基于地统计学的南海扁舵鲣时空分布研究

周星星, 范江涛, 于杰, 徐姗楠, 蔡研聪, 陈作志

周星星, 范江涛, 于杰, 徐姗楠, 蔡研聪, 陈作志. 基于地统计学的南海扁舵鲣时空分布研究[J]. 南方水产科学, 2022, 18(5): 153-159. DOI: 10.12131/20210327
引用本文: 周星星, 范江涛, 于杰, 徐姗楠, 蔡研聪, 陈作志. 基于地统计学的南海扁舵鲣时空分布研究[J]. 南方水产科学, 2022, 18(5): 153-159. DOI: 10.12131/20210327
ZHOU Xingxing, FAN Jiangtao, YU Jie, XU Shannan, CAI Yancong, CHEN Zuozhi. Geostatistics-based study on spatial-temporal distribution of Auxis thazard in South China Sea[J]. South China Fisheries Science, 2022, 18(5): 153-159. DOI: 10.12131/20210327
Citation: ZHOU Xingxing, FAN Jiangtao, YU Jie, XU Shannan, CAI Yancong, CHEN Zuozhi. Geostatistics-based study on spatial-temporal distribution of Auxis thazard in South China Sea[J]. South China Fisheries Science, 2022, 18(5): 153-159. DOI: 10.12131/20210327

基于地统计学的南海扁舵鲣时空分布研究

基金项目: 广东省重点领域研发计划项目 (2020B1111030001);国家重点研发计划项目 (2018YFC1406502);南方海洋科学与工程广东省实验室 (广州) 人才团队引进重大专项 (GML2019ZD0605);农业农村部财政专项 (NFZX2021)
详细信息
    作者简介:

    周星星  (1997—),女,硕士研究生,研究方向为渔业资源和渔场分析。E-mail: zhouxingxing1207@foxmail.com

    通讯作者:

    陈作志 (1978—),男,研究员,博士,从事渔业资源和海洋生态学研究。E-mail: zzchen2000@163.com

  • 中图分类号: S 931

Geostatistics-based study on spatial-temporal distribution of Auxis thazard in South China Sea

  • 摘要: 为了研究南海扁舵鲣 (Auxis thazard) 的时空分布情况,根据2016—2017年对南海开展的4个航次的灯光罩网渔业调查数据,采用地统计学方法分析扁舵鲣时空分布特征和相关生态动力过程。结果表明,南海扁舵鲣总体分布以低密度为主,高密度海域较少,近岸浅水海域季节性聚集特征明显,资源密度指数依次为夏季>春季>秋季;扁舵鲣渔场空间分布具有较强的空间异质性,4个航次的空间结构性比例均大于75%,变异模型以球面模型为主,平均主变程为1.861 0°;南海扁舵鲣明显具有从西南—东北洄游的特征,空间布局呈片状和斑块状。本研究结果可为扁舵鲣渔场分析与渔业管理提供科学依据。
    Abstract: In order to study the spatial-temporal distribution characteristics of Auxis thazard, we analyzed the spatial-temporal distribution characteristics and ecological dynamics of Auxis thazard by geostatistical methods based on the data from the light falling-net fishery survey conducted in the South China Sea from 2016 to 2017. The results show that the distribution of A. thazard in the South China Sea was of mainly low-density, and there were few high-density sea areas. The seasonal aggregation characteristics of A. thazard in the offshore shallow waters were obvious, and the resource density index followed a descending order of summer>spring>autumn. The spatial distribution of A. thazard fishery had strong spatial heterogeneity, with the proportion of spatial structure over 75% in the four voyages. The spherical model was the main variation model, and the average main variation range was 1.861 0°. The A. thazard in the South China Sea was obviously characterized by southwest-northeast migration, and its spatial layout had a patch-like spatial distribution. The results can better reflect the spatial-temporal distribution characteristics of the A. thazard fishery in the South China Sea, which provides a scientific basis for its fishery analysis and management.
  • 神经肽是从神经系统和内分泌系统产生和释放,参与调节生物个体的生理活动,维持生物体内环境稳态的一类重要信号因子,是NEI系统中最重要的调节因子之一,在脊椎和无脊椎动物中均有免疫调节功能。其中FMRFamide (Phe-Met-Arg-Pheamide) 是一种酰胺化四肽,是类 FMRF酰胺肽 (FMRFarmide-related peptides, Farps或FMRFamide-like peptide, FLPs) 家族的成员。其在神经系统中合成并释放,能通过神经元直接传递信号,并作为神经递质、神经调质和神经激素发挥作用[1],是无脊椎动物中含量最丰富的一类神经肽[2]。此外,该神经肽也能通过内分泌系统调节摄食和运动行为[3]。近年来,FMRFamide的生理功能受到普遍关注,如Marciniak等[4]研究发现其具有特异性的心脏活性,能有效调节甲虫内脏肌肉的内源性收缩活性。Kim等[5]研究皱纹盘鲍 (Haliotis discus hannai) 发现,FMRFamide神经肽对海洋腹足类动物生殖调节有重要促进作用。FMRFamide也被发现能够通过抑制有丝分裂来保护细胞免受凋亡[6]。而作为无脊椎动物中特有的神经肽,一些研究也表明其可能参与了海洋无脊椎动物的免疫应答。如Li等[7]通过对太平洋牡蛎 (Crassostrea gigas) 炎症刺激后的FMRFanide多肽治疗,发现FMRFamide多肽不仅由神经内分泌系统合成,而且还在血细胞中合成加工,首次证实了该多肽存在于血细胞中。Guan等[8]对加利福尼亚海兔 (Aplysia california) 的研究发现FMRFamide可以通过激活P38丝裂原激活蛋白 (MAP) 激酶来调节突触的可塑性和调节免疫效应物。

