Preparation and properties of collagen ACE inhibitory peptides from bone of eel (Anguilla japonica)
-
摘要: 为研究鳗鱼加工副产物的综合利用,以鳗鱼骨胶原蛋白为原料,采用酶解法制备血管紧张素转化酶 (Angiotensin-converting enzyme, ACE) 抑制肽。以ACE抑制活性和水解度为评价指标,通过单因素和响应面试验确定最佳的酶解制备条件,并分析酶解产物的分子质量分布和氨基酸组成。结果显示,碱性蛋白酶为最适水解酶,最佳酶解条件为:温度50 ℃,质量浓度15 g·L–1,酶解时间5.25 h,加酶量3.1% (质量分数),pH 9.2。在此条件下,鳗鱼胶原蛋白肽的ACE抑制活性为70.33%,与预测值接近;酶解产物中分子质量小于1 kD的肽占57.02%,1~3 kD的肽占36.55%;氨基酸组成分析表明,酶解产物中与ACE抑制活性有关的疏水性氨基酸 (如脯氨酸、缬氨酸、异亮氨酸、亮氨酸、苯丙氨酸) 含量增加。Abstract: To study the comprehensive utilization of by-products from eel processing, the angiotensin-converting enzyme inhibitory peptide was prepared from eel (Anguilla japonica) bone collagen by enzymatic hydrolysis. The ACE inhibitory activity and degree of hydrolysis were used as evaluation indexes, we determined the optimal hydrolysis conditions by single factor and response surface experiments. Furthermore, the amino acid composition and molecular mass distribution of the hydrolysate prepared under the optimized conditions were determined. The results show that alkaline protease was the optimal enzyme, and the optimal hydrolysis conditions were as follows: temperature of 50 ℃, mass concentration of 15 g·L−1, hydrolysis time of 5.25 h, enzyme dosage of 3.1% (Mass fraction) and pH of 9.2. Under these conditions, the ACE inhibitory activity was 70.33%, which was close to the predicted value. The molecular weight of peptides below 1 000 D and 1 000–3 000 D in enzymatic hydrolysate accounted for 57.02% and 36.55%, respectively. Amino acid composition analysis shows that the content of hydrophobic amino acids related to ACE inhibition activities (Such as Pro、Val、Ile、Leu、Phe) increased.
-
-
表 1 5种蛋白酶的最适酶解条件
Table 1 Optimal enzymatic hydrolysis conditions of five proteases
蛋白酶
Protease温度
Temperature/℃pH 木瓜蛋白酶 Papain 55 7.6 碱性蛋白酶 Alcalase 50 9.0 中性蛋白酶 Neutrase 45 7.0 胰蛋白酶 Trypsin 50 7.5 胃蛋白酶 Pepsin 37 2.0 表 2 响应面试验因素水平表
Table 2 Response surface test factors and levels
水平
Level因素 Factor A:酶解时间
Enzymatic hydrolysis time/hB:加酶量
Enzyme dosage/%C:pH −1 4 2 8 0 5 3 9 1 6 4 10 表 3 响应面试验设计和结果
Table 3 Design and results of response surface experiment
编号
No.A:酶解时间
Enzymatic
hydrolysis
time/hB:加酶量
Enzyme
dosage/%C:pH ACE抑制率
ACE
inhibitory
rate/%1 –1 1 0 40.83 2 0 1 –1 62.17 3 –1 0 –1 34.38 4 0 0 0 73.55 5 0 0 0 68.16 6 1 1 0 57.42 7 0 0 0 72.82 8 –1 0 1 51.8 9 –1 –1 0 39.67 10 0 –1 –1 59.4 11 0 0 0 70.05 12 1 –1 0 51.77 13 0 0 0 72.75 14 0 1 1 62.76 15 1 0 –1 65.43 16 1 0 1 62.73 17 0 –1 1 60.83 表 4 回归模型方差分析
Table 4 Variance analysis of regression model
方差来源
Variance source自由度
df平方和
SSF P 模型 Model 9 2 236.3 27.19 0.000 1*** A:时间 Time 1 624.63 68.36 <0.000 1*** B:加酶量
