Effect of carrageenan on quality of low-sodium noodles
-
摘要: 为探究海藻多糖卡拉胶的添加对低钠面条感官特性及整体品质的影响,制备了含有不同配方低钠盐的面条样品,对其进行感官评定实验,并分析了面条的色度、最佳蒸煮时间、质构、微观结构等。结果显示,卡拉胶的添加有效掩盖了氯化钾 (KCl) 添加带来的金属苦涩味。卡拉胶对面条的最佳蒸煮时间无显著影响 (P>0.05) ,但一定程度上改变了蒸煮后面条的色泽,同时提高了面条的硬度、弹性和咀嚼性。扫描电镜分析显示,添加卡拉胶的面条,蒸煮后结构更为致密,而卡拉胶对蒸煮前面条的微观结构无明显影响。结果表明,卡拉胶可在不破坏面条品质的基础上改善KCl替代盐使用带来的苦味,在面条中实现高效减盐 (最高50%) ,为KCl替代盐在食品中的广泛应用提供了新思路。Abstract: To study the effect of seaweed polysaccharide carrageenan on the sensory properties and overall quality of low-sodium noodles, we designed the noodles containing low-sodium salts with different formulas and carried out a sensory evaluation experiment, so as to analyzed the color, cooking time, texture and microstructure of the noodles. The results show that the addition of carrageenan covered the metallic bitterness caused by potassium chloride in noodles effectively. Carrageenan showed no significant influence on the optimal cooking time of noodles (P>0.05), but changed the color of noodles after the noodles having been cooked to a certain extent and improved the hardness, springiness and chewiness of noodles. Scanning Electron Microscope (SEM) analysis demonstrates that carrageenan made the microstructure of noodles more compacted after the cooking but did not show obvious influence on the microstructure of noodles before the cooking. The results suggest that carrageenan can reduce the bitterness caused by potassium chloride salt substitute but maintain the quality of noodles, achieving a high-efficiency salt reduction (up to 50%) in noodles, which proposes a new idea for the potassium chloride-based salt substitutes in food industry.
-
Keywords:
- Carrageenan /
- Salt reduction /
- Noodles /
- Potassium chloride /
- Bitterness covering
-
无乳链球菌 (Streptococcus agalactiae) 也称B族链球菌 (Group B Streptococcus, GBS),是一种人、鱼共患的革兰氏阳性菌[1]。与许多其他致病菌一样,无乳链球菌具有许多毒力因子可提高病原体感染或破坏宿主的能力[2],其毒力因子可通过影响宿主细胞的黏附和侵袭以逃避宿主免疫[3],从而有效削弱机体免疫系统和新陈代谢过程中诱发的生理变化[4],严重时会降低机体的先天防御力,进而诱导机体死亡。作为一种由病原菌引起的常见疾病,链球菌病在罗非鱼养殖中具有破坏性影响[5]。2019年,无乳链球菌和海豚链球菌 (S. iniae) 给罗非鱼养殖业造成的经济损失约达25亿元[6]。此外,无乳链球菌感染还可导致斑马鱼 (Danio rerio)[7]在内的多种鱼体患病并大量死亡。硬骨鱼感染无乳链球菌的典型症状包括鱼体表变黑、眼球突出或混浊、发白、出血、腹部斑点和鳃盖内侧出血等[8]。目前已有学者从菌株的分离鉴定和分型、防治链球菌感染的药物筛选、疫苗研制等方面进行了无乳链球菌感染鱼体的研究报道[9]。关于无乳链球菌感染卵形鲳鲹 (Trachinotus ovatus) 的发病机理和调节机制方面的研究仍有不足。
