵谋明, 周雪松, 林伟锋, 等. 鸡肉蛋白热处理与酶解特性的关系研究[J]. 农业工程学报, 2006, 22(6): 169-172. doi: 10.3321/j.issn:1002-6819.2006.06.036 [24] LIANG G J, CHEN W P, QIE X J, et al. Modification of soy protein isolates using combined pre-heat treatment and controlled enzymatic hydrolysis for improving foaming properties[J]. Food Hydrocoll, 2020, 105(9): 105764.1-105764.9.
[25] 郑惠娜, 章超桦, 吉宏武, 等. Plackett-burman设计在胰酶酶解马氏珠母贝肉蛋白主要影响因子筛选中的应用[J]. 食品科技, 2010, 35(12): 28-32. [26] 王春月. 海洋生物组氨酸二肽分析及贻贝肌肽相关代谢组研究 [D]. 舟山: 浙江海洋大学, 2021: 12. [27] 杨珂. 嗜热菌水解青霉素菌渣及蛋白质提取研究 [D]. 石家庄: 河北科技大学, 2021: 27-37. [28] 孙建忠. 林蛙油小分子肽的制备及其分子量分布研究 [D]. 长春: 吉林农业大学, 2008: 46-54. [29] 徐杰, 廖津, 林泽安, 等. 石斑鱼肉肽粉的氨基酸组成分析与营养价值评价[J]. 食品与发酵工业, 2021, 47(23): 221-226. [30] PUNEET T, SERGEI P, ANAND S J. Oral peptide delivery: translational challenges due to physiological effects[J]. J Control Release, 2018, 287: 167-176. doi: 10.1016/j.jconrel.2018.08.032
[31] WU J J, SHI S S, WANG H J, et al. Mechanisms underlying the effect of polysaccharides in the treatment of type 2 diabetes: a review[J]. Carbohydr Polym, 2016, 144: 474-494. doi: 10.1016/j.carbpol.2016.02.040
[32] 李松林, 王林, 叶华, 等. 栉江珧粗多糖提取工艺优化、组成分析及其抗氧化活性研究[J]. 食品工业科技, 2018, 39(4): 177-182,209. [33] 李孟婕, 范秀萍, 吴红棉, 等. 翡翠贻贝糖胺聚糖的体外抗氧化活性研究[J]. 现代食品科技, 2011, 27(7): 759-762. [34] 胡佳妮, 刘睿, 郝云涛, 等. 罗非鱼胶原低聚肽对功能性消化不良小鼠胃肠运动与脑肠肽的影响[J]. 中国食物与营养, 2021, 27(9): 56-60. doi: 10.3969/j.issn.1006-9577.2021.09.012 [35] 王婷婷. 海参肽对ⅱ型糖尿病大鼠血糖活性调节作用及其机制研究 [D]. 南宁: 广西大学, 2021: 35-47. [36] 赵阔, 罗山, 王涛, 等. 双酶法水解罗非鱼下脚料制备降血糖肽的工艺研究[J]. 农产品加工, 2021(1): 31-34. [37] 李琦. 海带降血糖多肽的分离合成及活性研究 [D]. 大连: 大连理工大学, 2021: 40-43. [38] 刘志彤. 米刺参酶解物的制备及其降血糖活性研究 [D]. 广州: 华南理工大学, 2020: 38-55. [39] 吉薇, 章超桦, KALUEFF A V, 等. 糖尿病斑马鱼模型的建立与南极磷虾酶解物降血糖活性评价[J]. 食品与机械, 2019, 35(6): 24-29. [40] 邱韵萦, 刘睿, 吴皓, 等. 四角蛤蜊不同水提醇沉部位降血糖作用及多糖和蛋白成分研究[J]. 南京中医药大学学报, 2018, 34(4): 391-394. [41] 严晓丹, 钱建瑛, 许泓瑜, 等. 文蛤不同极性提取物对糖尿病小鼠降血糖作用的研究[J]. 中国海洋药物, 2015, 34(5): 71-76. -
期刊类型引用(5)
1. 赖洁,叶树政,黄文炜,李斯迅,邓彬华,韩崇,龚剑,桂林,李强. 光倒刺鲃(Spinibarbus hollandi)基因组Survey及线粒体基因组研究. 海洋与湖沼. 2025(02): 423-432 . 百度学术
2. 戴炜,张超,王霜文,尧志宇,吴佩诗,鄢智轩,钟语慧,周蕾,江子怡,卢环,满百膺. 信江光倒刺鲃的生长与繁殖特性研究. 上饶师范学院学报. 2024(06): 26-40 . 百度学术
3. 郭辰,周飞,韩彪,潘翠,吴洁敏,杨婷,尚常花. 假单胞菌亮氨酸氨肽酶基因克隆及生物信息学分析. 广西师范大学学报(自然科学版). 2021(01): 156-164 . 百度学术
4. 李文俊,李强,钟良明. 珠江水系光倒刺鲃Cyt b基因的遗传变异分析. 湖南农业科学. 2021(02): 1-5+14 . 百度学术
5. 李文俊,李强,钟良明,桂林. 基于线粒体DNA控制区序列的珠江和长江水系光倒刺鲃群体遗传变异分析. 南方农业学报. 2021(11): 3121-3129 . 百度学术
其他类型引用(2)