    瘤背石磺 (Onchidium reevesii) 隶属于软体动物门、石磺科,又名土鸡、海赖子、涂龟、土海参等[9-10],常栖息在滩涂上的石缝中、植被的根部和阴暗潮湿的角落,主要分布于我国东部沿海地区[11-12]。瘤背石磺的中枢神经系统 (Central nervous system, CNS) 是一个简单的环状结构,体积大且易获得[13]。瘤背石磺不仅是研究无脊椎动物神经系统功能的模式种,而且由于其生活在潮间带,有良好的应激耐受机制,能适应波动的生存环境、各种重金属离子和病原体[14],对于研究无脊椎动物应对外界环境变化和病原入侵的免疫反应机制也有显著优势。为此,本研究在实验室瘤背石磺高通量转录组测序的基础上克隆得到了OrFMRFamide基因的全长,分析该基因的分子特征及其mRNA和多肽在组织中的分布,研究其在炎症刺激后的反应,从而为探究FMRFamide基因在瘤背石磺免疫机制中的作用提供了理论依据,也为进一步理解生活在潮间带的两栖类动物对恶劣环境的适应机理奠定基础。

    2020年6月初在江苏省盐城市沿海滩涂采集成体鲜活瘤背石磺,带回实验室后暂养于70 cm×120 cm×50 cm的塑料养殖箱内,养殖箱底部覆盖5~10 cm厚的海泥,种植滩涂采集的植被,放上瓦片,放养滩涂捕捉的螃蟹在泥中打洞,为石磺提供休息躲避的巢穴,尽可能地模拟自然生态环境,消除实验外干扰。每天早晚定时投喂玉米粉和喷洒海水保持土壤湿润,定期检查瘤背石磺生长状况,以确保其较高的成活率。暂养1周后,取5只体态均匀、健康有活力的瘤背石磺 [ 体长 (43.55±1.32) mm,体质量 (15.73±0.78) g],用超纯水清洗表面的泥沙,取血细胞、神经节、肝胰腺、肌肉、性腺、皮肤和腹足等组织用液氮速冻后放入–80 ℃冰箱备用,用于组织cDNA模板的制备。

    实验所用器皿均经180 ℃高温杀菌处理3 h或使用DEPC处理过后进行高压灭菌。实验开始前将所有器材预冷备用,全程在冰上操作,取–80 ℃保存的瘤背石磺各组织,按照Trizol (Invitrogen, 美国) 说明书提取各组织的总RNA。配制质量浓度为10 mg·mL−1的琼脂糖凝胶,135 V、电泳15 min检测RNA提取质量,在核酸检测仪上标定提取RNA的浓度和纯度。将神经节RNA按照PrimeScript II 1st Strand cDNA Synthesis Kit (TaKaRa) 说明书合成cDNA第一链,作为后续实验的RACE (Rapid-amplification of cDNA ends) 模板。将提取所得的各组织RNA按照PrimeScript™ RT reagent Kit with gDNA Eraser (TaKaRa) 试剂盒说明书进行反转录,将获得的cDNA于–20 ℃保存备用。

