鳕鱼皮源医用复合止血敷料的制备及性能研究

宋雪, 刘晗, 李昭璇, 李八方, 侯虎

宋雪, 刘晗, 李昭璇, 李八方, 侯虎. 鳕鱼皮源医用复合止血敷料的制备及性能研究[J]. 南方水产科学, 2022, 18(2): 66-73. DOI: 10.12131/20210323
引用本文: 宋雪, 刘晗, 李昭璇, 李八方, 侯虎. 鳕鱼皮源医用复合止血敷料的制备及性能研究[J]. 南方水产科学, 2022, 18(2): 66-73. DOI: 10.12131/20210323
SONG Xue, LIU Han, LI Zhaoxuan, LI Bafang, HOU Hu. Preparation and properties of medical compound hemostasis dressing from Pacific cod skin[J]. South China Fisheries Science, 2022, 18(2): 66-73. DOI: 10.12131/20210323
Citation: SONG Xue, LIU Han, LI Zhaoxuan, LI Bafang, HOU Hu. Preparation and properties of medical compound hemostasis dressing from Pacific cod skin[J]. South China Fisheries Science, 2022, 18(2): 66-73. DOI: 10.12131/20210323

鳕鱼皮源医用复合止血敷料的制备及性能研究

基金项目: 国家重点研发计划项目 (2019YFD0901905);山东省泰山学者项目 (tsqn202103033)
详细信息
    作者简介:

    宋 雪 (1997—),女,硕士研究生,研究方向为水生生物胶原蛋白。E-mail: 291686910@qq.com

    通讯作者:

    侯 虎 (1984—),男,教授,博士,从事海洋活性物质研究。E-mail: houhu@ouc.edu.cn, houhuouc@163.com

  • 中图分类号: R 318.08

Preparation and properties of medical compound hemostasis dressing from Pacific cod skin

  • 摘要: 以太平洋鳕 (Gadus macrocephalus) 鱼皮明胶为原料,通过复配海藻酸钠得到一种可吸收复合止血敷料,并对其机械性能、止血效果、止血机理和生物相容性进行评价。结果表明,明胶质量浓度为10 mg·mL−1时制备的止血敷料具有较高的机械强度。体内止血评价结果显示,复合止血敷料对大鼠股动脉止血、肝创面止血和断尾止血模型均有良好的效果,止血时间分别为 (64±9)、(108±4) 和 (230±25) s,与市售明胶海绵的止血效果相当。复合止血敷料可缩短活化部分凝血活酶时间 (Activated partial thromboplastin time, APTT) 和凝血酶时间 (Thrombin time, TT),激活内源性凝血系统和共同性凝血途径,以及促进血栓烷素B2 (TXB2)、血小板第四因子 (PF4) 和P-选择素的释放,达到快速止血效果。生物相容性实验结果证实,该复合敷料无急性毒性、无刺激性且溶血率小于5%,达到医用材料的行业标准。该研究结果为开发新型医用敷料并实现鳕鱼皮高值化利用提供了参考和理论依据。
    Abstract: In this study, an absorbable composite hemostatic dressing was prepared by combining sodium alginate with Pacific cod (Gadus macrocephalus) skin gelatin, and its mechanical properties, hemostatic effect, hemostatic mechanism and biocompatibility were evaluated. The results show that the composite hemostatic dressing had high mechanical strength with 1% of gelatin concentration. Results of hemostatic evaluation in vivo indicate that the dressing had good hemostatic effect on the femoral artery, liver wound and tail hemostasis models of rats, and the hemostatic time was (64±9), (108±4) and (230±25) s, respectively, which was similar with the hemostatic effect of commercial gelatin sponge. The dressing could shorten activated partial thromboplastin time (APTT) and thrombin time (TT), which activated endogenous coagulation and common coagulation pathway, and promoted the release of thromboxane-B2 (TXB2), platelet factor-4 (PF4) and P-selectin to achieve rapid hemostatic effect. Biocompatibility experiments show that the composite dressing had no acute toxicity or irritation and the hemolysis rate was less than 5%, which meets the standards of medical materials. The study provides reference and theoretical basis for developing new medical dressing and realizing high-value utilization of Pacific cod skin.
  • 黄鳝 (Monopteru albus),俗名鳝鱼,广泛分布于我国各湖泊、水库和稻田等淡水水域。其肉质鲜美,含有丰富的必需氨基酸和脂肪酸及其他特殊营养素,具有很高的药用和滋补功能,一直深受消费者青睐[1]。黄鳝是目前我国大力推广养殖的重要名特优水产品之一,2016年我国人工养殖黄鳝产量达到38.6万吨。从市场角度看,规格一致的鱼苗或成鱼有利于养殖品种的商品化,但在鱼类养殖过程中,总有部分鱼生长缓慢,这不仅浪费养殖空间,也导致饲料浪费,严重影响了养殖经济效益。黄鳝养殖在这方面尤为突出,即使是同一亲本所产、在相同环境中生长的黄鳝,这种生长差异依然存在且显著。影响鱼类生长的因素很多,如种质差异、营养水平、温度、密度、水质等[2],但目前对黄鳝生长差异产生的机制尚不清楚,亟待研究探讨。

