Seasonal variatons of digestive tract index, histology characteristics and enzyme activity of Holothuria edulis
-
摘要: 为揭示热带海参环境适应调节机制,为其人工增养殖提供科学依据,探究了红腹海参 (Holothuria edulis) 摄食和生理状况随时间的变化,对不同季节海参的消化道指标、组织学和酶活性变化进行了跟踪监测。结果表明,春、夏季红腹海参的摄食比较旺盛,冬季出现了与刺参 (Stichopus japonicus) 夏眠相似的特性——体质量下降,消化道组织萎缩、细胞凋亡而出现大量空腔,横行皱襞厚度降低、肠壁结构中的柱状上皮密集程度下降。消化道的消化酶和免疫酶分别在3和6月活性最高,而在12月各项酶 (除调节代谢的碱性磷酸酶外) 活性则均处于低值,因此判断红腹海参具有冬眠现象。Abstract: To reveal the environmental regulation mechanism and aquaculture of tropical sea cucumber, and provide scientific basis for its artificial breeding, we studied the seasonal variations of physiological and biochemical conditions of Holothuria edulis, monitored the changes of the digestive tract index, histology characteristics and enzyme activities of H. edulis. Results show that the feeding state of H. edulis was relatively vigorous in spring and summer, and exhibited similar characteristics to Stichopus japonicus's aestivation in winter, which is characterized by decline of body mass, atrophy of digestive tract tissue, emergence of a large number of cavities due to cell apoptosis, decrease of the thickness of transverse folds and decrease of the density of columnar epithelium in the intestinal wall structure. The digestive enzymes and immune enzymes activities of the digestive tract tissues were the highest in March and June, respectively. In December, except for the alkaline phosphatase activity that regulates metabolism, all the others were at low values. Therefore, it is preliminarily judged that H. edulis have hibernation phenomenon.
-
Keywords:
- Holothuria edulis /
- Dormancy /
- Histology /
- Digestive enzymes /
- Immune enzymes
-
黄唇鱼(Bahaba taipingensis)属石首鱼科,为近海大型暖温性底层鱼类,分布于中国南海和东海,尤其在珠江口较为常见,是中国特有种,1988年被列为国家二级重点保护水生野生动物[1-2]。黄唇鱼鱼鳔(俗称“鱼胶”)被认为有特殊的药用价值,自古以来一直是药用及滋补极品,极为珍贵[3]。黄唇鱼曾是珠江口重要的渔业捕捞对象[4],但20世纪后期以来,由于受到该海域水环境污染、高强度开发和非法捕捞等的影响,其资源量急剧下降,现处于濒临灭绝状态,2006年被世界自然保护联盟(IUCN)物种红色名录列为极度濒危物种(CR)[5]。