    根据笔者实验室测得的转录组数据库 (未发表) 筛选得到目的基因的部分基因片段,使用Primer Premier 5.0软件设计2对引物,进行PCR扩增反应,反应产物用10 mg·mL−1的琼脂糖凝胶电泳检测,使用D2000 Ladder作为Maker,产物条带单一且清晰,送至苏州金唯智生物科技有限公司测序,测序结果在NCBI上BLAST比对,确认为FMRFamide基因片段,然后按照SMARTER® RACE5'/3'Kit及3'Full RACE Core Set With PrimerScriptTM RTase试剂盒的说明书在Primer Premier 5.0软件上设计5'和3' RACE特异性引物,通过RACE技术得到产物,产物经过1.0%琼脂糖凝胶电泳检测合格后送往苏州金唯智生物科技有限公司测序,将所得到的全部测序结果通过Sequebcher 5.0软件拼接得到OrFMRFamide基因的序列全长。

    把拼接得到的基因序列全长在NCBI上用ORF Finder (https://www.ncbi.nlm.nih.gov/orffinder/) 在线工具对OrFMRFamide基因开放阅读框 (Open reading frame, ORF) 及编码氨基酸进行预测,得到预测的编码氨基酸后在NCBI上用在线工具BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) 进行同源性比较,使用NetNGlyc 1.0 Server (http://www.cbs.dtu.dk/services/NetNGlyc/) 在线工具确定糖基化位点,理化性质用ProtParam (http://web.expasy.org/protparam/) 在线工具分析,使用NetPhos 2.0 Server (http://www.cbs.dtu.dk/services/NetPhos–2.0/) 在线工具查找磷酸化位点,使用Signal 5.0 (http://www.cbs.dtu.dk/services/SignalP/) 在线工具查找信号肽。用MEGA-X软件基于比邻法,以1 000次Bootstraps构建瘤背石磺与其他物种FMRFamide基因的系统进化树。

    通过在线工具Genscrip (https://www.genscript.com/tools/real–time–pcr–taqman–primer–design–tool) 根据OrFMRFamide基因全长序列设计荧光定量引物 (表1),以18S作为内参基因,以上述验证过的瘤背石磺各组织cDNA为模板,使用 ChamQ Universal SYBR qPCR Master Mix (Vazyme,美国) 试剂盒在CFX-96 (Bio-Rad,美国) 进行荧光定量反应,每个样品和内参都设置3个平行对照,以Rnase-free双蒸水 (ddH2O) 为阴性对照,实时荧光定量PCR数据用2–ΔΔCT法进行分析。

    表  1  实验中所用引物序列
    Table  1.  Primers used in this experiment
    引物
    Primer
    引物序列 (5'–3')
    Primer sequence
    用途
    Function
    OrFMRFamide-F1 CTTAGGAGTGGGAACAGC 验证目的片段
    OrFMRFamide-R1 CGGCTGGAGATTTGATTG
    OrFMRFamide-F2 CGGACCAGTACGACCAAC
    OrFMRFamide-R2 GTTCAGTCCGCCCTAATG
    OrFMRFamide-3'RACE-inter ACTGGTTTGGGTAGCA 3'RACE 特异性引物
    OrFMRFamide-3'RACE-outer ATGGCAACAATGTCTTTCG
    OrFMRFamide-5'RACE-inter GAGCAGAAGATGGCGT 5'RACE 特异性引物
    OrFMRFamide-5'RACE-outer TCCTCGCTTTGCCTCA
    OrFMRFamide-RT-F AGCTGGAGGACACACTGAGGCA Real-time RT-PCR
    OrFMRFamide-RT-R TGCCACATCGCCCTCATCGG
    18S-F TCCGCAGGAGTTGCTTCGAT
    18S-R ATTAAGCCGCAGGCTCCACT
    下载: 导出CSV 
    | 显示表格

    免疫组织化学取养殖箱暂养未经处理的5只瘤背石磺进行实验。采集未经处理的新鲜的神经节、肝胰腺、性腺、腹足、肌肉和皮肤,用4%的多聚甲醛固定6 h,转移至20%的蔗糖溶液固定过夜,然后转移至40%的蔗糖溶液固定到组织沉底,使用冰冻切片机 (莱卡CM1950) 切片后贴在黏附载玻片上,按照一步法免疫组化试剂盒 (凯基) 说明书完成免疫组化实验,用显微镜观察拍照。