卵形鲳鲹作为我国南方深远海养殖的主要品种,年产量近20万吨[10]。近年来,随着养殖环境变化以及养殖密度增加,导致卵形鲳鲹病害频发,给养殖产业造成严重的经济损失。Cai等[11]2016年首次报道了无乳链球菌感染卵形鲳鲹,感染后可导致其大量死亡,死亡率最高可达每天2%[12]。有研究报道,无乳链球菌侵袭生物体主要通过血流和主要器官在全身传播。作为鱼类的重要免疫调节器官,肝脏、脾脏和肾脏是病原菌入侵鱼体时的广泛研究对象。例如,罗非鱼感染无乳链球菌后可导致其肝脏、肠、鳃、脾、头肾和脑发生不同程度的病变,其中在肾脏和脾脏中检测到较高的细菌密度[5]。杂交蛇头鱼 (Channa maculata♀ × C. argus♂) 脾脏中存在的免疫和凋亡相关通路在舒伯特气单胞菌 (Aeromonas schubert) 感染中发挥重要作用[13]。爱德华氏菌 (Edwardsiella) 感染可诱导许氏平鲉 (Sebastes schlegeli) 脾、肝和头肾中钙网蛋白的显著上调,从而减少病原体在其体内的传播和复制[14]。然而,对卵形鲳鲹脾脏在无乳链球菌入侵后的调控机制研究仍有不足。
因此,本研究在已有研究基础上,通过酶活性测定、组织病理学观察和实时定量PCR探究了卵形鲳鲹脾脏在无乳链球菌感染后的生理生化反应和凋亡诱导机制,以期为卵形鲳鲹抗病育种及长期健康养殖提供参考依据。
1. 材料与方法
1.1 实验鱼和细菌
实验所用卵形鲳鲹均来自中国水产科学研究院南海水产研究所深圳试验基地,平均体质量为31.15 g。实验开始前,选取无病原感染、健壮的500尾卵形鲳鲹,转入与实验条件一致的实验桶进行暂养,养殖水温为 (27±0.5) ℃,盐度25‰,溶解氧质量浓度保持在5.5 mg·L−1以上。每天投喂2次,饲喂量约占体质量的4%。选用的无乳链球菌菌株2021年分离自中国水产科学研究院南海水产研究所深圳试验基地的患病卵形鲳鲹。
1.2 感染预实验
实验开始前,将细菌接种于BHI液体培养基中,并在180 r·min−1、27 ℃的摇床上孵育24 h。将BHI液体培养物在8 000 r·min−1[15]的条件下离心8 min,收集沉淀物。然后用无菌磷酸盐缓冲溶液 (PBS) 洗涤沉淀4次,用不同浓度 (1.0×1010、1.0×109、1.0×108、1.0×107和1.0×106 CFU·mL−1) 的无乳链球菌注射感染卵形鲳鲹。感染后,观察鱼的行为变化,记录不同感染浓度下死亡率与时间的关系,根据死亡率最终得到半致死浓度为1.0×108 CFU·mL−1。
1.3 人工感染实验
感染实验在150 L的水族箱中进行,水体140 L。选取300尾健康的卵形鲳鲹,随机平均分为6组,其中3个处理组,3个对照组。按照预实验结果,将鱼麻醉后处理组每尾鱼腹腔注射200 μL无乳链球菌 (1.0×108 CFU·mL−1),对照组注射相同剂量的无菌PBS溶液。
注射后的第0、第6、第12、第24、第48、第72、第96和第120小时取样,每个时间点取3尾鱼,用40 mg·L−1丁香酚麻醉。鱼体经体积分数为75%乙醇消毒后,用1.5 mL无菌注射器静脉取血,将3尾鱼的血液混合置于2.0 mL离心管中静置5 h,离心 (1 000 r·min−1、20 min) 分离获得血清,置于1.5 mL冻存管中,于−80 ℃冰箱中保存用于分析酶活性等相关指标。另外用肝素钠 (100 IU·mL−1) 润洗后的离心管分别收集第0和第120小时血液用于血常规检测。取新鲜的脾脏组织液氮速冻后置于−80 ℃冰箱中备用;另取新鲜脾脏组织通过生理盐水清洗表面血液后用4%多聚甲醛固定用于组织学检查。
1.4 病理观察
对鱼样品进行宏观和组织学检查,记录外部和内部形态变化。将固定在多聚甲醛中的脾脏组织用体积分数为70%的乙醇清洗,经过脱水后使用常规技术进行石蜡包埋、切片,切片厚度5 μm,并用苏木精-伊红染色,使用正置荧光显微镜 (NIKON ECLIPSE C1) 获得切片图像[16]。
1.5 血常规指标检测
通过全自动血液细胞分析 (深圳迈瑞生物医疗电子股份有限公司,BC-5000Vet) 检测血液中白细胞 (WBC)、嗜中性粒细胞 (NE)、淋巴细胞 (LYM)、红细胞 (RBC)、血小板 (PLT)、血红蛋白浓度 (HGB)、红细胞比容 (HCT)、平均红细胞体积 (MCV)、平均红细胞血红蛋白浓度 (MCHC)、平均血小板体积 (MPV) 和血小板压积 (PCT) 的变化。
1.6 生化指标检测
对照组和实验组卵形鲳鲹血清中乳酸脱氢酶 (LDH),脾脏中酸性磷酸酶 (ACP) 和碱性磷酸酶 (ALP) 的活性采用北京华英生物技术研究所试剂盒和酶标仪 (华卫德朗DR-200BS) 进行测定。
1.7 Caspase基因表达
按照RNA提取试剂盒 (广州美基生物科技有限公司) 说明书提取卵形鲳鲹脾脏总RNA,质量分数为1%琼脂糖凝胶电泳和NanoDrop 2000 (Thermo Fisher,美国) 检测其质量和浓度,使用 PrimeScript™ RT试剂盒和gDNA Eraser合成cDNA,于−20 ℃冰箱中储存备用。