中国关于鱼类发声的研究在20世纪80年代已有开展[6-8],但其后一直发展缓慢,鲜有相关研究报道;且国外多研究鲸豚类发声,对鱼类发声特性的研究也较少报道[9-14]。石首鱼科鱼类能依靠鳔的振动发出明显的声音[15],其发声行为与生殖、防御、索饵等活动有密切关系[16-19],因而为研究者所关注。黄唇鱼和大黄鱼(Larimichthys crocea)均属石首鱼科,近年来已有使用被动声学方法研究大黄鱼、褐菖鲉(Sebastiscus marmoratus) 等的发声特性,但由于黄唇鱼的稀有性,目前尚未见对其发声特性的研究报道。
声学探测包含被动探测与主动探测。使用被动声学方法探测黄唇鱼发声特性,既不会对鱼造成伤害,也不会破坏海洋环境。因此,本文通过被动声学方法监听黄唇鱼的声音,初步分析了其声谱特征,旨在为黄唇鱼声学无损调查、水下噪声影响分析和发声的生物学行为等物种保护研究提供基础数据。
1. 材料与方法
1.1 实验仪器与实验方法
实验仪器为microMARS水听器,前置放大增益为18 dB,平坦频率响应范围为0.6~33 kHz,信号范围为70~166 dB re 1 μPa,用电池供电。
2017年3—5月,对东莞黄唇鱼市级自然保护区救护驯养基地的室内水族箱和室外驯养池中黄唇鱼的水下发声情况进行了水下监听。室内水族箱高215 cm、长420 cm、宽150 cm、水深2 m,其中放养2尾体质量约25 kg的黄唇鱼,室内自然光,夜间不开灯。室外驯养池为矩形池塘,水深2~2.5 m,1#池面积约3 000 m2,驯养有29尾体质量约15~25 kg的黄唇鱼;2#池面积约6 300 m2,驯养有65尾体质量约8~13 kg的黄唇鱼。水听器固定在保护架上,放在水族箱底部一角,驯养池放置在池中央水深约2.5 m的池底。水听器采样频率为30 kHz,水族箱和2个训养池均监听2次,每次7 d。每次回收水听器后,导出并保存监听时间段内的WAV音频文件。
1.2 音频数据分析方法
通过音频软件Cool Edit Pro 2.1和Audacity试听音频并观察波形图,确定声信号类型,并对不同类型声信号、波形和时长等参数进行统计分析。白昼、夜晚的起始和结束时间以日出和日落时间为界线[20]。用MATLAB R2012a软件对声音信号进行时频分析,画出声音信号波形图;对声音信号进行短时傅立叶分析得到语谱图,亦称为可视语音;对声音信号作傅立叶变换得到频谱图,其中频谱图中的峰值对应的频率为谱峰中心频率[21-23]。
2. 结果
2.1 发声类型
共获得音频文件总时长907.54 h,通过音频文件试听,结合声音信号的波形变化比对,将黄唇鱼发声分为7类:类鼓声、咔嚓声、雀鸣声、嗡嗡声、嗒嗒声、嚓咕声和其他声(图1)。监听期间共监听到黄唇鱼发声246次,其中类鼓声175次,约占71.1%,咔嚓声占比6.9%,雀鸣声、嗡嗡声、嗒嗒声、嚓咕声等占比均不超过4%,其他声音占比15.4% (表1)。其他声音主要出现在第二次水族箱监听中,共26次,且大多为不同声音。室外训养池与室内水族箱中黄唇鱼平均发声密度变化范围为0.040~0.712次·h–1,均随时间呈增加趋势(表1)。黄唇鱼中发声次数成对样品t检验分析表明,1#、2#池和水族箱中黄唇鱼的发声次数均无明显差异(P>0.18)。类鼓声包含的脉冲数变化范围为1~3个(图2),以单脉冲为主(139次),约占类鼓声总数的79%,类鼓声为类正弦波形,单脉冲类鼓声含3~43个波形;其他类别声音为单脉冲或多脉冲声音。
表 1 各类别发声次数Table 1. Number of different sound types监听区
monitored area时间 (月-日)
time (month-date)总发声数
total number of sounds
平均发声密度/次·h–1
mean sound density类鼓声
drum sound咔嚓声
cracking sound雀鸣声
birds sound嗡嗡声
humming sound嗒嗒声
clacking sound嚓咕声
cha goo sound其他声
other sound1#池
Pool 103-28—04-04 7
0.0400 0 0 6 0 0 1 04-21—04-28 10
0.0587 3 0 0 0 0 0 2#池
Pool 204-05—04-12 19
0.1115 6 1 0 5 0 2 05-22—05-29 63
0.36450 5 0 2 0 0 6 水族箱aquarium 05-02—05-04 24
0.52221 0 0 0 0 0 3 05-10—05-17 123
0.71292 3 1 0 0 1 26 合计 total 246 175 17 2 8 5 1 38 2.2 昼夜发声比较
