鳗鱼骨胶原蛋白ACE抑制肽的制备及性质研究

邵燕秋, 黄卉, 李来好, 杨贤庆, 陈胜军, 郝淑贤, 吴燕燕, 岑剑伟, 邓尚贵

邵燕秋, 黄卉, 李来好, 杨贤庆, 陈胜军, 郝淑贤, 吴燕燕, 岑剑伟, 邓尚贵. 鳗鱼骨胶原蛋白ACE抑制肽的制备及性质研究[J]. 南方水产科学, 2022, 18(6): 137-145. DOI: 10.12131/20210358
引用本文: 邵燕秋, 黄卉, 李来好, 杨贤庆, 陈胜军, 郝淑贤, 吴燕燕, 岑剑伟, 邓尚贵. 鳗鱼骨胶原蛋白ACE抑制肽的制备及性质研究[J]. 南方水产科学, 2022, 18(6): 137-145. DOI: 10.12131/20210358
SHAO Yanqiu, HUANG Hui, LI Laihao, YANG Xianqing, CHEN Shengjun, HAO Shuxian, WU Yanyan, CEN Jianwei, DENG Shanggui. Preparation and properties of collagen ACE inhibitory peptides from bone of eel (Anguilla japonica)[J]. South China Fisheries Science, 2022, 18(6): 137-145. DOI: 10.12131/20210358
Citation: SHAO Yanqiu, HUANG Hui, LI Laihao, YANG Xianqing, CHEN Shengjun, HAO Shuxian, WU Yanyan, CEN Jianwei, DENG Shanggui. Preparation and properties of collagen ACE inhibitory peptides from bone of eel (Anguilla japonica)[J]. South China Fisheries Science, 2022, 18(6): 137-145. DOI: 10.12131/20210358

鳗鱼骨胶原蛋白ACE抑制肽的制备及性质研究

基金项目: 国家现代农业产业技术体系资助 (CARS-46);“扬帆计划”引进创新创业团队专项 (2015YT02H109);广东省重点领域研发计划项目 (2019B020225001);中国水产科学研究院基本科研业务费专项资金 (2020TD69, 2020TD73)
详细信息
    作者简介:

    邵燕秋 (1994—),女,硕士研究生,研究方向为食品加工与贮藏工程。E-mail: 1802643584@qq.com

    通讯作者:

    黄 卉 (1980—),女,副研究员,博士,研究方向为水产品加工与质量安全。E-mail: huanghuigd@aliyun.com

    邓尚贵 (1966—),男,教授,博士,研究方向为水产品加工与贮藏。E-mail: dengshanggui@163.com

  • 中图分类号: TS 201.2

Preparation and properties of collagen ACE inhibitory peptides from bone of eel (Anguilla japonica)

  • 摘要: 为研究鳗鱼加工副产物的综合利用,以鳗鱼骨胶原蛋白为原料,采用酶解法制备血管紧张素转化酶 (Angiotensin-converting enzyme, ACE) 抑制肽。以ACE抑制活性和水解度为评价指标,通过单因素和响应面试验确定最佳的酶解制备条件,并分析酶解产物的分子质量分布和氨基酸组成。结果显示,碱性蛋白酶为最适水解酶,最佳酶解条件为:温度50 ℃,质量浓度15 g·L–1,酶解时间5.25 h,加酶量3.1% (质量分数),pH 9.2。在此条件下,鳗鱼胶原蛋白肽的ACE抑制活性为70.33%,与预测值接近;酶解产物中分子质量小于1 kD的肽占57.02%,1~3 kD的肽占36.55%;氨基酸组成分析表明,酶解产物中与ACE抑制活性有关的疏水性氨基酸 (如脯氨酸、缬氨酸、异亮氨酸、亮氨酸、苯丙氨酸) 含量增加。
    Abstract: To study the comprehensive utilization of by-products from eel processing, the angiotensin-converting enzyme inhibitory peptide was prepared from eel (Anguilla japonica) bone collagen by enzymatic hydrolysis. The ACE inhibitory activity and degree of hydrolysis were used as evaluation indexes, we determined the optimal hydrolysis conditions by single factor and response surface experiments. Furthermore, the amino acid composition and molecular mass distribution of the hydrolysate prepared under the optimized conditions were determined. The results show that alkaline protease was the optimal enzyme, and the optimal hydrolysis conditions were as follows: temperature of 50 ℃, mass concentration of 15 g·L−1, hydrolysis time of 5.25 h, enzyme dosage of 3.1% (Mass fraction) and pH of 9.2. Under these conditions, the ACE inhibitory activity was 70.33%, which was close to the predicted value. The molecular weight of peptides below 1 000 D and 1 000–3 000 D in enzymatic hydrolysate accounted for 57.02% and 36.55%, respectively. Amino acid composition analysis shows that the content of hydrophobic amino acids related to ACE inhibition activities (Such as Pro、Val、Ile、Leu、Phe) increased.
  • 图  1   不同蛋白酶对ACE抑制活性的影响