使用Primer Premier 5设计Caspase-3、Caspase-8和Caspase-9的引物序列 (表1),由于EF-1α不受无乳链球菌感染的影响,因此选择EF-1α作为内参基因。通过实时荧光定量PCR仪 (Roche Light Cycler® 480 II,罗氏诊断产品有限公司,上海) 进行实时定量PCR (qRT-PCR),反应体系为12.5 μL。反应条件为95 ℃预变性30 s;95 ℃变性5 s,60 ℃退火30 s,72 ℃延伸 30 s,共40个循环。每个样品重复3次实验,在获得每个样品的阈值之后,使用2−ΔΔt方法计算Caspase-3、Caspase-8和Caspase-9 mRNA的相对表达水平,使用SPSS 20.0软件进行统计分析。数据以“平均值±标准差 (
$\overline { X}\pm { \rm {SD}} $ )”表示。所有统计分析均使用单因素方差分析 (One-way ANOVA) 进行比较,P<0.05表示差异显著。表 1 引物信息及序列Table 1. Primers and sequences information applied in this study引物名称
Primer name引物序列 (5'—3')
Primer sequence (5'–3')应用
ApplicationCaspase-3-F GCTGCTCTACTGCTTCTGCCTGATG qRT-PCR Caspase-3-R TGGCTGAGGATTGTGATGTTGCTG Caspase-8-F GCAACAAAACAGCCATCCA qRT-PCR Caspase-8-R GCAGGGGTAAAGGGTCATT Caspase-9-F GAATGGCGTCCGTCTGGTCATC qRT-PCR Caspase-9-R GGCAGCACGTCTCAGTTCAGC EF-1α-F AAGCCAGGTATGGTTGTCAACTTT qRT-PCR EF-1α-R CGTGGTGCATCTCCACAGACT 2. 结果
2.1 病理学观察
人工感染无乳链球菌24 h后,卵形鲳鲹游动不定、食欲不振、嗜睡、运动不协调,且明显观察到角膜混浊、突眼、眼出血、内脏充血和内鳃盖充血等典型病变 (图1),并在感染后48 h出现大量死亡。组织病理学分析显示,脾脏发生较为严重的病变损伤,典型特征为白髓中B淋巴细胞和T淋巴细胞的坏死和丢失;轻度至中度病变表现为脾炎,白髓区域显著减少,淋巴细胞数目降低。在严重病变中,脾脏白髓弥漫性坏死至白髓区域完全消失,伴有网状内皮增生,可见大量被HE染成棕黄色的“小结”(图2)。未感染的卵形鲳鲹脾脏具有正常的红髓和白髓。
2.2 血液指标参数
卵形鲳鲹感染无乳链球菌后血液参数见表2。与对照组相比,感染个体的红细胞数量、血红蛋白浓度和红细胞比容明显降低 (P<0.05),白细胞、嗜中性粒细胞、淋巴细胞数量则出现相反的趋势 (P<0.05),与对照组相比嗜中性粒细胞和淋巴细胞数量增加近3倍。同时平均红细胞体积明显增大,其他指标未见明显变化。
表 2 卵形鲳鲹感染无乳链球菌对血液学指标的影响Table 2. Effect of S. agalactiae infection on hematological parameters of T. ovatus项目
Item对照组
Control感染组
Infection白细胞数量 WBC/(109·L−1) 8.32±0.94 13.67±0.58* 嗜中性粒细胞数量 NE/(109·L−1) 0.18±0.09 0.54±0.12* 淋巴细胞数量 LYM/(109·L−1) 1.01±0.35 3.04±0.75* 红细胞数量 RBC/(109·L−1) 5.25±1.07 3.08±0.25* 血红蛋白浓度 HGB/(g·L−1) 179.67±10.25 129.58±9.58* 红细胞比容 HCT/% 35.69±0.55 23.37±0.17* 平均红细胞体积 MCV/fL 160.63±1.27 190.31±0.79* 平均红细胞血红蛋白量
MCH/pg39.75±2.47 41.11±3.73 平均红细胞血红蛋白质量浓度
MCHC/(g·L−1)289.21±2.99 292.36±4.13 血小板数量 PLT/(109·L−1) 19.68±0.25 13.43±0.86 平均血小板体积 MPV/fL 7.91±1.39 7.41±1.05 血小板压积 PCT/% 0.70±0.17 0.75±0.11 注:*. 与对照组相比存在显著性差异 (P<0.05)。 Note: *. Significant difference compared with the control group (P<0.05). 2.3 血清、脾脏生化指标结果
卵形鲳鲹感染无乳链球菌后的血清和脾脏生化指标变化见图3,相较于对照组,感染组个体的血清LDH和脾脏中ALP、ACP活性显著增加 (P<0.05),并于第6小时达到峰值 (P<0.01);同时随着感染时间延长,其活性均逐渐降低但ACP与对照组相比仍有极显著差异 (P<0.01)。其中LDH活性在感染6 h后升高最为显著 (P<0.01),活性约为对照组的10倍。