实验监听期间,白昼监听到黄唇鱼发声134次,夜晚监听到112次,其中白昼类鼓声96次、夜晚79次。5月前监听夜晚发声次数多于白昼,之后白昼发声次数多于夜晚(图3),但成对样品t检验分析表明,黄唇鱼昼夜发声次数并没有明显差异(P=0.12)。
2.3 类鼓声声谱特征
2.3.1 类鼓声时频特征
黄唇鱼的类鼓声语谱图显示其声信号能量集中在0~1 000 Hz,其声纹与时间轴平行(图4);类鼓声频谱图显示其谱峰中心频率集中在50~140 Hz (图5)。
2.3.2 类鼓声时域特征
黄唇鱼的类鼓声时长范围为67~1 333 ms,总平均值为279 ms,众值为100 ms,67~533 ms时长段类鼓声占93% (图6);类鼓声的时长分布符合等差数列公式t=33.3+33.3n [t为时长(ms),n为正整数]。类鼓声脉冲宽度和脉冲间隔范围分别为35~733 ms和0~1 130 ms,总平均值分别为70 ms和183 ms。单脉冲类鼓声时长(脉冲宽度)范围为67~733 ms,平均值为243 ms;双脉冲类鼓声时长范围为100~1 333 ms,平均值为370 ms,脉冲宽度范围为35~350 ms,平均值为113 ms,脉冲间隔范围为0~1 130 ms,平均值为143 ms;三脉冲类鼓声时长范围为333~1 268 ms,平均值为655 ms,脉冲宽度范围为47~333 ms,平均值为100 ms,脉冲间隔范围为0~834 ms,平均值为179 ms (表2)。
表 2 类鼓声时域特征统计Table 2. Pulse width and pulse interval of drum sound脉冲类型
number of pulse时长/ms
duration time脉冲宽度
pulse width脉冲间隔
pulse interval单脉冲 single pulse drum sound 67~733 243 67~733 243 − 双脉冲 double-pulse drum sound 100~1 333 370 35~350 113 0~1 130 143 三脉冲 three-pulse drum sound 333~1 268 655 47~333 100 0~834 179 总平均值 overall mean 279 70 183 2.3.3 其他发声类别时频特征
黄唇鱼发出的类鼓声、咔嚓声、雀鸣声、嗡嗡声、嗒嗒声、嚓咕声等6类声音的语谱图及频谱图见图7。嗒嗒声的语谱图与类鼓声相似,显示其能量也集中在0~1 000 Hz,声纹与时间轴平行(图7-d1),但其谱峰中心频率范围为180~190 Hz (图7-d2)。嗡嗡声、咔嚓声、雀鸣声、嚓咕声能量和频率分布均范围较广,在低频和高频均有分布;其中嗡嗡声能量集中在0~1 000 Hz、2 000~6 000 Hz (图7-b1),谱峰中心频率范围为40~140 Hz (图7-b2);咔嚓声能量集中在2 000~5 000 Hz (图7-c1),谱峰中心频率范围为3 200~3 600 Hz (图7-c2);雀鸣声能量集中在0~3 000 Hz、10 000~12 500 Hz (图7-e1),谱峰中心频率有2处,范围分别为400~500 Hz和2 000~2 500 Hz;嚓咕声能量集中在0~5 000 Hz(图7-f1),谱峰中心频率范围为50~150 Hz (图7-f2)。
图 7 语谱图和频谱图a1~a2. 类鼓声语谱图和声频谱图; b1~b2. 嗡嗡声语谱图和频谱图; c1~c2. 咔嚓声语谱图和频谱图; d1~d2. 嗒嗒声语谱图和频谱图; e1~e2. 雀鸣声语谱图和频谱图; f1~f2. 嚓咕声语谱图和频谱图Figure 7. Spectrogram and spectrum mapa1−a2. spectrogram and spectrum map of drum sound; b1−b2. spectrogram and spectrum map of humming sound; c1−c2. spectrogram and spectrum map of cracking sound; d1−d2. spectrogram and spectrum map of clacking sound; e1−e2. spectrogram and spectrum map of bird sound; f1−f2. spectrogram and spectrum map of cha goo sound3. 讨论
3.1 发声机制