    近年来,转录组学被广泛应用于生物学研究,对于功能基因发掘、转录调控机制、分子标记开发和信号通路等各方面的研究具有重要作用[3]。目前,转录组学已广泛应用于鱼类发育[4]、进化[5]、免疫[6]和抗病机理[7]研究中。本文通过转录组测序发掘黄鳝生长差异基因及其调控通路,初步阐明造成黄鳝生长差异的基因调控机制,以期为促进黄鳝工业化养殖提供理论依据。

    实验鳝苗取自江西农业大学水产基地,均为饲养在相同水箱中、同一亲本黄鳝当年产卵孵化的鳝苗;黄鳝养殖用的配合饲料大宗原料购买于南昌大佑农生物技术有限公司。养殖1年后,从同一水箱中取个体差异显著的健康黄鳝,个体较大的为实验组 (AEG),个体较小的为对照组 (ACG),具体数据见表1,取其肝脏液氮冷冻后放−80 ℃冰箱备用。

    表  1  样品信息
    Table  1.  Information of samples
    样品Sample体质量Body mass/g全长Total length/cm
    实验组Treatment group AEG1 42.27 35.8
    AEG2 44.10 36.5
    AEG3 35.78 34.6
    对照组Control group ACG1 6.30 19.8
    ACG2 6.61 18.9
    ACG3 6.12 20.2
    下载: 导出CSV 
    | 显示表格

    取50~100 mg肝脏组织,加入一定比例的TRIzol,在低温下迅速匀浆,室温放置5 min,使其充分裂解,经氯仿抽提、异丙醇沉淀、75%乙醇洗涤后,室温开盖晾约5 min,用适量RNase-free水溶解RNA后于−80 ℃保存备用。使用1%的琼脂糖凝胶电泳检测其完整性。

    总RNA提取以后,使用美国纽英伦生物技术公司试剂盒 (#E7530) 进行cDNA建库。首先用带有Oligo (dT) 磁珠富集真核生物的mRNA加入fragmentation buffer将mRNA打断成短片段并用六碱基随机引物合成cDNA第一条链。然后加入缓冲液、DNA聚合酶Ⅰ、dNTP、RNase和缓冲溶液合成cDNA第二条链。使用快速PCR抽提试剂盒,尾端修复,纯化双链cDNA片段,并引入单碱基“A”使其与IIIumina测序接头链接。最后进行PCR扩增,通过琼脂糖凝胶电泳分离连接产物,PCR扩增富集目标片段。文库构建完成后,使用Agilent 2100 Bioanalyzer对文库进行检测以及使用ABI StepOnePlus Real-Time PCR System对文库浓度进行定量检测,合格后用IIIumina HiSeq TM 4000对cDNA文库进行测序。测序服务由北京博云华康基因科技有限公司提供。

    转录组测序后原始数据Raw reads含有低质量的reads,经过筛选过滤得到高质量的Clean reads。使用HISAT程序将得到的Clean reads比对到参考基因组上。利用DEGseq差异分析软件包进行差异基因筛选,首先计算差异倍数 (Fold change,FC) log2值和P,只有同时符合log2绝对值大于2和P的绝对值小于0.001的基因才被确定为显著差异基因 (Differentially expressed gene, DEG),然后对差异基因进行KEGG通路和GO功能富集性分析。

    对于筛选到的7个与生长相关的差异表达基因进行qPCR验证。引物设计见表2,18 S作为内参基因。荧光定量PCR反应条件为95预变性90 s,95 ℃变性5 s,60 ℃退火15 s,72 ℃延伸20 s,共40个循环。每个样品重复3次,实验数据按照Livak的2−△△Ct方法处理。