图 3 卵形鲳鲹感染无乳链球菌后生化指标变化注:a. 不同时间血浆乳酸脱氢酶变化水平;b. 不同时间脾脏碱性磷酸酶变化水平;c. 不同时间脾脏酸性磷酸酶变化水平;**. 差异极显著 (P<0.01);*. 差异显著 (P<0.05)。Figure 3. Changes of biochemical indexes after infection of T. ovatus at different timeNote: a. The levels of plasma lactate dehydrogenase at different time before and after the challenge; b. The levels of spleen alkaline phosphatase at different time before and after the challenge; c. The levels of spleen acid phosphatase at different time before and after the challenge; **. Very significant difference (P<0.01); *. Significant difference (P<0.05).2.4 脾脏中凋亡基因表达
卵形鲳鲹感染无乳链球菌后凋亡基因表达谱见图4。在第0—第120小时的实验期内,Caspase-3、Caspase-8和Caspase-9的mRNA表达水平随时间推移均不断升高。其中Caspase-8基因表达水平在感染第6小时显著高于对照组 (P<0.05),并在第120小时达到峰值 (P<0.01);Caspase-3在感染后第120小时达到峰值;Caspase-9在感染后第12小时表达量显著升高 (P<0.05),并在第72小时达到峰值后趋于稳定。
3. 讨论
本研究通过无乳链球菌体外注射实验感染鱼体后,自患病鱼中分离得到的菌株经形态分析和16S RNA测序比对后均与无乳链球菌具有高度一致性,因此确定其为无乳链球菌感染。经腹腔注射200 μL浓度为1.0×108 CFU·mL−1的病原菌后,在48 h后实验组死亡率开始增加,这与罗非鱼人工注射相似剂量无乳链球菌后的死亡高峰期接近[17]。观察发现实验组卵形鲳鲹出现与自然感染无乳链球菌后相似的临床症状[18],组织病理学分析显示,卵形鲳鲹在无乳链球菌感染后表现出脾脏炎症病变并伴有含铁血黄素沉积。有研究表明,机体对铁元素利用受阻导致脾脏中含铁血黄素的积累或红细胞被大量破坏是鱼类对环境应激的重要信号[19],因此,脾脏中含铁血黄素的检测对卵形鲳鲹的健康监测具有重要意义。本研究中,脾脏作为卵形鲳鲹的主要淋巴器官在无乳链球菌感染后损伤严重,造成无法区分红髓和白髓以及淋巴细胞减少,同时可见产生大量炎症细胞,这与罗非鱼在自然状态下感染无乳链球菌后的组织切片结果相似[3]。
血清生化参数是组织或器官在临床病理学研究中的重要指标[20]。研究表明,高于或低于基线水平的酶活性通常反映组织或器官代谢紊乱,严重时会引起细胞凋亡[21]。细胞凋亡是感染的最终结果,主要包括细胞坏死、凋亡和自噬[22]。LDH作为糖酵解途径中的末端酶,在辅酶NADH协助下可将乳酸转化为丙酮酸。当机体受到外界压力时,LDH可以进行逆反应并将丙酮酸 (糖酵解的最终产物) 转化为乳酸[23]。而细胞内LDH的释放是细胞坏死的特征之一。本研究中感染无乳链球菌后卵形鲳鲹血清中LDH显著升高,表明机体可能存在细胞凋亡情况并伴有病理性坏死反应,机体通过凋亡过程清除体内坏死的细胞并参与病原体入侵后的免疫调控过程。此外,ALP和ACP作为溶酶体中的主要水解酶参与生物体的先天免疫过程,参与包括生长和细胞分化等一系列生理代谢活动,常被作为病原菌感染的敏感指标,在评估鱼类病原菌引发的疾病中起重要作用[23-25]。Sharkoori等[26]研究指出ALP和ACP活性可作为细胞坏死的指标。本研究发现,无乳链球菌感染可使卵形鲳鲹脾脏中ALP和ACP活性在短时间内显著升高,这可能是由于脾脏组织功能活性增加促使其在短时间内大量合成,以降低病原菌感染对机体的损害[27]。此外,本研究中ACP活性变化与南亚野鲮 (Labeo rohita)感染嗜水气单胞菌 (A. hydrophila) 后的变化相似[28],推测可能是机体内溶酶体在抵抗无乳链球菌感染过程中大量增殖,促使溶酶体膜破裂,致使膜内保持潜伏状态的ACP被激活。
血常规检验对于病原体感染的监测具有重要意义[29]。病原菌感染鱼体后可通过细胞膜扩散到血液系统,并对机体血液氧气输送能力和血液电解质平衡产生负面影响[30]。血液中红细胞比容、红细胞和血红蛋白浓度是评估鱼类在暴露于各种环境压力、化学毒性和细菌感染后健康状况的重要指标[25]。本研究中,实验组红细胞比容、红细胞和血红蛋白浓度均显著低于对照组,与草鱼 (Ctenopharyngodon idella)[31]人工感染草鱼呼肠孤病毒 (Grass carp reovirus) 后的变化相似,因此认为血液生化特性可用作卵形鲳鲹对无乳链球菌感染的敏感指标。此外,有研究发现,红细胞比容、红细胞和血红蛋白浓度降低会造成贫血,这可能是细菌感染动物后抑制红细胞生成或是细菌感染导致红细胞生命周期缩短而引起贫血状态[32]。同时本研究中实验组平均红细胞体积较大,推测其可能伴有红细胞增多症。以往研究发现,由于鱼类与哺乳动物不同,幼体红细胞比成体红细胞小,细胞质较少,当外源微生物入侵后可使鱼平均红细胞体积增大[33]。此外,有研究报道,血液中白细胞、嗜中性粒细胞和淋巴细胞数量常因病原菌感染而增多[34]。本研究发现,受感染鱼白细胞、嗜中性粒细胞和淋巴细胞的含量显著升高,可能是病原菌感染诱导机体产生可逆性造血干细胞损伤后出现的侵袭性炎症病变或血液早期再增殖,机体在试图通过发展获得性免疫而增强对病原体的抗性[35]。