鱼类发声行为的机制分别为鳔发声、摩擦发声、呼吸发声或其他[15]。石首鱼科鱼类主要依靠气鳔的振动发声,它们都有两束来自腹腔并直接或间接与鳔相联系的肌肉,肌肉急速收缩和放松,就能使鳔振动发声,鳔还可以作为共振器来帮助发声。鳔发声的强度和频率也可以调节。这种发声机制具有非常宽的频带,一般为几百至十几千赫兹。根据Sprague[24]的理论:发声鱼类的鱼鳔肌可视为振动弹簧模型,弹性肌肉的收缩和释放则分别对应于正弦波的不同半周期,而鱼鳔则作为一个阻尼结构,使鱼鳔肌的收缩逐渐衰减[25]。本研究中黄唇鱼的类鼓声脉冲波形图具有若干个类正弦波形,可以推测黄唇鱼类鼓声的发音类型属于鳔发声。此外,黄唇鱼类鼓声语谱图声纹与时间轴平行,显示了共振峰特征,根据语谱图声纹和共振发声的关系[26],可以推测黄唇鱼主要是以鳔为共振器来帮助发声[15]。
3.2 发声类型
通常,不同种类的鱼所发出的声音在频率上差异较大,即使同一种类,由于其本身生物学状态的不同以及所处环境条件的变化,它们所发出的声音也各不相同[15]。珠江河口水域的生物发声监测辨认出66种声音类型,并倾向于拥有一个脉冲串结构[27]。大黄鱼觅食时发出的“咕噜噜”声信号都是简单的单脉冲,产卵时发出的“咯咯咯”声信号则大部分是连续的双脉冲或三脉冲,只有极个别为单脉冲或多脉冲[23]。大黄鱼也发出惊扰声和摄食声[28]。褐菖鲉在领地入侵实验中发出“咕噜噜”的叫声,其声音波形由几个单独脉冲或一组连续脉冲构成,波形特征基本相似[25]。与大黄鱼、褐菖鲉相似,本研究中黄唇鱼发出的声信号主要为单脉冲信号,也有双脉冲或三脉冲信号,主要发出类鼓声、咔嚓声、雀鸣声、嗡嗡声、嗒嗒声、嚓咕声等6类声音,类鼓声占比高达71.1%,由此可以推测类鼓声是黄唇鱼发声行为中最重要的类别,对种群内的信息传递有重要意义。
3.3 声谱特征
不同水生生物的声谱特征存在较明显的差异。鱼类发声频率一般为低频,谱峰中心频率多在1 000 Hz以内(表2),珠江河口水域生物的66种声信号的谱峰中心频率范围为500~2 600 Hz,能量集中在4 000 Hz以下[27]。与鱼类不同,鲸豚类一般发出宽带高频声信号,如江豚(Neophocaena phocaenoides)发出的探测声信号谱峰中心频率为87~145 kHz[34];中华白海豚(Sousa chinensis)发出的click串声信号谱峰中心频率为70~80 kHz,最高频信号甚至在125 kHz以上,主要能量分布在50 kHz以上[8,35]。黄唇鱼发出的类鼓声能量集中在0~1 000 Hz,谱峰中心频率为50~140 Hz,发出的嗒嗒声的能量分布及谱峰中心频率范围与类鼓声相似,发出的嗡嗡声、咔嚓声、雀鸣声、嚓咕声能量同时包含低频(0~1 000 Hz)与高频成分(3 000~12 500 Hz),其谱峰中心频率范围也较广。与黄唇鱼同属石首鱼科的大黄鱼也会发出多种声音,如咕噜噜摄食声、咯咯咯产卵声和惊扰发声,其谱峰中心频率范围在630~800 Hz,梅童鱼(Collichthys lucidus)、黄姑鱼(Nibea albiflora)、白姑鱼(Argyrosomus argentatus)、叫姑鱼(Johnius belengeri)和拟石首鱼(Sciaenops ocellatus)等其他石首鱼科鱼类声信号的谱峰中心频率范围为139~2 000 Hz,非石首鱼科鱼类声信号的谱峰中心频率范围为83~1 200 Hz (表3)。可见,相比其他鱼类的声信号,黄唇鱼的类鼓声、嗒嗒声、嗡嗡声和嚓咕声的谱峰中心频率处于偏低水平。
表 3 部分鱼类声信号谱峰中心频率Table 3. Spectral frequency peak of sound signal of servaral fishes种类
species谱峰中心频率/Hz
spectral frequency peak文献来源
Reference黄唇鱼 Bahaba taipingensis 类鼓声50~140;嗒嗒声180~190;嗡嗡声40~140;咔嚓声3 200~3 600;