    表  2  荧光定量PCR引物信息
    Table  2.  Information of primers used for qPCR
    基因GeneqPCR引物序列 (5'–3')Primer sequence of qPCR退火温度Annealing temperature/℃片段大小Fragment size/bp
    col1α1 F:AGTTGTTTGCGGACCGAGAT 60.0 110
    R:GCAATCTGGCATTTCCTCACA 59.2
    nkx6.1 F:GGACAAAGATGGGAAACGAAA 56.7 96
    R:GCCAGGTATTTGGTCTGTTCA 58.2
    nnos F:CTATCAGTCTGGATGCCACAAC 58.8 115
    R:CAGAGCCCAACAGAAACATTAG 57.3
    plexina4 F:TGCTGAGAACCCTGAGTGGATA 60.6 159
    R:TAGCATTTGCGGTTGTCTTCAT 58.9
    pcgf1 F:CAGCCCTTACTCAACCTCAAA 57.9 167
    R:GCATCTGGCACAGCATCTACG 61.7
    igfbp1 F:CAGAGAGCCTTGGAAAAGATTG 57.3 171
    R:CTTGCCGTTCCAGGAGTGT 59.9
    h3.3 F:ATTTTGAGTTGCGGCGATTA 56.4 181
    R:GTAACGATGGGGCTTCTTCAC 59.0
    18S F:GTGGAGCGATTTGTCTGGTTA 57.8 162
    R:CGGACATCTAAGGGCATCAC 57.7
    下载: 导出CSV 
    | 显示表格

    本实验共测6个样本,平均每个样本产出约41 000 000 Clean reads,约合6.0 Gb数据量 (表3)。用Q20 (单个碱基的测序错误率低于1%) 和Q30 (单个碱基的测序错误率低于0.1%) 对这些数据的质量进行检测,Q20 和Q30值分别为98.02%和94.75%以上,说明测序质量很好。将测序结果与参考基因组进行比对,匹配率在74.32%以上。将匹配到参考基因的Reads组装成基因,共得到19 149个基因。以长势差的ACG组为对照,使用RSEM计算基因与转录表达水平,分析发现差异表达基因有598个,其中有303个基因上调,295个下调。差异表达基因的火山图和统计图分别见图1-a图1-b

    表  3  测序结果统计
    Table  3.  Statistics of sequencing results
    样品Sample过滤后ReadsFiltered ReadsQ20/%Q30/%GC含量GC content/%匹配率Matching ratio/%
    对照组Control groupACG14120116898.0394.7546.7875.48
    ACG24104770498.0494.7746.6175.48
    ACG34092654098.0294.7848.1275.98
    实验组Treatment groupAEG14100432498.0994.9646.8774.32
    AEG24098404698.1295.0047.0974.44
    AEG34099936698.0794.8847.3375.21
    下载: 导出CSV 
    | 显示表格
    图  1  差异基因火山和统计图
    红色代表上调,蓝色代表下调,黑色代表无差异,每个点代表一个基因
    Figure  1.  Volcano-plots (a) and statistics (b) of differentially expressed genes
    Up-regulated genes are in red; down-regulated ones are in blue; black represents no difference; each dot represents a gene.

    将598个差异表达基因进行GO分析 (图2),这些基因分属于生物过程、细胞组分和分子功能三大类下的42个分支。生物过程组中含有19个分支,其中单生物体过程、细胞过程和代谢过程占比最高分别为19.57%、19.23%和15.72%;细胞组分组中有15个分支,其中细胞、细胞部分和膜分占比最高,分别为11.87%、11.87%和10.87%;在分子功能分组中有8个分支,其中结合、催化活性和运输活性占比最高,分别为16.22%、13.38%和3.51%。

    图  2  差异表达基因GO功能分类图
    1. 单生物体过程;2. 细胞过程;3. 代谢过程;4. 生物调节;5. 生物过程调节;6. 定位;7. 刺激应答;8. 发展过程;9. 多细胞生物体过程;10. 生物体细胞组成或起源;11. 信号传导;12. 正调节生物过程;13. 负调节生物过程;14;生长;15. 运动;16. 免疫系统过程;17. 行为;18多生物体过程;19. 节律过程;20. 细胞;21. 细胞部分;22. 膜;23. 膜部分;24. 细胞器;25. 复杂大分子;26. 细胞器部分;27. 细胞外区域;28. 细胞外区域部分;29. 膜封闭腔;30. 细胞连接;31. 细胞外模型;32. 超分子纤维;33. 突触;34. 突触部分;35. 结合;36. 催化活性;37. 运输活性;38. 分子功能调节;39. 信号传感活性;40. 结构分子活性;41. 分子传感活性;42. 核苷酸结合转录因子活性
    Figure  2.  GO functional classification map of differentially expressed genes
    1. Single-organism process; 2. Cellular process; 3. Metabolic process; 4. Biological regulation; 5. Regulation of biological regulation; 6. Localization; 7. Response to stimulus; 8. Developmental process; 9. Multicellular organismal process; 10. Cell compent organization or biogenesis; 11. Signaling; 12. Positive regulation of biological process; 13. Negative regulation of biological process; 14. Gowth; 15. Locomotion; 16. Immune system process; 17. Behavior; 18. Multi-organism process; 19. Rhythmic process; 20. Cell; 21. Cell part; 22. Membrane; 23. Membrane part; 24. Organelle; 25. Macromolecular complex; 26. Organelle part; 27. Extracellular region; 28. Extracellular region part; 29. Membrane-enclosed lumen; 30. Cell junction; 31. Extracellular matrix; 32. Supramolecular fiber; 33. Synapse; 34. Synapse part; 35. Binding; 36. Catalytic activity; 37. Transporter activity; 38. Molecular function regulation; 39. Signal transducer activity; 40. Structural molecule activity; 41. Molecular transducer activity; 42. Nucleic acid binding transcription factor activity