    Figure  1.   Effect of different proteases on ACE inhibitory activity

    图  2   pH、加酶量、时间、胶原蛋白质量浓度对水解度和ACE抑制活性的影响

    Figure  2.   Effects of pH, enzyme dosage, enzymatic hydrolysis time and collagen mass concentration on degree of hydrolysis and ACE inhibitory activity

    图  3   各因素相互作用对ACE抑制活性的响应面及等高线图

    Figure  3.   Response surface and contour lines of various factors on ACE inhibitory activity

    图  4   鳗鱼骨胶原蛋白酶解产物的高效体积排阻色谱图 (a) 及分子质量分布图 (b)

    Figure  4.   HPSEC chromatogram (a) of hydrolysates of eel bone collagen and its molecular weight distribution (b)

    表  1   5种蛋白酶的最适酶解条件

    Table  1   Optimal enzymatic hydrolysis conditions of five proteases

    蛋白酶
    Protease
    温度
    Temperature/℃
    pH
    木瓜蛋白酶 Papain 55 7.6
    碱性蛋白酶 Alcalase 50 9.0
    中性蛋白酶 Neutrase 45 7.0
    胰蛋白酶 Trypsin 50 7.5
    胃蛋白酶 Pepsin 37 2.0
    下载: 导出CSV

    表  2   响应面试验因素水平表

    Table  2   Response surface test factors and levels

    水平
    Level
    因素 Factor
    A:酶解时间
    Enzymatic hydrolysis time/h
    B:加酶量
    Enzyme dosage/%
    C:pH
    −1 4 2 8
    0 5 3 9
    1 6 4 10
    下载: 导出CSV

    表  3   响应面试验设计和结果

    Table  3   Design and results of response surface experiment

    编号
    No.
    A:酶解时间
    Enzymatic
    hydrolysis
    time/h
    B:加酶量
    Enzyme
    dosage/%
    C:pH ACE抑制率
    ACE
    inhibitory
    rate/%
    1 –1 1 0 40.83
    2 0 1 –1 62.17
    3 –1 0 –1 34.38
    4 0 0 0 73.55
    5 0 0 0 68.16
    6 1 1 0 57.42
    7 0 0 0 72.82
    8 –1 0 1 51.8
    9 –1 –1 0 39.67
    10 0 –1 –1 59.4
    11 0 0 0 70.05
    12 1 –1 0 51.77
    13 0 0 0 72.75
    14 0 1 1 62.76
    15 1 0 –1 65.43
    16 1 0 1 62.73
    17 0 –1 1 60.83
    下载: 导出CSV

    表  4   回归模型方差分析

    Table  4   Variance analysis of regression model

    方差来源
    Variance source
    自由度
    df
    平方和
    SS
    F P
    模型 Model 9 2 236.3 27.19 0.000 1***
    A:时间 Time 1 624.63 68.36 <0.000 1***
    B:加酶量
    Enzyme dosage
    1 16.56 1.81 0.220 2
    C:pH 1 35.11 3.84 0.090 8
    AB 1 5.04 0.551 6 0.481 9
    AC 1 101.4 11.1 0.012 6*
    BC 1 0.176 4 0.019 3 0.893 4
    A2 1 1 062.69 116.3 <0.000 1***
    B2 1 281.51 30.81 0.000 9***
    C2 1 17.17 1.88 0.212 8
    残差 Residual 7 63.96
    失拟项 Lack of fit 3 42.93 2.72 0.179
    纯误差 Pure error 4 21.04
    总和 Cor total 16 2 300.27
    注:***. 差异极显著 (P<0.001);**. 差异较显著 (P<0.01);*. 差异显著 (P<0.05)。 Note: ***. Extremely significant difference (P<0.001); **. Very significant difference (P<0.01); *. Significant difference (P<0.05).
    下载: 导出CSV

