三角帆蚌MAP2K1基因的分子特征和表达

Molecular characterization and expression of MAP2K1 gene in Hyriopsis cumingii

  • 摘要: 为研究MAP2K1 (MEK1) 基因在三角帆蚌 (Hyriopsis cumingii) 性别决定中的作用,采用cDNA末端快速克隆技术 (Rapid-amplification of cDNA ends, RACE) 克隆了MAP2K1基因序列,利用实时荧光定量分析比较MAP2K1基因在三角帆蚌6个组织 (性腺、闭壳肌、肝胰腺、鳃、外套膜、斧足)、早期发育阶段 (1—8月龄) 性腺和1—3龄雌雄性腺中的表达水平,利用原位杂交确定MAP2K1基因在2龄三角帆蚌性腺中的定位。结果显示,MAP2K1基因开放阅读框 (ORF) 长度为1 194 bp,编码397个氨基酸。MAP2K1基因在卵巢中高表达;早期发育阶段在2月龄表达量最高;1—3龄的表达结果显示,MAP2K1基因在卵巢中的表达量均高于同期精巢中的表达量 (P<0.05)。原位杂交结果显示,MAP2K1基因在雌性三角帆蚌的卵母细胞及卵子上有明显的杂交信号。RNAi结果显示,干扰MAP2K1基因的上游基因C-MOS后,下游基因MAP2K1在雌性中的表达下降了82.31%,在雄性中的表达下降了73.60%。推测MAP2K1基因可能参与三角帆蚌的卵巢发育过程,在三角帆蚌中属于偏雌性基因,其表达受C-MOS基因的影响。

     

    Abstract: In order to study the role of the MAP2K1 (MEK1) gene in the sex determination of Hyriopsis cumingii, we applied RACE (Rapid-amplification of cDNA ends) method to clone the MAP2K1 gene sequence. We conducted a real-time fluorescence quantitative analysis to compare MAP2K1 gene in six tissues (Gonads, adductor muscle, hepatopancreas, gills, mantle, foot), gonads at early developmental stage (1−8 month old) and the 1−3 years' level of expression in male and female glands of H. cumingii. We determined the location of MAP2K1 gene in the gonads of 2-year-old H.cumingii by in situ hybridization. The results show that the ORF region of MAP2K1 gene was 1 194 bp in length and encoded 397 amino acids. MAP2K1 gene was highly expressed in the ovary; the expression level was the highest at 2 months of age at early developmental stage; the expression results from 1−3 years of age show that the expression of MAP2K1 gene in the ovary was higher than that in the spermatozoa for the same period (P<0.05). The in situ hybridization results show that the MAP2K1 gene had a significant hybridization signal in the oocytes and eggs of female H. cumingii. RNAi results show that the expression of the downstream gene MAP2K1 gene decreased by 82.31% in females and 73.60% in males after interfering with the upstream gene C-MOS gene of MAP2K1 gene. In conclusion, MAP2K1 gene may be involved in the ovarian development process and is a female-biased gene in H. cumingii, and C-MOS gene affects its expression.

     

/

返回文章
返回