Enzyme dosage1 16.56 1.81 0.220 2 C:pH 1 35.11 3.84 0.090 8 AB 1 5.04 0.551 6 0.481 9 AC 1 101.4 11.1 0.012 6* BC 1 0.176 4 0.019 3 0.893 4 A2 1 1 062.69 116.3 <0.000 1*** B2 1 281.51 30.81 0.000 9*** C2 1 17.17 1.88 0.212 8 残差 Residual 7 63.96 失拟项 Lack of fit 3 42.93 2.72 0.179 纯误差 Pure error 4 21.04 总和 Cor total 16 2 300.27 注:***. 差异极显著 (P<0.001);**. 差异较显著 (P<0.01);*. 差异显著 (P<0.05)。 Note: ***. Extremely significant difference (P<0.001); **. Very significant difference (P<0.01); *. Significant difference (P<0.05). 表 5 鳗鱼胶原蛋白氨基酸组成
Table 5 Amino composition of collagen from eel bone
氨基酸
Amino acid氨基酸质量分数
Amino acid mass fraction/%胶原蛋白
Collagen酶解产物
Enzymatic hydrolysis product天门冬氨酸 Asp 7.23 6.87 苏氨酸 Thr 2.04 2.24 丝氨酸 Ser 4.8 4.37 谷氨酸 Glu 11.79 11.29 脯氨酸 Pro* 10.72 11.25 甘氨酸 Gly 22.79 20.11 丙氨酸 Ala* 12.21 11.52 半胱氨酸 Cys 0.11 — 缬氨酸 Val* 1.24 2.04 蛋氨酸 Met* 0.99 0.38 异亮氨酸 Ile* 0.55 1.42 亮氨酸 Leu* 2.31 3.21 酪氨酸 Tyr 0.64 0.94 苯丙氨酸 Phe* 1.89 2.49 赖氨酸 Lys 2.94 3.79 组氨酸 His 1.29 1.59 精氨酸 Arg 8.98 9.37 羟脯氨酸 Hyp 7.48 7.12 疏水性氨基酸总量
Hydrophobic amino acid29.91 32.31 注:*. 疏水性氨基酸。 Note: *. Hydrophobic amino acid. -
[1] FAN Y, YU Z P, ZHAO W Z, et al. Identification and molecular mechanism of angiotensin-converting enzyme inhibitory peptides from Larimichthys crocea titin[J]. Food Sci Hum Well, 2020, 9(3): 257-263. doi: 10.1016/j.fshw.2020.04.001
[2] SUN S Q, XU X T, SUN X, et al. Preparation and identification of ACE inhibitory peptides from the marine macroalga Ulva intestinalis[J]. Mar Drugs, 2019, 17(3): 179. doi: 10.3390/md17030179
[3] LIAO P Y, LAN X D, LIAO D K, et al. Isolation and characterization of angiotensin I-converting enzyme (ACE) inhibitory peptides from the enzymatic hydrolysate of carapax trionycis (the shell of the turtle Pelodiscus sinensis)[J]. J Agric Food Chem, 2018, 66(27): 7015-7022. doi: 10.1021/acs.jafc.8b01558
[4] 于志鹏, 赵文竹, 刘博群, 等. 血管紧张素转化酶抑制肽研究进展[J]. 食品科学, 2010, 31(11): 308-311. [5] GAO D D, ZHANG F M, MA Z R, et al. Isolation and identification of the angiotensin-I converting enzyme (ACE) inhibitory peptides derived from cottonseed protein: optimization of hydrolysis conditions[J]. Int J Food Prop, 2019, 22(1): 1296-1309. doi: 10.1080/10942912.2019.1640735
[6] HUANG Y B, JIA F, ZHAO J S, et al. Novel ACE inhibitory peptides derived from yeast hydrolysates: screening, inhibition mechanisms and effects on HUVECs[J]. J Agr Food Chem, 2021, 69(8): 2412-2421. doi: 10.1021/acs.jafc.0c06053
[7] KASIWUT J, YOURAVONG W, SIRINUPONG N. Angiotensin I-converting enzyme inhibitory peptides produced from tuna cooking juice hydrolysate by continuous enzymatic membrane reactor[J]. J Food Biochem, 2019, 43(12): e13058.