雀鸣声400~500、2 000~2 500;嚓咕声50~150本研究 大黄鱼 Larimichthys crocea 630~800 [7,23,28] 梅童鱼 Collichthys lucidus 1 000 [8] 黄姑鱼 Nibea albiflora 650±20.12 [23] 尖头黄姑鱼 Nibea acuta 630±15.57 [23] 白姑鱼 Argyrosomus argentatus 400 [29] 叫姑鱼 Johnius belengeri 2 000 [29] 拟石首鱼 Sciaenops ocellatus 139 [30] 金尾贝氏石首鱼 Bairdiella chrysoura 1 046 [30] 狗䱛 Cynoscion regails 347 [30] 云斑狗䱛 Cynoscion nebulosus 300 [30] 红牙䱛 Otolithes ruber 632±10.06 [23] 褐菖鲉 Sebasticus marmoratus 83~174 [25] 金眼鲷 Beryx splendens Lowe 337±8.50 [23] 带鱼 Trichiurus haumela 628±11.40 [23] 白鱼 Salangichthysm icrodon Bleeker 536±10.39 [23] 刺鱼 Gasterosteus aculeatus Linnaeus 420±0 [23] 大斑石鲈 Pomadasysmaculatus 415±9.40 [23] 粗纹鲾鱼 Leiognathus lineolatus 757±24.70 [23] 黑鳍叶鲹 Atule malam 542±16.90 [23] 游鳍叶鲹 Atule mate Cuvier et Va lenciennes 528±9.67 [23] 白舌尾甲鲹 Uraspis helvola 534±17.92 [23] 海鲶 Arius sp. 735±12.39 [23] 东方豹鲂鮄鱼 Dactyloptena orientalis 348±0 [23] 鳓鱼 Ilisha elongata 251±18.41 [23] 白腹豆娘鱼 Abudefduf luridus 356 [31] 鼬鳚 Ophidion marginatum 1 200 [32] 红棘胸鲷 Gadidae mediterraneus 180 [33] 黄唇鱼的声谱特征与其他鱼类相比,差异与共性并存,鱼类发声频率范围一般为低频(1 000 Hz以内),但这并不意味着不同鱼的声谱特征、时域特征是重复的,如不同声音听觉上就完全不同,其波形、谱峰中心频率、语谱图等也均有明显差异,可根据这些差异进行鱼类发声分类,及其声谱和时域特征辨别。待鱼类声信号特征提取达到一定水平和累积足够多的鱼类声信号数据后,才可能对鱼类声信号表征的鱼类信息交流和行为进行精准鉴别。
3.4 时域特征
黄唇鱼发出的类鼓声时长范围为67~1 333 ms,总平均值为279 ms,众值为100 ms,时长分布符合等差数列公式t=33.3+33.3n [t为时长(ms),n为正整数];类鼓声脉冲宽度和脉冲间隔范围分别为35~733 ms和0~1 130 ms,总平均值分别为70 ms和183 ms。黄唇鱼类鼓声时长和脉冲间隔随着声信号脉冲数的增加而增长,脉冲宽度则减短。大黄鱼摄食声或产卵声的声信号时长1~2 ms,摄食声的脉冲间隔为1~30 ms,产卵声的脉冲间隔为90~140 ms,其时长和脉冲间隔均远比黄唇鱼类鼓声的短[23]。褐菖鲉平均脉冲宽度(32.6±2.6) ms[25],也明显短于黄唇鱼类鼓声的平均脉宽。与鲸豚类比较,中华白海豚click声信号脉冲间隔变化范围为3.3~349.2 ms,也短于黄唇鱼类鼓声的脉冲间隔[35]。可见水生生物在发出的声信号时长、脉冲宽度和脉冲间隔等的差异主要与不同发声生物及不同声信号类型有关。
4. 结论
本文对人工圈养的黄唇鱼在不同实验条件下(室内水族箱、室外池塘)的发声信号进行采集,对黄唇鱼的发声机制、发声类型、声谱特征及时域特征进行了初步分析。结果表明,黄唇鱼声学监听共监听到246次发声,发出的声音分为7类,分别是类鼓声、咔嚓声、雀鸣声、嗡嗡声、嗒嗒声、嚓咕声和其他声音等。黄唇鱼昼夜发声次数没有明显差异。黄唇鱼发声以类鼓声为主(175次),类鼓声由1~3个脉冲组成,又以单脉冲类鼓声为主(139次)。类鼓声为类正弦波形,能量集中在0~1 000 Hz,声纹与时间轴平行,谱峰中心频率为50~140 Hz。嗒嗒声与类鼓声相似,其能量也集中在0~1 000 Hz,但谱峰中心频率范围为180~190 Hz。嗡嗡声、咔嚓声、雀鸣声和嚓咕声同时包含低频(0~1 000 Hz)与高频(3 000~12 500 Hz)成分。类鼓声时长、脉冲宽度和脉冲间隔范围分别为67~1 333 ms、35~733 ms和0~1 130 ms,平均值分别为279 ms、70 ms和183 ms;类鼓声时长和脉冲间隔随着声信号脉冲数的增加而增长,脉冲宽度则减短。