当先天免疫被破坏导致应激反应受阻时,细胞会遭受严重损伤并启动凋亡或坏死。细胞凋亡是由基因编码的自杀程序的作用引起的,该程序触发了一系列特征性的形态和生化变化,Caspase是鱼类检测细胞凋亡的关键指标[36]。细胞凋亡通常通过外在途径 (受体-凋亡途径) 和内在途径 (线粒体-凋亡途径) 两种主要途径发生[37],其中外在途径通过细胞外信号调节死亡受体,募集相关死亡结构域和Caspase-8相关的蛋白质,随后Caspase-8的激活直接或间接地激活Caspase-3。内在途径是由细胞色素C与凋亡蛋白酶激活因子 (Apaf-1) 结合,激活下游效应子Caspase-9后进一步激活Caspase-3[38]。河豚 (Takifugu obscurus)[39]感染嗜水气单胞菌后头肾中Caspase-3和Caspase-8的mRNA表达水平显著上调,促使细胞凋亡。此外,已有研究报道无乳链球菌诱导的细胞凋亡可以改变水生动物凋亡相关基因的表达水平[40]。本研究发现,无乳链球菌可诱导卵形鲳鲹脾脏中Caspase-3、Caspase-8和Caspase-9基因的转录水平显著增加,表明机体的内外凋亡途径可同时参与对病原体入侵的免疫调控过程。
-
表 1 每100 g面条中氯化钠、氯化钾和卡拉胶添加量
Table 1 Additive amount of NaCl, KCl and carrageenan per 100 g noodles g
样品编号
Sample No.氯化钠
Sodium chloride氯化钾
Potassium chloride卡拉胶
Carrageenan1 0.500 0 0 2 1.000 0 0 3 1.500 0 0 4 2.000 0 0 5 0.350 0.150 0 6 0.700 0.300 0 7 1.050 0.450 0 8 1.400 0.600 0 9 0.350 0.150 0.045 10 0.700 0.300 0.090 11 1.050 0.450 0.135 12 1.400 0.600 0.180 13 0.300 0.200 0 14 0.600 0.400 0 15 0.900 0.600 0 16 1.200 0.800 0 17 0.300 0.200 0.060 18 0.600 0.400 0.120 19 0.900 0.600 0.180 20 1.200 0.800 0.240 21 0.250 0.250 0 22 0.500 0.500 0 23 0.750 0.750 0 24 1.000 1.000 0 25 0.250 0.250 0.075 26 0.500 0.500 0.150 27 0.750 0.750 0.225 28 1.000 1.000 0.300 表 2 面条感官评定标准
Table 2 Standard of sensory evaluation for noodles
感官指标
Sensory index评分标准
Standard for evaluation色泽 Color 好:面条呈现面粉本身色泽;中:面条接近面粉本身色泽;差:面条发白或发暗。 表观状态 Appearance 好:面条表面紧密光滑;中:面条表面结构较细密;差:面条表面粗糙、严重变形。 适口性 Palatability 好:面条口感硬度适中;中:面条口感稍硬或稍软;差:面条口感太硬或太软。 韧性 Toughness 好:面条具有咬劲且富有弹性;中:面条咬劲和弹性适中;差:面条咬劲差、弹性不足。 爽口性 Gumminess 好:面条咀嚼时不粘牙;中:面条咀嚼时稍粘牙;差:面条咀嚼时不爽口、发粘严重。 润滑度 Lubricity 好:面条口感细腻润滑;中:面条口感较润滑;差:面条口感不润滑且粗糙。 品味 Taste 好:面条无苦涩味;中:面条有轻微苦涩味;差:面条有明显苦涩味。 表 3 面条明度、红绿色度和黄蓝色度
Table 3 L*, a* and b* values of noodles
样品编号