[8] DENG Z Z, LIU Y J, WANG J, et al. Antihypertensive effects of two novel angiotensin I-converting enzyme (ACE) inhibitory peptides from Gracilariopsis lemaneiformis (Rhodophyta) in spontaneously hypertensive rats (SHRs)[J]. Mar Drugs, 2018, 16(9): 299. doi: 10.3390/md16090299
[9] ISHAK N H, SHAIK M I, YELLAPU N K, et al. Purification, characterization and molecular docking study of angiotensin-I converting enzyme (ACE) inhibitory peptide from shortfin scad (Decapterus macrosoma) protein hydrolysate[J]. J Food Sci Technol, 2021, 58(12): 4567-4577. doi: 10.1007/s13197-020-04944-y
[10] DEY T K, CHATTERJEE R, MANDAL R S. et al. ACE inhibitory peptides from Bellamya bengalensis protein hydrolysates: in vitro and in silico molecular assessment[J]. Processes, 2021, 9(8): 1316. doi: 10.3390/pr9081316
[11] LI J P, LIU Z Y, ZHAO Y H, et al. Novel natural angiotensin converting enzyme (ACE)-inhibitory peptides derived from sea cucumber-modified hydrolysates by adding exogenous proline and a study of their structure-activity relationship[J]. Mar Drugs, 2018, 16(8): 271. doi: 10.3390/md16080271
[12] CHEN J, LIU Y, WANG G, et al. Processing optimization and characterization of angiotensin-Ι-converting enzyme inhibitory peptides from lizardfish (Synodus macrops) scale gelatin[J]. Mar Drugs, 2018, 16(7): 228. doi: 10.3390/md16070228
[13] YU F M, ZHANG Z W, LUO L W, et al. Identification and molecular docking study of a novel angiotensin-I converting enzyme inhibitory peptide derived from enzymatic hydrolysates of Cyclina sinensis[J]. Mar Drugs, 2018, 16(11): 411. doi: 10.3390/md16110411
[14] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021中国渔业统计年鉴 [M]. 北京: 中国农业出版社, 2021: 25. [15] 张婷婷, 赵峰, 张涛, 等. 中国鳗鱼产业发展及其资源保护建议[J]. 渔业信息与战略, 2019, 34(4): 235-243. [16] 钱跃威, 徐瀚麟, 吕奇晏, 等. 鳗鱼骨胶原肽钙螯合物的制备及其稳定性和Caco-2吸收特性[J]. 食品科学, 2020, 41(24): 1-8. doi: 10.7506/spkx1002-6630-20200706-078 [17] 蔡路昀, 史航, 曹爱玲, 等. 鲽鱼骨胶原蛋白的结构及流变学特性[J]. 中国食品学报, 2020, 20(3): 66-73. [18] BALTI R, BOUGATEF A, SILA A, et al. Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats[J]. Food Chem, 2015, 170: 519-525. doi: 10.1016/j.foodchem.2013.03.091
[19] 苏盛亿. 小米ACE抑制肽的制备及其降血压活性的研究 [D]. 大连: 大连工业大学, 2019: 8-16. [20] 李德俊. 鱼鳞胶原蛋白肽的制备及工厂设计 [D]. 南昌: 南昌大学, 2015: 13-14. [21] GUO L D, HARNEDY P A, O'KEEFE M B, et a1. Fractionation and identification of Alaska pollock skin collagen-derived minera I chelating peptides[J]. Food Chem, 2015, 173: 536-542. doi: 10.1016/j.foodchem.2014.10.055