    在养殖箱中暂养7 d后随机选取100只瘤背石磺,平均分为2组,暂养在2个养殖箱中,分别给每只瘤背石磺注射100 μL磷酸盐缓冲溶液 (Phosphate buffered saline, PBS) 和100 μL脂多糖 (LPS, 0.5 mg·mL–1,溶于PBS),经处理的瘤背石磺分别放回养殖箱暂养,分别在注射后第0、第6、第12、第24、第48小时取样,每次随机抽取9只石磺,将3只的血细胞、神经节、肝胰腺、肌肉、性腺、皮肤和腹足合并为1个样本,每个时间点采集3个平行样本。血细胞的采集是使用1 mL注射器从瘤背石磺腹部抽取血液,在800 ×g、4 ℃条件下离心10 min,获得血细胞后将其溶解在trizol中,用液氮速冻,于–80 ℃保存。其他组织取样后放入液氮速冻,于–80 ℃保存。用trizol法提取各组织RNA,用HiScript Q RT SuperMix for qPCR (+gDNA wiper, Vazyme,美国) 试剂盒进行反转录,得到的cDNA于–20 ℃备用。

    按照上述方法,以各组织各个时期刺激前后的cDNA为模板,18S为内参,进行实时荧光定量RT-PCR扩增实验,数据使用2–ΔΔCT法进行分析。

    使用SPSS 26.0软件对荧光定量的数据进行处理,单因素方差分析结果以“平均值±标准差 ($ \overline X \pm {\rm{SD}} $)”表示。P<0.05为差异显著,P<0.01为差异极显著。

    根据瘤背石磺转录组测序结果获得的OrFMRFamide基因片段,通过3'和5'-RACE扩增得到该基因全长序列为2 618 bp,开放阅读框 (Open reading frame, ORF)为882 bp,基因序列末端加尾信号AATAA与Poly (A) 之间有17个碱基 (图1)。ProtParam推测编码1个含有293个氨基酸的蛋白,分子量为33847.88 kD,理论等电点 (pI) 为9.25,不稳定指数为57.00,预测为不稳定蛋白,溶脂指数为55.67,平均疏水指数为–0.890。Server预测该蛋白不存在糖基位点。NetPhos 2.0 Server预测该蛋白含有12个磷酸化位点 [ 丝氨酸 (Ser):4;苏氨酸 (Thr):2;酪氨酸 (Tyr):6]。信号肽软件预测该基因有1个N端信号肽 (1~24)。

    图  1  FMRFamide基因的氨基酸序列及cDNA全长
    浅灰色阴影部分是该基因编码信号肽部分,起始密码子和终止密码子用方框标出,深灰色阴影是磷酸化位点,末端加尾信号AATAAA用下划线标出,poly (A) 用斜体表示
    Figure  1.  Amino acid sequence and full length cDNA of FMRFamide gene
    The light grey shaded portion is the signal peptide portion of the gene; the start and stop codons are boxed; the dark grey shaded portion is the phosphorylation site; the end plus tail signal AATAAA is underlined, and poly (A) is in italics.

    将预测得到的OrFMRFamide基因的氨基酸序列放到NCBI上进行BLAST比对,发现其与其他物种的FMRFamide基因有较高的同源性,下载这些物种的氨基酸序列,使用MEGA-X软件构建进化树 (图2)。结果显示,瘤背石磺和静水椎实螺 (Lymnaea stagnalis) 聚为一支,再与加利福尼亚海兔、棕蜗牛 (Cornu aspersum) 等腹足纲软体动物聚为一大支,与双壳纲海洋贝类聚为一大支,与环节动物和节肢动物各聚为一支。瘤背石磺与静水椎实螺进化关系最为接近。

    图  2  利用MEGA-X软件基于NJ法构建的FMRFamide系统进化树
    Figure  2.  NJ phylogenetic tree of FMRFamide by MEGA-X

    荧光定量RT-PCR结果显示,OrFMRFamide基因在神经节中的表达量极显著高于在其他组织的(P<0.01),此外,该基因也在血细胞、肝胰腺、皮肤、性腺组织中表达,几乎不在肌肉和腹足中表达 (图3)。以性腺的表达量为参照,血细胞、神经节、肝胰腺和皮肤的表达量分别约为性腺的2.33、1 025.47、36.96和6.86倍。

    图  3  OrFMRFamide在各组织的相对表达量
    **. 极显著性差异 (P<0.01)
    Figure  3.  mRNA relative expression of OrFMRFamide in different tissues
    **. Very significant at 0.01 level (P<0.01)

    利用免疫组织化学的方法分析瘤背石磺FMRFamide神经肽在神经节、肝胰腺、肌肉、性腺、皮肤和腹足中的分布情况 (图4),结果显示OrFMRFamide基因在不同组织中的表达模式和FMRFamide神经肽的分布水平相一致,在神经节中大量表达,在性腺、皮肤和肝胰腺中微量表达,在腹足和肌肉中几乎不表达。

    图  4  免疫组化结果
    a. 神经节;b. 腹足;c. 肝胰腺;d. 肌肉;e. 皮肤;f. 性腺;箭头表示FMRFamide多肽
    Figure  4.  Immunohistochemistry results
    a. Ganglia; b. Pleopod; c. Hepatopancreas; d. Muscle; e. Skin; f. Gonad; arrows represent FMRFamide polypeptides.