实验用水听器平坦频率响应范围为0.6~33 kHz,而监听到低于600 Hz的黄唇鱼发声信号,说明仅距离水听器较近的黄唇鱼发声信号被监听到,距离水听器较远的黄唇鱼发声信号未被监听到。所以有必要对实验监听系统作改进,以监听并记录到更多的黄唇鱼发声信号和获得更全面的黄唇鱼发声特征。另外,不同实验条件下黄唇鱼发声信号可能存在一定差异。目前声纹识别技术研究仅限于人类语音学,还未应用在鱼类声信号研究中。在今后的工作中需要通过更多实验获取更加丰富的数据和改进数据分析方法进行深入研究,并结合黄唇鱼的行为特征来归类划分、建立数据库,为人工救护、喂养、保护珍稀黄唇鱼提供参考。
-
图 2 红腹海参消化道在不同季节下前肠横切组织HE染色切片光学显微照片
注:a、b、c、d 分别为实验组 3、6、9、12 月取样,-1 和-2 分别为组织纵切面和横切面。
Figure 2. Micrographs of HE-stained sections of transected tissues of foregut of digestive tract of H. edulis in different seasons
Note: The a, b, c and d represent the samples in March, June, September and December, respectively. The -1 and -2 represent the ongitudinal and transverse sections of the tissue, respectively.
-
[1] 胡超群, 任春华, 于宗赫, 等. 热带海参研究现状与未来发展[C]// “全球变化下的海洋与湖沼生态安全”学术交流会. 南京: 中国海洋湖沼学会, 2014: 1. [2] 姚雪梅. 热带海参在中国南方沿海地区的增养殖前景[J]. 水产文摘, 2004(4): 1-5. [3] 隋锡林. 海参增养殖[M]. 北京: 农业出版社, 1990: 35-36. [4] 崔龙波, 董志宁, 陆瑶华. 仿刺参消化系统的组织学和组织化学研究[J]. 动物学杂志, 2000, 35(6): 2-4. doi: 10.3969/j.issn.0250-3263.2000.06.001 [5] 王霞. 刺参消化道与呼吸树再生和夏眠的组织学研究[D]. 大连: 大连水产学院, 2004: 14-16. [6] 王天明. 刺参Apostichopus japonicus (Selenka)夏眠分子机理的基础研究[D]. 青岛: 中国科学院研究生院 (海洋研究所), 2011: 1-83. [7] 常亚青, 隋锡林, 李俊. 刺参增养殖业现状、存在问题与展望[J]. 水产科学, 2006, 25(4): 198-201. doi: 10.3969/j.issn.1003-1111.2006.04.010 [8] 张文, 高英杰, 刘卫滨. 乐亭县池塘海参养殖与气象条件分析[J]. 河北渔业, 2019(12): 18-22. doi: 10.3969/j.issn.1004-6755.2019.12.006 [9] 陈世波. 温度调控对刺参休眠期生长和体壁成分的影响[D]. 上海: 上海海洋大学, 2014: 4-10. [10] GAO F, YANG H S, XU Q, et al. Effect of water temperature on digestive enzyme activity and gut mass in sea cucumber Apostichopus japonicus (Selenka), with special reference to aestivation[J]. Chin J Oceanol Limn, 2009, 27(4): 714-722. doi: 10.1007/s00343-009-9202-3
[11] 王方雨, 杨红生, 高菲, 等. 刺参体腔液几种免疫指标的周年变化[J]. 海洋科学, 2009, 33(7): 75-80. [12] 高菲, 许强, 李秀保, 等. 热带珊瑚礁区海参的生境选择与生态作用[J]. 生态学报, 2022, 42(11): 1-9. [13] 黄端杰. 三亚蜈支洲岛棘皮动物群落结构及海参种群生态学研究[D]. 海口: 海南大学, 2020: 1-23. [14] DISSANAYAKE D C T, STEFANSSON G. Habitat preference of sea cucumbers: Holothuria atra and Holothuria edulis in the coastal waters of Sri Lanka[J]. J Mar Biol Assoc UK, 2012, 92(3): 581-590. doi: 10.1017/S0025315411000051