Sample No.蒸煮前 Before cooking 蒸煮后 After cooking 明度 L* 红绿色度 a* 黄蓝色度 b* 明度 L* 红绿色度 a* 黄蓝色度 b* 1 74.6±1.0a 1.1±0.3ab 10.8±0.8b 68.5±1.2l 0.4±0.2g 3.6±1.2l 2 77.2±0.4b 2.4±2.2cde 16.0±1.1hijk 68.1±1.2l −6.5±0.3b 13.6±1.2l 3 90.2±1.1def 3.1±0.4defgh 11.7±0.8bc 67.6±1.2l 1.1±0.2ij 1.2±1.2l 4 88.1±1.1cd 3.6±0.4fgh 12.1±0.1bcd 65.3±1.2jk 0.8±0.2hi 11.0±1.2jk 5 95.8±1.6hij 1.2±0.4ab 14.2±0.5efg 72.1±1.3m −0.5±0.2f 6.4±1.3m 6 89.6±0.8de 5.2±0.3j 11.0±0.3b 69.4±1.2l 2.3±0.1k 3.9±1.2l 7 95.6±0.8hij 4.1±0.2ghi 7.7±0.4a 59.0±1.0h 2.7±0.1l 2.6±1.0h 8 90.2±0.3def 1.1±0.3ab 13.7±0.3defg 63.1±1.1i 5.5±0.1q 0.9±1.1i 9 90.5±0.4def 1.5±0.2bc 15.1±0.3ghij 63.9±1.1ij −2.4±0.2e 4.4±1.1ij 10 89.6±1.5de 2.3±0.3cd 13.8±0.9efg 50.2±0.9c −2.6±0.2e 4.0±0.9c 11 89.3±0.7cde 6.2±0.8k 12.9±0.7cde 58.6±1.0h −3.9±0.2d −3.0±1.0h 12 95.5±1.0hij 1.2±0.2ab 18.4±1.2mn 44.0±0.7a 0.7±0.2gh 4.4±0.7a 13 95.4±0.2hij 3.5±0.6efgh 13.0±0.7cde 51.1±0.9c −6.3±0.3b 15.1±0.9c 14 90.4±2.6def 3.0±0.5defg 16.5±1.1ijk 49.8±0.8c 4.1±0.1no −0.5±0.8c 15 84.6±1.9b 2.4±0.3cde 13.3±0.8cdef 57.3±1.0gh −8.0±0.3a 21.3±1.0gh 16 96.3±1.6ij 4.2±0.3hij 16.1±1.0hijk 56.1±1.0fg 0.5±0.2gh 5.2±1.0fg 17 92.9±1.6fgh 0.4±0.2a 13.9±0.8efg 52.8±0.9d 5.0±0.1p 2.8±0.9d 18 86.4±1.8bc 4.2±0.5hij 14.8±0.9fgh 64.2±1.1ijk 3.1±0.1m 6.9±1.1ijk 19 87.4±1.0bcd 3.2±0.4defgh 16.7±1.1jkl 55.8±1.0efg 5.8±0.1q 0.5±1.0efg 20 92.3±1.3efg 2.6±0.2def 18.1±1.2lmn 52.9±0.9d 2.7±0.1l 4.6±0.9d 21 98.0±2.6j 4.9±1.0ij 14.9±0.9fghi 54.1±0.9de 18.8±0.2t 2.5±0.9de 22 96.0±1.5hij 3.2±0.5defgh 17.1±1.1klm 54.9±0.9ef −4.5±0.3c 10.4±0.9ef 23 96.5±2.4ij 3.5±0.2efgh 13.5±0.8defg 65.9±1.2k 1.4±0.2j 7.0±1.2k 24 96.6±2.9ij 3.4±0.2defgh 16.2±1.0hijk 64.6±1.1ijk −4.5±0.3c 15.4±1.1ijk 25 97.6±3.2ij 3.4±0.3defgh 15.1±0.9ghij 47.6±0.8b 10.5±0.1s 17.5±0.8b 26 95.8±3.1hij 3.6±0.3fgh 13.4±0.8defg 50.0±0.9c 3.8±0.1n 6.0±0.9c 27 94.3±2.2ghi 3.1±0.5defgh 15.9±1.0hijk 48.1±0.8b 4.2±0.1o 2.5±0.8b 28 98.6±0.9j 2.9±0.2def 19.0±1.3n 55.5±1.0efg 7.6±0.1r 19.3±1.0efg 注:编号1—28样品对应表1相应的样品编号和配方;同列中不同字母间存在显著性差异(P<0.05)。后表同此。 Note: No. 1–28 samples in this table correspond to the sample No. and formulas in Table 1. Values with different letters within the same column have significant difference (P<0.05). The same below. 表 4 面条色差
Table 4 Color difference of noodles
样品编号
Sample No.蒸煮前
Before cooking蒸煮后
After cooking样品编号
Sample No.蒸煮前
Before cooking蒸煮后
After cooking5&9 5.4±0.9bc 11.8±0.2d 15&19 4.6±0.4ab 14.0±0.2f 6&10 4.2±0.5ab 27.6±0.5j 16&20 4.8±0.5b 5.0±0.0a 7&11 8.5±0.7d 6.6±0.1b 21&25 2.4±0.9a 12.4±0.2e 8&12 7.1±0.8cd 27.4±0.5j 22&26 4.7±0.5b 10.8±0.2c 13&17 4.2±1.1ab 11.6±0.2d 23&27 3.3±0.1ab 25.3±0.4i 14&18 4.8±2.0b 20.4±0.3h 24&28 4.1±1.2ab 17.7±0.3g 表 5 面条最佳蒸煮时间