    基于瘤背石磺OrFMRFamide基因在不同组织中的相对表达量,研究该基因在LPS刺激后48 h内的表达变化 (图5)。LPS组肝胰腺中OrFMRFamide基因的表达量在注射后第12小时达最高值,与PBS组差异显著 (P<0.05),皮肤中OrFMRFamide基因的表达量随时间变化差异不大,但LPS组整体的表达量显著高于PBS对照组 (P<0.05),神经节中该基因的表达量在第12 小时达最高值,整体表达水平显著高于PBS对照组 (P<0.05),血细胞中该基因的相对表达量在第12小时达最高值,性腺中的表达量随时间变化的差异不显著,且LPS组和PBS组差异也不显著 (P>0.05)。

    图  5  OrFMRFamide基因在炎症刺激后在不同组织中的相对表达量
    图中不同字母表示差异显著 (P<0.05)
    Figure  5.  Relative expression of OrFMRFamide gene in different tissues after inflammatory stimulation
    Different letters in the figure indicate significant difference (P<0.05).

    本研究克隆了瘤背石磺FMRFamide基因,系统进化树显示其与静水椎实螺、棕蜗牛聚为一支,说明其与软体动物门腹足纲贝类的亲缘关系非常近,与软体动物双壳纲贝类明显区分开来。

    神经节、肝胰腺和血细胞属于NEI (神经节、肝胰腺、血细胞) 系统,有报道指出NEI系统在应激和感染过程中能维持机体内环境稳定,有效清除病原体,调节机体平衡,减少对宿主的伤害[15]。FMRFamide作为软体动物神经系统中的重要组成部分[16],实时荧光定量结果显示OrFMRFamide在神经节、血细胞和肝胰腺组织中均有较高的表达,在神经节中表达量最高,可能因为其参与神经系统中神经递质的合成和释放及神经内分泌系统的可塑性调节。杨金龙等[17]在研究厚壳贻贝 (Mytilus coruscus) 早期幼虫发育时也发现,FMRFamide大量存在于神经系统中。在其他软体动物如双壳纲[7,18]、腹足纲[19]、头足纲[20]中,FMRFamide多肽也被报道主要存在于神经系统、消化系统和血细胞中。FMRFamide在瘤背石磺NEI系统中的高表达说明该基因可能对瘤背石磺的稳态起重要作用,推测FMRFamide可能在神经节、肝胰腺和血细胞中合成和加工,然后通过自分泌/旁分泌信号通路释放到血细胞中来调节机体。荧光定量结果显示瘤背石磺FMRFamide还存在于皮肤中,高凤娟等[21]和Allan等[22]对花背蟾蜍 (Bufo raddei) 和北美木蛙 (Rana sylvatica) 的研究表明,两栖类动物皮肤具有先天免疫功能,说明瘤背石磺作为无贝壳的两栖型贝类,为适应潮间带恶劣的生存环境,FMRFamide多肽可能参与了其先天免疫。FMRFamide应用免疫组化学进一步证实了OrFMRFamide在不同组织中的分布和FMRFamide多肽的分布一致,这与Terrnina等[23]对猫肝吸虫 (Opisthorchis felineus) 和Allan等[22]对星虫 (Themiste lageniformis) 中FMRFamide的定位结果相似。

    炎症刺激实验结果显示,瘤背石磺神经节、肝胰腺和血细胞中FMRFamide基因相对表达量变化趋势为先上升后降低,在注射脂多糖12 h后的表达量达最大值,说明FMRFamide可能参与了免疫防御反应。在无脊椎动物中,血细胞被认为是宿主在免疫防御反应中起重要作用的免疫相关细胞[24],更有研究表明免疫细胞可以通过自分泌信号途径重新合成神经肽来调节肌体免疫反应[25-27]。Wang等[28]用寄生虫感染光滑双脐螺 (Biomphalaria glabrata),发现FMRFamide相对表达量高于对照组,FMRFamide表达量上升以抵抗寄生虫感染,这和本研究结果一致,可以推测FMRFamide多肽能保护机体免受侵害,响应免疫刺激,在维持机体稳态中发挥重要作用。炎症刺激后瘤背石磺性腺中FMRFamide相对表达量变化不显著,Hada等[29]研究发现FMRFamide还能影响根结线虫 (Meloidogyne graminicola) 的繁殖因子,Kerbl等[30]的研究也证实FMRFamide能作用于生殖腺,影响动物的交配行为,推测瘤背石磺性腺中的FMRFamide可能对瘤背石磺的繁殖有影响,但不参与维持自身稳态。