    将差异表达基因序列与KEGG数据库中的数据进行BlastX比对注释,结果显示598个差异表达基因分布在262条KEGG通路中,其中显著富集的通路有38条 (P<0.05),在这38条通路中有11条代谢相关通路富集效果极显著 (P<0.01)。

    GO功能注释分析发现,与生长相关的差异表达基因有7个,分别为Ⅰ型胶原α1 (collagen typeⅠalpha 1,col1α1)、转录因子nkx6.1 (NK6 homebox 1)、神经性一氧化氮合酶 (Neuronal nitric oxide synthasennos)、神经丛蛋白家族A4 (plexina4)、类胰岛素生长因子结合蛋白-1 (Insulin-like growth factors binding protein 1, igfbp1)、多梳环指蛋白1 (Polycomb group RING finger protein 1, pcgf1) 和组蛋白3.3 (histone 3.3,h3.3)。这7个基因中,除col1α1和nkx6.1基因显著下调外,其余5个基因明显上调。这7个基因分属不同的通路 (表4),这些通路分属于4种类型,其中col1α1、nkx6.1和h3.3基因所在通路属于人类疾病,nnos基因所在通路属于新陈代谢,plexina4基因所在通路属于环境信息加工,igfbp1和pcgf1基因所在通路属于细胞过程。这些通路中只有col1α1所在的利什曼病通路和nnos所在的精氨酸和脯氨酸代谢通路是显著富集的 (P<0.05),其他5个差异基因所在通路富集效果不显著 (P>0.05)。

    表  4  生长相关差异表达基因
    Table  4.  Growth-related differentially expressed genes
    基因名称Gene name基因IDGene ID差异倍数Fold change所属通路Belonged pathway通路IDPathway ID
    col1α1 109951101 −2.5 利什曼病 Ko05140
    nkx6.1 109952563 −3.3 青少年成熟性糖尿病 Ko04950
    nnos 109959109 4.0 精氨酸和脯氨酸代谢 Ko00330
    plexina4 109959815 3.4 细胞黏附分子 Ko04514
    igfbp1 109961253 2.3 p53信号通路 Ko04115
    pcgf1 109972045 3.3 干细胞潜能调节通路 Ko04550
    h3.3 109974907 2.2 癌症的转录失调 Ko05202
    下载: 导出CSV 
    | 显示表格

    荧光定量PCR结果表明 (图3),所选的7个差异表达基因与转录组测序结果表达趋势一致。col1α1和nkx6.1这两个基因表达量均为对照组高于实验组 (实验组为1,对照组分别为3.807和1.725),nnosplexina4、igfbp1、pcgf1和h3.3这5个基因表达量则是实验组高于对照组 (实验组为1,对照组分别为0.497、0.511、0.012、0.872和0.168)。通过荧光定量PCR验证,表明转录组测序结果可靠。

    图  3  差异表达基因qPCR验证图
    Figure  3.  Validation of differentially expressed genes by qPCR

    生长分化是鱼类生长过程中的普遍现象。有观点认为,摄食不足会导致生长分化的产生[8],但杨帆等[9]研究表明,饱食投喂且增加投喂频率并不能改善黄鳝的生长分化现象。为了解黄鳝生长分化的调节机制,本研究进行了转录组测序。本次测序共得到19 149个基因,其中差异表达基因有598个,303个基因上调,295个下调。对这些差异基因进行KEGG通路分析发现,富集的KEGG通路多数与代谢相关。本研究发现,差异表达基因显著富集的38条通路中有15条与代谢有关,其中与脂肪代谢相关的有8条。在前20条富集极显著的通路中,更是有11条与代谢相关,其中影响最显著的代谢通路为类固醇生物合成。