    表  5   鳗鱼胶原蛋白氨基酸组成

    Table  5   Amino composition of collagen from eel bone

    氨基酸   
    Amino acid   
    氨基酸质量分数
    Amino acid mass fraction/%
    胶原蛋白
    Collagen
    酶解产物
    Enzymatic hydrolysis product
    天门冬氨酸 Asp 7.23 6.87
    苏氨酸 Thr 2.04 2.24
    丝氨酸 Ser 4.8 4.37
    谷氨酸 Glu 11.79 11.29
    脯氨酸 Pro* 10.72 11.25
    甘氨酸 Gly 22.79 20.11
    丙氨酸 Ala* 12.21 11.52
    半胱氨酸 Cys 0.11
    缬氨酸 Val* 1.24 2.04
    蛋氨酸 Met* 0.99 0.38
    异亮氨酸 Ile* 0.55 1.42
    亮氨酸 Leu* 2.31 3.21
    酪氨酸 Tyr 0.64 0.94
    苯丙氨酸 Phe* 1.89 2.49
    赖氨酸 Lys 2.94 3.79
    组氨酸 His 1.29 1.59
    精氨酸 Arg 8.98 9.37
    羟脯氨酸 Hyp 7.48 7.12
    疏水性氨基酸总量
    Hydrophobic amino acid
    29.91 32.31
    注:*. 疏水性氨基酸。 Note: *. Hydrophobic amino acid.
    下载: 导出CSV
  • [1]

    FAN Y, YU Z P, ZHAO W Z, et al. Identification and molecular mechanism of angiotensin-converting enzyme inhibitory peptides from Larimichthys crocea titin[J]. Food Sci Hum Well, 2020, 9(3): 257-263. doi: 10.1016/j.fshw.2020.04.001

    [2]

    SUN S Q, XU X T, SUN X, et al. Preparation and identification of ACE inhibitory peptides from the marine macroalga Ulva intestinalis[J]. Mar Drugs, 2019, 17(3): 179. doi: 10.3390/md17030179

    [3]

    LIAO P Y, LAN X D, LIAO D K, et al. Isolation and characterization of angiotensin I-converting enzyme (ACE) inhibitory peptides from the enzymatic hydrolysate of carapax trionycis (the shell of the turtle Pelodiscus sinensis)[J]. J Agric Food Chem, 2018, 66(27): 7015-7022. doi: 10.1021/acs.jafc.8b01558

    [4] 于志鹏, 赵文竹, 刘博群, 等. 血管紧张素转化酶抑制肽研究进展[J]. 食品科学, 2010, 31(11): 308-311.
    [5]

    GAO D D, ZHANG F M, MA Z R, et al. Isolation and identification of the angiotensin-I converting enzyme (ACE) inhibitory peptides derived from cottonseed protein: optimization of hydrolysis conditions[J]. Int J Food Prop, 2019, 22(1): 1296-1309. doi: 10.1080/10942912.2019.1640735

    [6]

    HUANG Y B, JIA F, ZHAO J S, et al. Novel ACE inhibitory peptides derived from yeast hydrolysates: screening, inhibition mechanisms and effects on HUVECs[J]. J Agr Food Chem, 2021, 69(8): 2412-2421. doi: 10.1021/acs.jafc.0c06053

    [7]

    KASIWUT J, YOURAVONG W, SIRINUPONG N. Angiotensin I-converting enzyme inhibitory peptides produced from tuna cooking juice hydrolysate by continuous enzymatic membrane reactor[J]. J Food Biochem, 2019, 43(12): e13058.

    [8]

    DENG Z Z, LIU Y J, WANG J, et al. Antihypertensive effects of two novel angiotensin I-converting enzyme (ACE) inhibitory peptides from Gracilariopsis lemaneiformis (Rhodophyta) in spontaneously hypertensive rats (SHRs)[J]. Mar Drugs, 2018, 16(9): 299. doi: 10.3390/md16090299

    [9]

    ISHAK N H, SHAIK M I, YELLAPU N K, et al. Purification, characterization and molecular docking study of angiotensin-I converting enzyme (ACE) inhibitory peptide from shortfin scad (Decapterus macrosoma) protein hydrolysate[J]. J Food Sci Technol, 2021, 58(12): 4567-4577. doi: 10.1007/s13197-020-04944-y

    [10]

    DEY T K, CHATTERJEE R, MANDAL R S. et al. ACE inhibitory peptides from Bellamya bengalensis protein hydrolysates: in vitro and in silico molecular assessment[J]. Processes, 2021, 9(8): 1316. doi: 10.3390/pr9081316

    [11]

    LI J P, LIU Z Y, ZHAO Y H, et al. Novel natural angiotensin converting enzyme (ACE)-inhibitory peptides derived from sea cucumber-modified hydrolysates by adding exogenous proline and a study of their structure-activity relationship[J]. Mar Drugs, 2018, 16(8): 271. doi: 10.3390/md16080271