  • 图  1   南海渔业资源调查站点图

    Figure  1.   Survey station of fishery resources in South China Sea

    图  2   各航次南海扁舵鲣空间异质性结构分布图

    注: a—d依次对应 1—4 航次。

    Figure  2.   Distribution of spatial heterogeneity of A. thazard in each voyage

    Note: a−d correspond to Voyages 1−4.

    图  3   各航次南海扁舵鲣CPUE重心移动轨迹

    Figure  3.   Migration trajectory of center of gravity of CPUE of A. thazard

    图  4   各航次Nino 3.4 分析

    Figure  4.   Nino 3.4 index analysis of each voyage

    表  1   各航次数据W-S正态性检验

    Table  1   W-S normality test of each voyage

    航次
    Voyage
    季节
    Season
    P
    转换后P
    P for conversion
    10.0020.884
    20.0460.521
    30.0000.091
    40.0000.153
    注:P>0.05,该组数据具备正态特征。 Note: P>0.05. The set of data has normality.
    下载: 导出CSV

    表  2   扁舵鲣调查数据基本统计参数

    Table  2   Basic statistical parameters of survey data of A. thazard

    航次
    Voyage
    最小值
    Min.
    最大值
    Max.
    均值
    Mean
    标准偏差
    Standard error
    方差
    Variance
    偏度
    Skewness
    峰度
    Kurtosis
    CV=S/m
    10.003 71.500 00.326 80.520 70.271 02.074 04.153 01.593 3
    20.019 71.000 00.349 20.307 20.094 01.218 00.582 00.879 7
    30.001 41.000 00.120 70.245 60.060 03.235 010.654 02.034 2
    40.000 11.000 00.183 40.292 30.085 02.060 03.547 01.594 0
    下载: 导出CSV

    表  3   各航次扁舵鲣资源变异函数参数

    Table  3   Variation function parameters of A. thazard resources in each voyage

    航次
    Voyage
    最优模型
    Optimum model
    块金值
    Nugget
    基台值
    Sill
    变程
    Range
    块金系数
    Nugget/Sill
    1球状模型0.013 00.810 01.870 00.016 0
    2高斯模型0.000 10.250 21.073 9<0.000 1
    3球状模型0.035 00.452 02.410 00.077 0
    4球状模型0.006 01.230 02.090 00.005 0
    下载: 导出CSV

    表  4   各航次南海扁舵鲣CPUE重心的置信区间 (95%)

    Table  4   Confidence interval for center of gravity of A. thazard of each voyage (95%)

    航次
    Voyage
    纬度
    Longitude/(°N)
    置信区间
    Confidence interval/(°N)
    经度
    Latitude/(°E)
    置信区间
    Confidence interval/(°E)
    110.565 9[9.978 4, 11.629 7]115.362 5[112.624 7, 115.279 2]
    211.702 4[10.711 8, 12.283 1]113.272 6[113.008 2, 115.207 4]
    311.495 8[11.140 2, 12.613 5]114.671 4[112.921 6, 114.777 5]
    411.936 8[11.095 3, 12.400 5]114.144 3[112.552 8, 113.921 2]
    下载: 导出CSV
  • [1] 孔啸兰, 晏磊, 张鹏, 等. 南海扁舵鲣生物学特性的初步研究[J]. 南方水产科学, 2015, 11(5): 100-107. doi: 10.3969/j.issn.2095-0780.2015.05.012
    [2] 张俊, 邱永松, 陈作志, 等. 南海外海大洋性渔业资源调查评估进展[J]. 南方水产科学, 2018, 14(6): 118-127. doi: 10.12131/20180037
    [3] 金显仕, 窦硕增, 单秀娟, 等. 我国近海渔业资源可持续产出基础研究的热点问题[J]. 渔业科学进展, 2015, 36(1): 124-131. doi: 10.11758/yykxjz.20150119
    [4] 李建生, 李圣法, 丁峰元, 等. 长江口近海鱼类多样性的年际变化[J]. 中国水产科学, 2007, 14(4): 637-643. doi: 10.3321/j.issn:1005-8737.2007.04.016
    [5] 王跃中, 袁蔚文. 南海北部底拖网渔业资源的数量变动[J]. 南方水产, 2008, 4(2): 26-33.
    [6] 葛剑平, 郭海燕, 仲莉娜. 地统计学在生态学中的应用 (Ⅰ)——基本理论和方法[J]. 东北林业大学学报, 1995, 23(2): 88-94.
    [7] 陈新军, 方学燕, 杨铭霞, 等. 地统计学在海洋渔业中的应用[M]. 北京: 科学出版社, 2019: 1-189.
    [8]