    GO功能注释分析发现,与生长相关的差异表达基因有7个,分别为col1α1、nkx6.1、nnosplexina4、igfbp1、pcgf1和h3.3。col1α1基因显著下调,说明在ACG组的黄鳝中col1α1表达水平显著高于AEG组。Ⅰ型胶原 (COL1) 是由α1和α2两条肽链组成的,col1α1基因的过度表达使α1和α2链的比例发生变化,当比例超过2∶1时会导致骨骼密度、骨骼结构和骨骼质量发生变化从而引起骨质疏松性骨折进而影响生物体正常发育[10]。转录因子nkx6.1基因最早在胰腺β细胞中发现,与胰腺的发育相关[11]。研究发现nkx6.1基因参与调控胰腺β细胞的二次分化,胰腺β细胞能够分泌胰岛素,nkx6.1基因的突变会导致胰腺β细胞无法形成,影响胰岛素的分泌。对鸡胚胎发育的研究发现,过量表达的nkx6.1基因在胚胎发育早期能够促进脊髓Olig2的表达,但在晚期反而会抑制Olig2的表达,这说明nkx6.1在不同时期功能会发生变化。本实验中,ACG组的nkx6.1表达量明显高于AEG组,说明ACG组黄鳝过量表达nkx6.1可能会抑制胰腺β细胞的二次分化,减少胰岛素的分泌,从而影响黄鳝的生长发育。nnos存在于神经元和神经纤维中,其主要的功能就是在细胞间传递信息,具有传递和调节的作用[12]。正常状态下nnos可以产生少量NO维持细胞的生理活动。NO参与多种生理活动调节,对于生长因子增殖、T细胞活化、神经发育和神经再生都有促进作用。除此之外,对美国红鱼 (Sciaenops ocellatus) 添加维生素C的实验表明,nnos基因可以像inos一样被诱导表达参与机体的免疫应答[13]。本实验中nnos表达差异倍数最大 (4倍),NO含量水平的降低会导致胰岛素抗体的出现,使胰岛素不能正常发挥作用,最终导致黄鳝生长发育受阻。plexina4是神经丛蛋白a家族 (a1—a4) 最晚被发现的一个,plexina4对于中枢神经和外周神经的修复和再生具有重要作用[14]plexina4在脑信号蛋白3的信号传递中,起到重要的转导作用[15]。作为膜结合脑信号蛋白6A和6B的受体和信号转导因子,plexina4对于皮质脊髓束和海马组织中苔藓纤维的形成和发育至关重要[16]。有研究发现,在视觉神经和运动神经的发育信号通路中plexina4起到了指导作用,另外对于通路的维持和再生也具有重要作用[17]。本实验中,ACG组plexina4的表达量降低,有可能造成黄鳝神经系统发育不完全从而导致生长受阻。

    类胰岛素生长因子结合蛋白 (Insulin-like growth factors binding protein, Igfbps) 负责保护Igf防止其降解并调节它的生物活性[18]。Igfbps家族目前已知含有6种,从Igfbp1至Igfbp6,对硬骨鱼类的研究发现,不同组织至少含有1种Igfbp而在鱼类血液中至少含有3种主要的Igfbps[19]。在鱼类胚胎发育的各个时期都能检测到igfbp1的表达,孵化后主要在肝脏中表达。无论是成鱼还是胚胎,低氧诱导都可以使igfbp1的表达量显著增加。Igfbp1的主要功能是运输类胰岛素生长因子1 (Igf1)。Igfbp1通过与Igf1结合,调控Igf1的生物学功能:例如,介导Igf与受体之间的亲和力;控制Igf1的运输与代谢;延长Igf1的半衰期;决定Igf1的细胞通透率;调节Igf1的作用位点等。除此之外,Igfbp1自身也具有其他不依赖Igf1的生物学功能,包括控制细胞增殖、抑制机体代谢、参与肿瘤抑制、诱导细胞凋亡和促进血糖升高等。相关研究还发现许多内分泌疾病 (甲亢、糖尿病和性腺发育障碍等) 与Igfbp1有着重要联系[20],虽然对其作用机制尚不了解,但研究发现类固醇激素 (胰岛素、促肾上腺激素和雌激素等) 对igfbp1的表达有调控作用。本实验中igfbp1在ACG组中表达量显著降低,这可能造成Igf1不能完全发挥其生物学功能,从而导致黄鳝发育受阻。Pcgf1是多梳蛋白家族的一种,属于多梳抑制复合体 (Polycomb repression complex, Pcr) Pcr1。Pcgf1在神经系统高度表达因此又称为神经系统多梳蛋白1 (Nervous system polycomb 1, Nspc1)。Pcgf1蛋白在哺乳动物中可以对细胞周期进行调控,对造血干细胞的增殖和分化具有重要作用[21]。Pcr1环指部分的亲水性表面具有E3泛素连接酶活性,它可以通过改变染色质的状态来抑制基因表达[22]。有研究表明pcgf1基因的敲除会使细胞增殖能力下降[23],本实验中ACG组的pcgf1表达量降低可能导致了造血干细胞的增殖下降,从而影响黄鳝的生长发育。组蛋白H3的变体H3.3是一种重要的母源因子,能在受精后替换精子中的鱼精蛋白,参与雄性原核的重编程[24]。母源H3.3会重新激活细胞核的多潜能基因oct4,敲除h3.3后关键的多潜能基因转录水平降低,体细胞核不能被完全重编程导致胚胎不能正常发育[25-26]。注入外源h3.3 mRNA可以弥补这种缺陷。h3.3被认为是转录活性的标志[27]h3.3能够促进基因的转录表达,维持基因组稳定,保证rDNA的转录,促进rDNA的表达,重编码供体细胞核使其成为具有全能性的胚胎[28]。本实验中,ACG组h3.3表达量的降低可能导致了一些关键生长基因 (例如igfbp1、nnosplexina4和pcgf1等) 的转录表达降低,从而影响了黄鳝的生长发育。