[15] 谭春明, 赵旺, 于刚, 等. 氨氮胁迫对方斑东风螺溶菌酶及3种常见消化酶活力的影响[J]. 南方水产科学, 2019, 15(3): 120-125. doi: 10.12131/20180234 [16] WANG F, YANG H, WANG X, et al. Antioxidant enzymes in sea cucumber Apostichopus japonicus (Selenka) during aestivation[J]. J Mar Biol Assoc UK, 2011, 91(1): 209-214. doi: 10.1017/S0025315410000779
[17] 赵旺, 温为庚, 谭春明, 等. 饥饿胁迫对猛虾蛄不同组织免疫酶活性的影响[J]. 中山大学学报 (自然科学版), 2021, 60(4): 26-33. [18] 金鑫, 徐钢春, 杜富宽, 等. 饥饿胁迫对刀鲚形体、体成分及血液生化指标的影响[J]. 动物学杂志, 2014, 49(6): 897-903. [19] 乐可鑫, 汪元, 彭瑞冰, 等. 饥饿和再投喂对虎斑乌贼幼体存活、生长和消化酶活力的影响[J]. 应用生态学报, 2016, 27(6): 2002-2008. [20] 区又君, 苏慧, 李加儿, 等. 饥饿胁迫对卵形鲳鲹幼鱼消化器官组织学的影响[J]. 中山大学学报 (自然科学版), 2013, 52(1): 100-110. [21] WU P, WANG A, CHENG J, et al. Effects of starvation on antioxidant-related signaling molecules, oxidative stress, and autophagy in juvenile Chinese perch skeletal muscle[J]. Mar Biotechnol, 2020, 22(1): 81-93. doi: 10.1007/s10126-019-09933-7
[22] 杨宁, 王文琪, 姜令绪, 等. 水温对刺参消化酶和免疫酶活力的影响[J]. 海洋科学, 2014, 38(11): 57-60. [23] 夏华, 陈阿琴, 徐国成, 等. 饥饿胁迫对褐牙鲆皮质醇激素和非特异免疫的影响[J]. 广东农业科学, 2012, 39(24): 134-137. doi: 10.3969/j.issn.1004-874X.2012.24.043 [24] 陈政强, 陈昌生, 战文斌, 等. 饥饿胁迫对九孔鲍免疫防御因子的影响[J]. 热带海洋学报, 2012, 31(5): 124-130. doi: 10.3969/j.issn.1009-5470.2012.05.018 [25] 任庆印. 刺参 (Apostichopus japonicus)在夏眠过程中生理代谢调控机制的研究[D]. 青岛: 中国海洋大学, 2012: 12-26. [26] 丁立云, 陈文静, 饶毅, 等. 饥饿胁迫对彭泽鲫幼鱼生长、体组成、消化酶活性及抗氧化性的影响[J]. 河南农业科学, 2019, 48(1): 147-151. [27] MEHNER T, WIESER W. Energetics and metabolic correlates of starvation in juvenile perch (Perca fluviatilis)[J]. J Fish Biol, 1994, 45(2): 325-333. doi: 10.1111/j.1095-8649.1994.tb01311.x
[28] BAO J, DONG S, TIAN X, et al. Metabolic rates and biochemical compositions of Apostichopus japonicus (Selenka) tissue during periods of inactivity[J]. Chin J Ocean Limnol, 2010, 28: 218-223. doi: 10.1007/s00343-010-9016-3
[29] CHEN M, LI X, ZHU A, et al. Understanding mechanism of sea cucumber Apostichopus japonicus aestivation: insights from TMT-based proteomic study[J]. Comp Biochem Physiol D, 2016, 19: 78-89.