    AMIN O M, HECKMANN R A, DALLARÉS S, et al. Morphological and molecular description of Rhadinorhynchus laterospinosus Amin, Heckmann & Ha, 2011 (Acanthocephala, Rhadinorhynchidae) from marine fish off the Pacific coast of Vietnam[J]. PARASITE, 2019, 26(14): 1-20.

    [9] 张月平, 陈丕茂, 梁小芸. 南海珊瑚礁周围过渡性水域主要鱼类食性与食物的关系[J]. 中国海洋大学学报 (自然科学版), 2006, 36(4): 635-638.
    [10] 李敏, 张鹏, 李玉芳, 等. 南海扁舵鲣种群遗传结构和遗传多样性评价[J], 南方水产科学, 2015, 11(5): 82-89.
    [11] 张衡, 吴祖立, 周为峰, 等. 南海南沙群岛灯光罩网渔场金枪鱼科渔获种类、渔获率及其峰值期[J]. 海洋渔业, 2016, 38(2): 140-148. doi: 10.3969/j.issn.1004-2490.2016.02.004
    [12] 张仁斋. 西沙群岛附近海区金枪鱼类仔稚鱼的调查研究报告[J]. 水产学报, 1981, 5(4): 301-315.
    [13]

    NISHIDA T, CHEN D G. Incorporating spatial autocorrelation into the general linear model with an application to the yellowfin tuna (Thunnus albacares) longline CPUE data[J]. Fish Res, 2004, 69(2): 265-274.

    [14] 李晓晖, 袁峰, 白晓宇, 等. 典型矿区非正态分布土壤元素数据的正态变换方法对比研究[J]. 地理与地理信息科学, 2010, 26(6): 102-105.
    [15] 张仁铎. 空间变异理论及应用[M]. 北京: 科学出版社, 2005: 1-11.
    [16] 汤国安, 杨昕. ArcGIS地理信息系统空间分析实验教程[M]. 北京: 科学出版社, 2012: 419-477.
    [17]

    MITCHELL A. The ESRI guide to GIS analysis, Volume 1[M]. 2nd ed. California: ESRI Press, 2020: 1-300.

    [18] 刘爱利, 王培法, 丁园圆. 地统计学概论[M]. 北京: 科学出版社, 2012: 74-95.
    [19] 冯永玖, 方学燕, 陈新军, 等. 基于GIS的西北太平洋柔鱼资源空间插值及不确定性分析[J]. 资源科学, 2015, 37(11): 2299-2308.
    [20] 莫跃爽, 索惠英, 焦树林, 等. 喀斯特地区降水量空间插值方法对比——以贵州省为例[J]. 水土保持研究, 2021, 28(1): 164-170.
    [21]

    GARRISON L P. Spatial patterns in species composition in the Northeast United States continental shelf fish community during 1966‒1999[C]. Spatial processes and management of marine population. Alaska: University of Alaska Sea Grant, 2001: 513-559.