    本文通过对生长差异显著的黄鳝进行转录组测序分析,找到了7个与黄鳝生长相关的差异表达基因,这些基因与黄鳝的神经系统、代谢系统和内分泌系统等有密切关系。结合KEGG通路分析,发现col1α1所在的利什曼病通路和nnos所在的精氨酸和脯氨酸代谢通路富集显著,说明其对黄鳝生长具有重要影响,但具体调节机制还需要进一步研究。在7个生长相关的差异表达基因中h3.3与胚胎发育相关,它既能维持基因组稳定,又能保证DNA的正确转录,还能激活多潜能基因重新编程体细胞;由于h3.3具有调节基因转录表达的功能,所以这些差异表达基因的出现是否与h3.3基因 (ACG组) 的表达下调相关还需进一步研究。

  • 图  1   鳕鱼皮明胶的SDS-PAGE电泳图

    Figure  1.   SDS-PAGE patterns of Pacific cod skin gelatin

    图  2   复合止血敷料的止血性能评价

    Figure  2.   Hemostatic evaluation in vivo with different model

    图  3   不同样品对活化部分凝血酶时间、凝血酶原时间和凝血酶时间血小板活性释放因子血栓烷素B2、血小板第四因子和P-选择素的影响

    Figure  3.   Effect of different samples on APTT, PT, TT and release of platelet active factors (TXB2, PF4 and P-selection)

    图  4   注射24 h、48 h和72 h后的皮内刺激情况

    Figure  4.   Intradermal stimulation at 24th, 48th and 72nd hour after injection

    表  1   不同明胶浓度对复合止血敷料理化性能的影响

    Table  1   Physical and chemical properties of composite hemostatic sponge with different gelatin concentration

    明胶质量浓度
    Gelatin mass concentration/
    (mg·mL−1)
    抗张强度
    Tensile
    strength/MPa
    断裂伸长率
    Elongation at
    break/%
    吸水倍数
    Water absorption
    ratio
    持水率
    Water retention
    ratio/%
    交联度
    Degree of
    crosslinking/%
    10.010 0±0.003 7a7.54±0.37a25.47±0.14a21.00±0.20a88.90±0.50a
    50.037 2±0.004 2b7.43±1.31a31.82±0.80b28.03±1.03b63.13±0.63b
    100.082 3±0.002 2c6.81±0.21a49.20±2.24c30.49±2.18b56.68±0.33c
    150.085 9±0.003 6c3.49±0.72b38.15±2.24d37.35±2.37c43.36±2.86d
    200.079 5±0.005 6c1.36±0.30c23.89±0.34a37.99±0.30c44.45±0.57d
    注:同列字母不同者表示显著差异 (P<0.05)。 Note: Values with different letters within the same column have significant difference (P<0.05).
    下载: 导出CSV

    表  2   急性全身毒性试验、皮肤刺激试验和溶血试验结果

    Table  2   Results of acute systemic toxicity assay, dermal irritation test and hemolysis ratio