[30] XIANG X, CHEN M, WU C, et al. Glycolytic regulation in aestivation of the sea cucumber Apostichopus japonicus: evidence from metabolite quantification and rate-limiting enzyme analyses[J]. Mar Biol, 2016, 163: 167-176. doi: 10.1007/s00227-016-2936-5
[31] 高春生, 王春秀, 张书松. 水体铜对黄河鲤肝胰脏抗氧化酶活性和总抗氧化能力的影响[J]. 农业环境科学学报, 2008, 27(3): 1157-1162. doi: 10.3321/j.issn:1672-2043.2008.03.055 [32] 卢俊姣, 刘淑兰, 翟少伟. 饥饿胁迫对罗非鱼肝胰脏抗氧化能力的影响[J]. 中国农学通报, 2013, 29(35): 75-79. doi: 10.11924/j.issn.1000-6850.2013-1239 [33] 廖金花, 陈巧, 林丽蓉, 等. 鲍鱼碱性磷酸酶的分离纯化和性质研究[J]. 厦门大学学报(自然科学版), 2005, 44(2): 124-127. [34] 李文龙, 梁兴明, 梁萌青, 等. 温度对大菱鲆幼鱼生长及免疫相关酶活性的影响[J]. 水产科学, 2017, 36(3): 311-316. [35] 谭春明, 赵旺, 吴开畅, 等. 氨氮胁迫对方斑东风螺六种免疫酶活性的影响[J]. 海洋科学, 2019, 43(4): 8-15. doi: 10.11759/hykx20190110002 -
期刊类型引用(7)
1. 李敏,叶毅飞,李永福,谢海燕,李鸿超,李春枝,李希国,李本旺,陈灼均,莫介化,卢伟华,朱燕秋,张险朋. 黄唇鱼迟缓爱德华氏菌分离鉴定及药敏分析. 南方水产科学. 2024(02): 140-149 . 本站查看
2. 莫介化,刘文瑜,陆丙乾,卢伟华,陆昌胜,李春枝. 池养条件下黄唇鱼幼鱼周年生长特性研究. 广东农业科学. 2023(03): 129-136 . 百度学术
3. 刘欢,张培珍,沈晨,李高聪,高守勇. 大型网箱养殖鱼群声信号短时频谱特性. 广东海洋大学学报. 2023(03): 17-25 . 百度学术
4. 沈晨,张培珍,刘欢,唐杰平,高守勇,王振鹏. 基于VMD-Hilbert变换的大型网箱养殖鱼群声特性研究. 吉林大学学报(信息科学版). 2023(06): 1054-1062 . 百度学术
5. 曹正良,沈梦庭,李钊丞,汪自豪,王秀秀. 摄食不同粒径颗粒饲料的凡纳滨对虾发声信号特征. 南方水产科学. 2022(06): 26-34 . 本站查看
6. 曲蕊,刘晃,庄保陆,刘俊文. 水产养殖中摄食声学研究进展. 渔业现代化. 2020(04): 1-6 . 百度学术
7. 黄汉英,杨咏文,李路,赵思明,熊善柏,涂群资. 基于被动水声信号的淡水鱼混合比例识别. 农业机械学报. 2019(10): 215-221 . 百度学术
其他类型引用(5)