[22] 张风, 夏旭, 周爱梅, 等. 虾头虾壳蛋白质酶解制备抗氧化肽的研究[J]. 南方水产科学, 2015, 11(6): 79-87. doi: 10.3969/j.issn.2095-0780.2015.06.011 [23] 魏洁琼, 余群力, 韩玲, 等. 牛骨胶原蛋白肽制备工艺优化及抗氧化活性分析[J]. 甘肃农业大学学报, 2020, 55(5): 203-211, 218. [24] 朱迎春, 许小琴, 马俪珍. 鲶鱼骨酶解物的降血压肽活性研究[J]. 青岛农业大学学报 (自然科学版), 2009, 26(1): 61-65. [25] 李华亮, 郑雅惠, 冒小妹, 等. 鳄鱼骨胶原活性肽的制备及其抑制血管紧张素酶 (ACE) 的功能研究 [C]//中国生物化学与分子生物学会, 浙江省生物化学与分子生物学会. 中国生物化学与分子生物学会2016年全国学术会议论文集. 杭州: 中国生物化学与分子生物学会, 2016: 235. [26] 田海娟, 王蕾, 刘名鑫, 等. 混菌发酵紫苏粕小肽提取工艺优化及体外抗氧化活性研究[J]. 食品与发酵工业, 2021, 47(20): 219-224. [27] 田旭静, 段鹏慧, 范三红, 等. 响应面法优化酶解藜麦糠蛋白制备抗氧化肽工艺[J]. 食品科学, 2018, 39(10): 158-164. doi: 10.7506/spkx1002-6630-201810025 [28] 任海伟, 石菊芬, 蔡亚玲, 等. 响应面法优化超声辅助酶解制备藏系羊胎盘肽工艺及抗氧化能力分析[J]. 食品科学, 2019, 40(24): 265-273. doi: 10.7506/spkx1002-6630-20181101-009 [29] 王小慧, 戚勃, 杨贤庆, 等. 响应面法优化末水坛紫菜蛋白酶解工艺及其酶解液抗氧化活性研究[J]. 南方水产科学, 2019, 15(2): 93-101. doi: 10.12131/20180099 [30] 涂宗财, 唐平平, 郑婷婷, 等. 响应面优化鱼鳔胶原肽制备工艺及其抗氧化活性研究[J]. 食品与发酵工业, 2017, 43(5): 160-166. [31] 邱娟, 沈建东, 翁凌, 等. 利用牡蛎制备ACE抑制肽的工艺优化[J]. 食品科学, 2017, 38(16): 165-172. doi: 10.7506/spkx1002-6630-201716026 [32] SHI J, SU R Q, ZHANG W T, et al. Purification and the secondary structure of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the alcalase hydrolysate of seahorse protein[J]. J Food Sci Technol, 2020, 57(11): 3927-3934. doi: 10.1007/s13197-020-04427-0
[33] KIM H S, LEE W W, JAYAWARDENA T U, et al. Potential precursor of angiotensin-I converting enzyme (ACE) inhibitory activity and structural properties of peptide from peptic hydrolysate of cutlassfish muscle[J]. J Aquat Food Prod T, 2020, 29(6): 544-552. doi: 10.1080/10498850.2020.1773595
[34] 王晓丹, 薛璐, 胡志和, 等. ACE抑制肽构效关系研究进展[J]. 食品科学, 2017, 38(5): 305-310. doi: 10.7506/spkx1002-6630-201705049 [35] 王琳琳, 陈立, 李建科. 食源血管紧张素转化酶抑制肽研究进展[J]. 中国果菜, 2020, 40(6): 71-76. [36] 管骁, 洪延涵, 刘静, 等. ACEC-结构域选择性抑制二肽与ACE结构域的结合模式[J]. 食品科学, 2017(5): 170-176. [37] 周育, 韩三青, 王茹茹, 等. 食源血管紧张素转化酶抑制肽研究进展[J]. 安徽农业大学学报, 2019, 46(5): 751-760. [38] XUE L, YIN R, HOWELL K, et al. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme-inhibitory peptides[J]. Compr Rev Food Sci F, 2021, 20(2): 1150-1187. doi: 10.1111/1541-4337.12711
[39] MURAPA P, DAI J, CHUNG M, et al. Anthocyanin-rich fractions of blackberry extracts reduce UV-induced free radicals and oxidative damage in keratinocytes[J]. Phytother Res, 2012, 26: 106-112. doi: 10.1002/ptr.3510
[40] CHEUNG H S, WANG F L, ONDETTI M A, et al. Binding of peptide substrates and inhibitors of ACE importance of the COOH-terminal dipeptide sequence[J]. J Bio Chem, 1980, 255: 401-407. doi: 10.1016/S0021-9258(19)86187-2
[41] 于志鹏, 吴雨, 樊玥, 等. 基于三元二次正交设计的文蛤水解肽制备工艺优化及ACE抑制活性分析[J]. 食品工业科技, 2016, 37(24): 181-185.