    [12]

    CHEN J, LIU Y, WANG G, et al. Processing optimization and characterization of angiotensin-Ι-converting enzyme inhibitory peptides from lizardfish (Synodus macrops) scale gelatin[J]. Mar Drugs, 2018, 16(7): 228. doi: 10.3390/md16070228

    [13]

    YU F M, ZHANG Z W, LUO L W, et al. Identification and molecular docking study of a novel angiotensin-I converting enzyme inhibitory peptide derived from enzymatic hydrolysates of Cyclina sinensis[J]. Mar Drugs, 2018, 16(11): 411. doi: 10.3390/md16110411

    [14] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021中国渔业统计年鉴 [M]. 北京: 中国农业出版社, 2021: 25.
    [15] 张婷婷, 赵峰, 张涛, 等. 中国鳗鱼产业发展及其资源保护建议[J]. 渔业信息与战略, 2019, 34(4): 235-243.
    [16] 钱跃威, 徐瀚麟, 吕奇晏, 等. 鳗鱼骨胶原肽钙螯合物的制备及其稳定性和Caco-2吸收特性[J]. 食品科学, 2020, 41(24): 1-8. doi: 10.7506/spkx1002-6630-20200706-078
    [17] 蔡路昀, 史航, 曹爱玲, 等. 鲽鱼骨胶原蛋白的结构及流变学特性[J]. 中国食品学报, 2020, 20(3): 66-73.
    [18]

    BALTI R, BOUGATEF A, SILA A, et al. Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats[J]. Food Chem, 2015, 170: 519-525. doi: 10.1016/j.foodchem.2013.03.091

    [19] 苏盛亿. 小米ACE抑制肽的制备及其降血压活性的研究 [D]. 大连: 大连工业大学, 2019: 8-16.
    [20] 李德俊. 鱼鳞胶原蛋白肽的制备及工厂设计 [D]. 南昌: 南昌大学, 2015: 13-14.
    [21]

    GUO L D, HARNEDY P A, O'KEEFE M B, et a1. Fractionation and identification of Alaska pollock skin collagen-derived minera I chelating peptides[J]. Food Chem, 2015, 173: 536-542. doi: 10.1016/j.foodchem.2014.10.055

    [22] 张风, 夏旭, 周爱梅, 等. 虾头虾壳蛋白质酶解制备抗氧化肽的研究[J]. 南方水产科学, 2015, 11(6): 79-87. doi: 10.3969/j.issn.2095-0780.2015.06.011
    [23] 魏洁琼, 余群力, 韩玲, 等. 牛骨胶原蛋白肽制备工艺优化及抗氧化活性分析[J]. 甘肃农业大学学报, 2020, 55(5): 203-211, 218.
    [24] 朱迎春, 许小琴, 马俪珍. 鲶鱼骨酶解物的降血压肽活性研究[J]. 青岛农业大学学报 (自然科学版), 2009, 26(1): 61-65.
    [25] 李华亮, 郑雅惠, 冒小妹, 等. 鳄鱼骨胶原活性肽的制备及其抑制血管紧张素酶 (ACE) 的功能研究 [C]//中国生物化学与分子生物学会, 浙江省生物化学与分子生物学会. 中国生物化学与分子生物学会2016年全国学术会议论文集. 杭州: 中国生物化学与分子生物学会, 2016: 235.
    [26] 田海娟, 王蕾, 刘名鑫, 等. 混菌发酵紫苏粕小肽提取工艺优化及体外抗氧化活性研究[J]. 食品与发酵工业, 2021, 47(20): 219-224.
    [27] 田旭静, 段鹏慧, 范三红, 等. 响应面法优化酶解藜麦糠蛋白制备抗氧化肽工艺[J]. 食品科学, 2018, 39(10): 158-164. doi: 10.7506/spkx1002-6630-201810025
    [28] 任海伟, 石菊芬, 蔡亚玲, 等. 响应面法优化超声辅助酶解制备藏系羊胎盘肽工艺及抗氧化能力分析[J]. 食品科学, 2019, 40(24): 265-273. doi: 10.7506/spkx1002-6630-20181101-009
    [29] 王小慧, 戚勃, 杨贤庆, 等. 响应面法优化末水坛紫菜蛋白酶解工艺及其酶解液抗氧化活性研究[J]. 南方水产科学, 2019, 15(2): 93-101. doi: 10.12131/20180099
    [30] 涂宗财, 唐平平, 郑婷婷, 等. 响应面优化鱼鳔胶原肽制备工艺及其抗氧化活性研究[J]. 食品与发酵工业, 2017, 43(5): 160-166.
    [31] 邱娟, 沈建东, 翁凌, 等. 利用牡蛎制备ACE抑制肽的工艺优化[J]. 食品科学, 2017, 38(16): 165-172. doi: 10.7506/spkx1002-6630-201716026
    [32]