    实验组
    Experimental group
    阴性对照组
    Negative control group
    阳性对照组
    Positive control group
    急性毒性试验 Acute systemic toxicity assay
     第0小时体质量 Body mass at 0th hour/kg 0.167 7±0.008 2 0.174 0±0.004 6 0.185 3±0.005 0
     第24小时体质量 Body mass at 24th hour/kg 0.172 8±0.007 4 0.177 9±0.009 7 0.186 2±0.004 2
     第48小时体质量 Body mass at 48th hour/kg 0.184 3±0.008 3 0.182 9±0.004 9 0.178 5±0.007 4
     第72小时体质量 Body mass at 72nd hour/kg 0.183 9±0.009 8 0.182 7±0.013 7 0.179 8±0.007 5
    皮肤刺激试验 Dermal irritation test
     第24小时红斑总数 Sum of erythema at 24th hour/个 4 0
     第48小时红斑总数 Sum of erythema at 48th hour/个 0 0
     第72小时红斑总数 Sum of erythema at 72nd hour/个 0 0
     原发性刺激指数 Primary irritation index PII 0.22 0
    溶血试验 Hemolysis test
     溶血率 Hemolysis ratio/% 1.51±0.30 0.00 100.00
    下载: 导出CSV
  • [1]

    BURNETT L R, RICHTER J G, RAHMANY M B, et al. Novel keratin (KeraStat™) and polyurethane (Nanosan®-Sorb) biomaterials are hemostatic in a porcine lethal extremity hemorrhage model[J]. J Biomater Appl, 2014, 28(6): 869-879. doi: 10.1177/0885328213484975

    [2]

    LAN G, LU B, WANG T, et al. Chitosan/gelatin composite sponge is an absorbable surgical hemostatic agent[J]. Colloids Surf B, 2015, 136: 1026-1034. doi: 10.1016/j.colsurfb.2015.10.039

    [3]

    FELGUEIRAS H P, AMORIM M T P. Functionalization of electrospun polymeric wound sponges with antimicrobial peptides[J]. Colloids Surf B, 2017, 156: 133-148. doi: 10.1016/j.colsurfb.2017.05.001

    [4] 陈胜军, 李来好, 杨贤庆, 等. 罗非鱼综合加工利用与质量安全控制技术研究进展[J]. 南方水产科学, 2011, 7(4): 85-90. doi: 10.3969/j.issn.2095-0780.2011.04.013
    [5] 蓝广芊. 壳聚糖/明胶复合止血材料的研制及其性能研究[D]. 重庆: 西南大学, 2016, 5-8.
    [6]

    SADOWSKA M, KOLADZIEJSKA I, NIECIKOWSKA C. Isolation of collagen from the skins of Baltic cod (Gadus morhua)[J]. Food Chem, 2003, 81(2): 257-262. doi: 10.1016/S0308-8146(02)00420-X

    [7]

    LI D, YE Y, LI D, et al. Biological properties of dialdehyde carboxymethyl cellulose crosslinked gelatin-peg composite hydrogel fibers for wound dressings[J]. Carbohydr Polym, 2015, 137: 508-514.

    [8]

    BARHAM A S, TEWES F, HEALY A M. Moisture diffusion and permeability characteristics of hydroxypropyl methylcellulose and hard gelatin capsules[J]. Int J Pharm, 2015, 478(2): 796-803. doi: 10.1016/j.ijpharm.2014.12.029

    [9]

    CHEN H, XING X, TAN H, et al. Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing[J]. Mater Sci Eng C, 2017, 70: 287-295. doi: 10.1016/j.msec.2016.08.086

    [10]

    WANG K, NUNE K C, MISRA R D K. The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules[J]. Acta Biomater, 2016, 36: 143-151. doi: 10.1016/j.actbio.2016.03.016

    [11]

    LIU S, LI Y, LI L. Enhanced stability and mechanical strength of sodium alginate composite films[J]. Carbohydr Polym, 2017, 160: 62-70. doi: 10.1016/j.carbpol.2016.12.048

    [12] 谭国忠, 涂欣冉, 郭黎洋, 等. 3D打印明胶/海藻酸钠/58S生物玻璃骨缺损修复支架的生物安全性评价[J]. 中国组织工程研究, 2022, 26(4): 545-551.
    [13] 孙士儒, 刘阳, 王景辉, 等. 具有不同拓扑结构的海藻酸钠-明胶复合水凝胶的3D打印制备及其性能[J]. 复合材料学报, 2021, 39. DOI: 10.13801/j.cnki.fhclxb.20210917.001.
    [14]

    HOU H, LI B, ZHAO X, et al. The effect of Pacific cod (Gadus macrocephalus) skin gelatin polypeptides on UV radiation-induced skin photoaging in ICR mice[J]. Food Chem, 2009, 115(3): 945-950. doi: 10.1016/j.foodchem.2009.01.015

    [15]

    LAEMMLI U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature, 1970, 227(5259): 680. doi: 10.1038/227680a0

    [16]

    YAN J, MIAO Y, TAN H, et al. Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering[J]. Mater Sci Eng C, 2016, 63: 274-284. doi: 10.1016/j.msec.2016.02.071

    [17]

    HAN F, DONG Y, SU Z, et al. Preparation, characteristics and assessment of a novel gelatin-chitosan sponge scaffold as skin tissue engineering material[J]. Int J Pharm, 2014, 476(1/2): 124-133.