Table 5 Optimal cooking time of noodles
样品编号
Sample
No.最佳蒸煮时间
Optimal
cooking time/s样品编号
Sample
No.最佳蒸煮时间
Optimal
cooking time/s1 280±0b 15 340±16fg 2 280±0b 16 330±0ef 3 270±8ab 17 340±0fg 4 260±0a 18 340±8fg 5 310±8cd 19 340±0fg 6 310±0cd 20 330±0ef 7 310±8cd 21 320±0de 8 300±0c 22 320±8de 9 320±8de 23 300±0c 10 310±0cd 24 300±8c 11 310±0cd 25 340±0fg 12 300±8c 26 340±0fg 13 350±0g 27 310±8cd 14 340±8fg 28 300±8c 表 6 面条质构特性
Table 6 Textural properties of noodles
样品编号
Sample No.硬度
Hardness/g黏附性
Adhesiveness/(g·s)弹性
Springiness内聚性
Cohesiveness咀嚼性
Chewiness/g4 7 081.24±434.92abc −106.38±23.03c 0.82±0.08a 0.68±0.01ab 3 911.85±313.56abc 8 6 980.00±190.02ab −112.71±21.68c 0.78±0.04a 0.63±0.04ab 3 421.97±104.04a 12 8 331.83±260.21cde −176.91±26.03ab 0.84±0.08a 0.61±0.02a 4 260.22±410.43abcd 16 6 674.37±932.28a −126.19±19.33bc 0.84±0.09a 0.69±0.06b 3 830.01±611.67ab 20 8 062.54±702.93bcd −123.71±23.45bc 0.87±0.04a 0.64±0.04ab 4495.67±334.62bcd 24 8 336.60±303.63cde −194.29±43.31a 0.77±0.03a 0.65±0.01ab 4127.08±78.97abc 28 8 747.53±1 212.20de −153.34±57.92abc 0.84±0.10a 0.65±0.07ab 4712.21±526.05cd 27 7 910.89±657.01abcd −146.38±19.73abc 0.81±0.09a 0.66±0.05ab 4 193.73±477.43abcd 26 9 411.35±402.49e −175.12±12.72ab 0.86±0.03a 0.62±0.03ab 5 001.83±421.42d 25 8 274.85±992.20bcde −177.98±20.02ab 0.86±0.08a 0.60±0.01a 4 284.30±758.77abcd -
[1] ROTH G A, ABATE D, ABATE K H, et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2018, 392(10159): 1736-1788. doi: 10.1016/S0140-6736(18)32203-7
[2] AFSHIN A, SUR P J, FAY K A, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2019, 393(10184): 1958-1972. doi: 10.1016/S0140-6736(19)30041-8
[3] FOROUHI N G, UNWIN N. Global diet and health: old questions, fresh evidence, and new horizons[J]. Lancet, 2019, 393(10184): 1916-1918. doi: 10.1016/S0140-6736(19)30500-8
[4] WORLD HEALTH ORGANIZATION. Guideline: Sodium intake for adults and children[M]. Geneva: World Health Organization, 2012: 2.
[5] WORLD HEALTH ORGANIZATION. Reducing salt intake in populations: report of a WHO forum and technical meeting, 5–7 October 2006, Paris, France[R]. Geneva: World Health Organization, 2007.