    [22] 刘禹希, 王学锋, 陈国宝, 等. 南海北部海域大眼鲷资源的时空异质性[J]. 水产学报, 2019, 43(12): 2523-2532.
    [23] 张红艳, 高如泰, 江树人, 等. 北京市农田土壤中有机氯农药残留的空间分析[J]. 中国农业科学, 2006, 39(7): 1403-1410. doi: 10.3321/j.issn:0578-1752.2006.07.015
    [24] 卢振彬, 颜尤明, 戴泉水. 闽中、闽东渔场扁舵鲣的资源生物学[J]. 台湾海峡, 1992, 11(3): 251-256.
    [25] 方学燕, 冯永玖, 陈新军, 等. 6-9月秘鲁外海茎柔鱼资源的空间异质性研究[J]. 上海海洋大学学报, 2016, 25(2): 271-281.
    [26] 杨晓明, 戴小杰, 朱国平. 基于地统计分析西印度洋黄鳍金枪鱼围网渔获量的空间异质性[J]. 生态学报, 2012, 32(15): 4682-4690.
    [27] 苏奋振, 周成虎, 史文中, 等. 东海区底层及近底层鱼类资源的空间异质性[J]. 应用生态学报, 2004, 15(4): 683-686. doi: 10.3321/j.issn:1001-9332.2004.04.029
    [28] 张寒野, 程家骅. 东海区小黄鱼空间格局的地统计学分析[J]. 中国水产科学, 2005, 12(4): 50-54.
    [29] 赵传絪, 陈思行. 金枪鱼类和金枪鱼渔业[M]. 北京: 海洋出版社, 1983: 135-136.
    [30] 张仁斋. 三种金枪鱼类 (鲣、黄鳍金枪鱼、扁舵鲣) 的仔、稚鱼在南海的分布和产卵期[J]. 海洋学报 (中文版), 1983, 5(3): 368-375.
    [31]

    REN Y Z, YIN J Q, TAN Y H, et al. Monsoon-driven seasonal and spatial distribution of the copepod community along the northwest continental shelf of the South China Sea[J]. J Mar Syst, 2021, 218: 103529. doi: 10.1016/j.jmarsys.2021.103529

    [32]

    HENDERSON K A, MURDOCK J, LIZOTTE R. Water depth influences algal distribution and productivity in shallow agricultural lakes[J]. Ecohydrology, 2021, 14(6): e2319.

    [33] 陈新军. 渔业资源与渔场学[M]. 2版. 北京: 海洋出版社, 2014: 184-215.
    [34] 郝锵. 中国近海叶绿素和初级生产力的时空分布特征和环境调控机制研究[D]. 青岛: 中国海洋大学, 2010: 32-48.
    [35] 樊伟, 程炎宏, 沈新强. 全球环境变化与人类活动对渔业资源的影响[J]. 中国水产科学, 2001, 8(4): 91-94. doi: 10.3321/j.issn:1005-8737.2001.04.021
    [36]

    LEHODEY P, BERTIGNAC M, HAMPTON J, et al. El Nino Southern Oscillation and tuna in the western Pacific[J]. Nature, 1997, 389(6652): 715-718. doi: 10.1038/39575

    [37]

    CHEN Y L, SHAN X J, JIN X S, et al. A comparative study of spatial interpolation methods for determining fishery resources density in the Yellow Sea[J]. Acta Oceanol Sin, 2016, 35(12): 65-72. doi: 10.1007/s13131-016-0966-y

    [38]

    PAN S Y, TIAN S Q, WANG X F, et al. Comparing different spatial interpolation methods to predict the distribution of fishes: a case study of Coilia nasus in the Changjiang River Estuary[J]. Acta Oceanol Sin, 2021, 40(8): 119-132. doi: 10.1007/s13131-021-1789-z

    [39]

    LIU Z L, YAN T F. Comparison of spatial interpolation methods based on ArcGIS[J]. J Phys Conf Ser, 2021, 1961(1): 12-50.

    [40] 孙铭帅, 陈作志, 蔡研聪, 等. 空间插值法在北部湾渔业资源密度评估中的应用[J]. 中国水产科学, 2017, 24(4): 853-861.
    [41]

    WANG J T, BOENISH R, CHEN X J, et al. The effects of spatio-temporal scale on commercial fishery abundance index suitability[J]. ICES J Mar Sci, 2021, 78(7): 2506-2517. doi: 10.1093/icesjms/fsab126

    [42] 陈清霞, 涂成龙, 陆晓辉, 等. 贵州省旱地黄壤Zn和有机质的空间异质性特征[J]. 环境科学学报, 2021, 41(10): 1-9.
  • 期刊类型引用(1)

    1. QIU Jiayin,SUN Lianlian,LI Shuang,ZHOU Xu,CHI Changfeng,ZHENG Libing. Identification and Expression Profile of a Neuropeptide LFRFamide-Like Gene During Different Stages of Gonadal Development in the Cephalopod Sepia pharaonis. Journal of Ocean University of China. 2024(02): 499-508 . 必应学术

    其他类型引用(0)

图(4)  /  表(4)
计量
  • 文章访问数:  633
  • HTML全文浏览量:  204
  • PDF下载量:  50
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-11-02
  • 修回日期:  2022-01-12
  • 录用日期:  2022-02-12
  • 网络出版日期:  2022-02-20
  • 刊出日期:  2022-10-04

目录

/

返回文章
返回