    SHI J, SU R Q, ZHANG W T, et al. Purification and the secondary structure of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the alcalase hydrolysate of seahorse protein[J]. J Food Sci Technol, 2020, 57(11): 3927-3934. doi: 10.1007/s13197-020-04427-0

    [33]

    KIM H S, LEE W W, JAYAWARDENA T U, et al. Potential precursor of angiotensin-I converting enzyme (ACE) inhibitory activity and structural properties of peptide from peptic hydrolysate of cutlassfish muscle[J]. J Aquat Food Prod T, 2020, 29(6): 544-552. doi: 10.1080/10498850.2020.1773595

    [34] 王晓丹, 薛璐, 胡志和, 等. ACE抑制肽构效关系研究进展[J]. 食品科学, 2017, 38(5): 305-310. doi: 10.7506/spkx1002-6630-201705049
    [35] 王琳琳, 陈立, 李建科. 食源血管紧张素转化酶抑制肽研究进展[J]. 中国果菜, 2020, 40(6): 71-76.
    [36] 管骁, 洪延涵, 刘静, 等. ACEC-结构域选择性抑制二肽与ACE结构域的结合模式[J]. 食品科学, 2017(5): 170-176.
    [37] 周育, 韩三青, 王茹茹, 等. 食源血管紧张素转化酶抑制肽研究进展[J]. 安徽农业大学学报, 2019, 46(5): 751-760.
    [38]

    XUE L, YIN R, HOWELL K, et al. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme-inhibitory peptides[J]. Compr Rev Food Sci F, 2021, 20(2): 1150-1187. doi: 10.1111/1541-4337.12711

    [39]

    MURAPA P, DAI J, CHUNG M, et al. Anthocyanin-rich fractions of blackberry extracts reduce UV-induced free radicals and oxidative damage in keratinocytes[J]. Phytother Res, 2012, 26: 106-112. doi: 10.1002/ptr.3510

    [40]

    CHEUNG H S, WANG F L, ONDETTI M A, et al. Binding of peptide substrates and inhibitors of ACE importance of the COOH-terminal dipeptide sequence[J]. J Bio Chem, 1980, 255: 401-407. doi: 10.1016/S0021-9258(19)86187-2

    [41] 于志鹏, 吴雨, 樊玥, 等. 基于三元二次正交设计的文蛤水解肽制备工艺优化及ACE抑制活性分析[J]. 食品工业科技, 2016, 37(24): 181-185.
推荐阅读
基于基尔霍夫近似模型的南海大黄鱼声学目标强度研究
王文卓 et al., 南方水产科学, 2024
广西银滩南部海域海洋牧场渔业资源评估
牛麓连 et al., 南方水产科学, 2024
珠海外伶仃海洋牧场春季渔业资源生物碳储量初探
魏文迪 et al., 南方水产科学, 2024
广西银滩南部海域海洋牧场鱼类群落结构特征及其与环境因子的关系
于杰 et al., 南方水产科学, 2024
中西太平洋主要金枪鱼产量回顾性分析
ZHENG Linbin et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2025
基于node-gam模型的太平洋中部大眼金枪鱼cpue时空分布及其与环境因子的关系
周淑婷 et al., 广东海洋大学学报, 2025
Temperature induced biological alterations in the major carp, rohu (labeo rohita): assessing potential effects of climate change on aquaculture production
Mridul, Md. Monirul Islam et al., AQUACULTURE REPORTS, 2024
Time series prediction of sea surface temperature based on bilstm model with attention mechanism
Zrira, Nabila et al., JOURNAL OF SEA RESEARCH, 2024
Dependence of daily precipitation and wind speed over coastal areas: evidence from china's coastline
HYDROLOGY RESEARCH, 2023
Hybrid model approach for hilly sub-watershed prioritization using morphometric parameters: a case study from bakkhali river watershed in cox’s bazar, bangladesh
GEOLOGY, ECOLOGY, AND LANDSCAPES, 2024
Powered by
图(4)  /  表(5)
计量
  • 文章访问数:  443
  • HTML全文浏览量:  125
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-27
  • 修回日期:  2022-03-09
  • 录用日期:  2022-03-28
  • 网络出版日期:  2022-10-17
  • 刊出日期:  2022-12-04

目录

    /

    返回文章
    返回