[6] MATTES R D, DONNELLY D. Relative contributions of dietary sodium sources[J]. J Amer College Nutr, 1991, 10(4): 383-393. doi: 10.1080/07315724.1991.10718167
[7] 郇美丽, 解树珍, 张智勇, 等. 氯化钠对面粉特性及面条品质的影响研究进展[J]. 现代食品, 2020(20): 22-26. [8] 王冠岳, 陈洁, 王春, 等. 氯化钠对面条品质影响的研究[J]. 中国粮油学报, 2008, 23(6): 184-187. [9] 张梦迪, 陆启玉. 不同盐的添加对面条品质影响的研究进展[J]. 中国调味品, 2020, 45(3): 176-179. doi: 10.3969/j.issn.1000-9973.2020.03.036 [10] 刘瑞莉, 陆启玉. 盐类在面条加工中的应用[J]. 粮食与油脂, 2017, 30(3): 5-7. doi: 10.3969/j.issn.1008-9578.2017.03.002 [11] 荆鹏, 郑学玲, 丁旋子, 等. 食盐对面絮及面条品质影响研究[J]. 粮食与饲料工业, 2014(9): 32-35. [12] 张雪松, 王竹, 何梅, 等. 中国预包装食品钠含量现状及其变化趋势分析[J]. 卫生研究, 2014, 43(2): 250-253. [13] 高超, 王竹, 刘阳, 等. 我国各类预包装食品钠标示值范围分析研究[J]. 营养学报, 2017, 39(3): 217-222. doi: 10.3969/j.issn.0512-7955.2017.03.003 [14] 邢宇, 田红美, 贾高鹏, 等. 食品减盐研究中挂面的钠/钾溶出及力学性质[J]. 食品工业, 2020, 41(5): 191-194. [15] 张可池. 一种低钠营养面条及其制备方法: CN108094894A[P]. 2018-06-01. [16] 李强, 李要帅, 吕小转, 等. 一种无盐挂面及其制备方法: CN110122768A[P]. 2019-08-16. [17] ABU N B, HARRIES D, VOET H, et al. The taste of KCl: what a difference a sugar makes[J]. Food Chem, 2018, 255: 165-173. doi: 10.1016/j.foodchem.2018.01.175
[18] 陈继承, 臧盈盈, 陈莉, 等. 一种降血压重组海带冷鲜面条及其制作方法: 中国, CN106538955A[P]. 2017-03-29. [19] TAN H L, TAN T C, EASA A M. The use of selected hydrocolloids and salt substitutes on structural integrity, texture, sensory properties, and shelf life of fresh no salt wheat noodles[J]. Food Hydrocolloids, 2020, 108: 105996. doi: 10.1016/j.foodhyd.2020.105996
[20] 胡瑞波, 田纪春. 中国黄碱面条色泽影响因素的研究[J]. 中国粮油学报, 2006, 21(6): 22-26. doi: 10.3321/j.issn:1003-0174.2006.06.006 [21] 吴迪, 高利, 祝日倩, 等. 超微处理挤压改性荞麦粉添加对面团特性和全荞麦面条品质特性的影响[J]. 中国粮油学报, 2020, 35(12): 30-36. doi: 10.3969/j.issn.1003-0174.2020.12.006 [22] 孙彩玲, 田纪春, 张永祥. 质构仪分析法在面条品质评价中的应用[J]. 实验技术与管理, 2007, 24(12): 40-43. doi: 10.3969/j.issn.1002-4956.2007.12.013 [23] 师俊玲, 魏益民, 张国权, 等. 蛋白质与淀粉对挂面和方便面品质及微观结构的影响[J]. 西北农林科技大学学报(自然科学版), 2001(1): 44-50. [24] 邢礼庆. 壳聚糖对碱性面条品质特性的影响[J]. 粮食与油脂, 2021, 34(7): 107-109. doi: 10.3969/j.issn.1008-9578.2021.07.027 [25] 陈霞, 王文琪, 朱在勤, 等. 食盐对面粉糊化特性及面条品质的影响[J]. 食品工业科技, 2015, 36(2): 98-101. [26] 魏林. 瓜尔豆胶对面条品质特性的影响[J]. 粮食与油脂, 2021, 34(9): 60-62. doi: 10.3969/j.issn.1008-9578.2021.09.015 [27] 葛珍珍, 张圆圆, 李盈, 等. 魔芋葡甘聚糖对面条质构及微观结构的影响[J]. 粮食与油脂, 2021, 34(9): 67-72. doi: 10.3969/j.issn.1008-9578.2021.09.017 [28] TOBIN J T, FITZSIMONS S M, CHAURIN V, et al. Thermodynamic incompatibility between denatured whey protein and konjac glucomannan[J]. Food Hydrocolloids, 2012, 27(1): 201-207. doi: 10.1016/j.foodhyd.2011.07.004
[29] 吕振磊, 王坤, 陈海华. 亲水胶体对面粉糊化特性和面条品质的影响[J]. 食品与机械, 2010, 26(4): 26-31. [30] TOLSTOGUZOV V. Thermodynamic aspects of dough formation and functionality[J]. Food Hydrocolloids, 1997, 11(2): 181-193. doi: 10.1016/S0268-005X(97)80025-2
[31] 许晶冰, 李洪军, 李雪, 等. 添加兔骨微细粉对面团及面条特性的影响[J]. 食品工业科技, 2022, 43(4): 105-113. [32] 常战战, 王纪鹏, 刘云祎, 等. 制面方式对煮制面条粘连的影响[J]. 食品与生物技术学报, 2021, 40(6): 76-85. doi: 10.3969/j.issn.1673-1689.2021.06.010 [33] 李佩, 谢彩锋, 丁慧敏, 等. 不同改良剂对木薯全粉面条品质的影响[J]. 食品与发酵工业, 2018, 44(9): 218-224. -
期刊类型引用(2)
1. 王庚申,颜懿,李彤,董鹏生,谢建军,许文军,张德民,张化俊. 漂白粉消毒后对虾养殖源水细菌群落的响应特征研究. 海洋与湖沼. 2024(01): 202-212 . 百度学术
2. 郑仕夫,徐慧敏,陈曦,裘丽萍,宋超,范立民,李丹丹,孟顺龙,徐跑. 水产养殖尾水处理技术的研究现状和发展趋势. 中国农学通报. 2024(12): 159-164 . 百度学术
其他类型引用(1)