全州禾花鲤体质量和体长遗传参数估算及其选育进展

Estimation of genetic parameters and its breeding progress for body mass and body length of Cyprinus carpio var. Quanzhounensis

  • 摘要: 为提高全州禾花鲤 (Cyprinus carpio var. Quanzhounensis) 养殖群体的生长速度,采用家系选育方法对其开展了连续2世代的选育,测量了G0、G1和G2代121个家系共3 699尾个体的体质量和体长指标,利用混合线性模型估计体质量和体长性状的遗传力、表型相关和遗传相关,并通过基于目标性状育种值和最小二乘值估计的方法评估了G0—G2代的选择进展。结果显示,禾花鲤体质量变异系数为0.50~0.72,体长性状变异系数为0.18~0.22。体长和体质量的遗传力估计值分别为0.132 (P<0.01) 和0.122 (P<0.01),遗传相关和表型相关分别为0.921 (P<0.01)和0.995 (P<0.01)。采用目标性状最小二乘值和目标性状育种值估计的体质量性状选择反应为12.82%和15.45%,体长性状选择反应为2.76%和6.60%。表明禾花鲤体质量均匀度较低,不利于养殖生产,但具有较高的选育改良潜力;该群体在完成2个世代的家系选育后获得了有效遗传进展,但总体进展不显著。在今后选育过程中可采用分子辅助选育 (Molecular-assisted selection MAS)、大规模混合家系选育等选育策略,以提高选育效率。

     

    Abstract: In order to improve the growth rate of the cultured population of Cyprinus carpio var. Quanzhounensis in Quanzhou, two generations of breeding were carried out by family breeding method. The body mass and body length indexes of 3 699 individuals in 121 families of G0, G1 and G2 generations of C. carpio were measured. The heritability, phenotypic correlation and genetic correlation of body mass and body length traits were estimated by mixed linear model. The selection progress of G0−G2 generations was evaluated by the method of breeding value and least square value estimation based on target traits. The results show that the coefficient of variation of body mass and body length was 0.50−0.72 and 0.18−0.22 respectively. The heritability estimates were 0.132 (P<0.01) and 0.122, respectively (P<0.01). The genetic correlation and phenotypic correlation were 0.921 (P<0.01) and 0.995 (P<0.01), respectively. The value of selective reaction in body mass estimated by breeding value based on target traits and least square estimation was 12.82% and 15.45%, respectively, while 2.76% and 6.60% in body length, respectively, which indicates that the evenness of body mass was low, not conductive to breeding production, but had high breeding and improvement potential. In general, this population ofC. carpio var. Quanzhounensis obtained effective genetic progress after two successive generations by the family breeding, but with a modest progress. In is suggested that molecular-assisted selection (MAS) and marker-assisted large-scale mixed families' selection should be adopted in the future breeding so as to improve the breeding efficiency.

     

/

返回文章
返回