    [18]

    SAFANDOWSKA M, PIETRUCHA K. Effect of fish collagen modification on its thermal and rheological properties[J]. Int J Biol Macromol, 2013, 53: 32-37. doi: 10.1016/j.ijbiomac.2012.10.026

    [19]

    DHAND C, VENKATESH M, BARATHI V A, et al. Bio-inspired crosslinking and matrix-drug interactions for advanced wound dressings with long-term antimicrobial activity[J]. Biomaterials, 2017: 153-168.

    [20]

    DUAN R, ZHANG J, LIU, L, et al. The functional properties and application of gelatin derived from the skin of channel catfish (Ictalurus punctatus)[J]. Food Chem, 2018, 239(15): 464-469.

    [21]

    SEE S F, GHASSEM M, MAMOT S, et al. Effect of different pretreatments on functional properties of African catfish (Clarias gariepinus) skin gelatin[J]. J Food Sci Tech, 2015, 52(2): 753-762. doi: 10.1007/s13197-013-1043-6

    [22] 王运智. 两种鱼皮胶原止血海绵理化性能研究与生物学评价[D]. 烟台: 烟台大学, 2019: 16-17.
    [23]

    KOOSEHGOL S, EBRAHIMIAN-HOSSEINABADI M, ALIZADEH M, et al. Preparation and characterization of in situ chitosan/polyethylene glycol fumarate/thymol hydrogel as an effective wound dressing[J]. Mater Sci Eng C, 2017, 79: 66-75. doi: 10.1016/j.msec.2017.05.001

    [24]

    WANG C, LUO W, LI P, et al. Preparation and evaluation of chitosan/alginate porous microspheres/Bletilla striata, polysaccharide composite hemostatic sponges[J]. Carbohydr Polym, 2017, 174: 432-442.

    [25]

    MIRZAKHANIAN Z, FAGHIHI K, BARATI A, et al. Synthesis and characterization of fast-swelling porous superabsorbent hydrogel based on starch as a hemostatic agent[J]. J Biomater Sci Polym Ed, 2015, 26(18): 1-13.

    [26]

    LI L, DU Y, YIN Z, et al. Preparation and the hemostatic property study of porous gelatin microspheres both in vitro and in vivo[J]. Colloids Surf B, 2019, 187: 110641.

    [27]

    ZHANG K, LI J, WANG Y, et al. Hydroxybutyl chitosan/diatom-biosilica composite sponge for hemorrhage control[J]. Carbohydr Polym, 2020, 236: 116051. doi: 10.1016/j.carbpol.2020.116051

    [28]

    LI H, CHENG W, LIU K, et al. Reinforced collagen with oxidized microcrystalline cellulose shows improved hemostatic effects[J]. Carbohydr Polym, 2017, 165: 30-38. doi: 10.1016/j.carbpol.2017.02.023

    [29]

    LIU Y, LIU Y, LIAO N, et al. Fabrication and durable antibacterial properties of electrospun chitosan nanofibers with silver nanoparticles[J]. Int J Biol Macromol, 2015, 79: 638-643. doi: 10.1016/j.ijbiomac.2015.05.058

    [30]

    SARIKA P R, JAMES N R. Polyelectrolyte complex nanoparticles from cationised gelatin and sodium alginate for curcumin delivery[J]. Carbohydr Polym, 2016, 148: 354-361. doi: 10.1016/j.carbpol.2016.04.073

  • 期刊类型引用(2)

    1. 林彬彬,袁泉,田志新,潘显斌,周文宗,徐震. 基于SSA- LSTM模型的黄鳝池溶氧预测研究. 渔业现代化. 2023(01): 71-79 . 百度学术
    2. 曹晓莉,李昭林,胡毅. 低鱼粉饲料中添加牛磺酸对黄鳝生长、消化率及肠道酶活性的影响. 南方水产科学. 2021(05): 64-70 . 本站查看

    其他类型引用(2)

图(4)  /  表(2)
计量
  • 文章访问数:  494
  • HTML全文浏览量:  224
  • PDF下载量:  26
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-10-31
  • 修回日期:  2021-12-12
  • 录用日期:  2022-01-09
  • 网络出版日期:  2022-01-26
  • 刊出日期:  2022-04-04

目录

/

返回文章
返回