基于混菌发酵的鳜鱼发酵工艺优化与品质分析

吴燕燕, 王悦齐, 沈颖莹, 陈茜, 李春生, 赵永强, 杨少玲, 潘创, 李来好

吴燕燕, 王悦齐, 沈颖莹, 陈茜, 李春生, 赵永强, 杨少玲, 潘创, 李来好. 基于混菌发酵的鳜鱼发酵工艺优化与品质分析[J]. 南方水产科学, 2022, 18(2): 105-114. DOI: 10.12131/20210296
引用本文: 吴燕燕, 王悦齐, 沈颖莹, 陈茜, 李春生, 赵永强, 杨少玲, 潘创, 李来好. 基于混菌发酵的鳜鱼发酵工艺优化与品质分析[J]. 南方水产科学, 2022, 18(2): 105-114. DOI: 10.12131/20210296
WU Yanyan, WANG Yueqi, SHEN Yingying, CHEN Qian, LI Chunsheng, ZHAO Yongqiang, YANG Shaoling, PAN Chuang, LI Laihao. Process optimization and quality analysis of Siniperca chuatsi fermentation based on mixed bacteria fermentation[J]. South China Fisheries Science, 2022, 18(2): 105-114. DOI: 10.12131/20210296
Citation: WU Yanyan, WANG Yueqi, SHEN Yingying, CHEN Qian, LI Chunsheng, ZHAO Yongqiang, YANG Shaoling, PAN Chuang, LI Laihao. Process optimization and quality analysis of Siniperca chuatsi fermentation based on mixed bacteria fermentation[J]. South China Fisheries Science, 2022, 18(2): 105-114. DOI: 10.12131/20210296

基于混菌发酵的鳜鱼发酵工艺优化与品质分析

基金项目: 国家重点研发计划项目 (2019YFD0901903);财政部和农业农村部国家现代农业产业技术体系项目 (CARS-46, CARS-47);广东省基础与应用基础研究基金 (2019A1515111158)
详细信息
    作者简介:

    吴燕燕 (1969—),女,研究员,博士,从事水产品加工与质量安全控制研究。E-mail: wuyygd@163.com

    通讯作者:

    李来好 (1963—),男,研究员,博士,从事水产品加工与质量安全控制研究。E-mail: laihaoli@163.com

  • 中图分类号: S 986.1

Process optimization and quality analysis of Siniperca chuatsi fermentation based on mixed bacteria fermentation

  • 摘要: 为探索人工接种、混菌发酵鳜鱼 (Siniperca chuatsi) 技术,弥补传统发酵鳜鱼较为粗放、经验式的加工方式,提升产品品质,将菌种混合接种于鳜鱼进行发酵,通过单因素和响应面试验对发酵工艺条件 (发酵温度、发酵时间、菌种配比和发酵剂接种量) 进行优化,测定产品水分、pH、氨基态氮、总酸、硫代巴比妥酸的反应值 (TBARS) 和挥发性盐基氮 (TVB-N) 含量,并与传统自然发酵鳜鱼产品比较,探究接种发酵对发酵鳜鱼品质的影响。结果显示优化后的最佳鳜鱼发酵工艺为:按m[戊糖片球菌 (Pediococcus pentosaceus)]∶m[清酒乳杆菌 (Lactobacillus sakei)]∶m[肉葡萄球菌 (Staphylococcus carnosus)]=1∶1∶3混合,接种量为1.0%,发酵温度22 ℃,发酵时间为4 d。对比自然发酵鳜鱼,接种混菌发酵鳜鱼的水分质量分数和pH分别下降了2.04%和0.46%,在较短发酵时间内其氨基态氮质量分数与自然发酵鳜鱼相近,总酸质量分数增加了29.27%,TBARS和TVB-N质量分数分别下降了35.00%和53.10%。整体而言,接种混菌有助于改善发酵鳜鱼的品质和安全性,缩短发酵时间,控制发酵工艺。
    Abstract: In order to explore the technology of artificial inoculation with mixed bacteria fermention for mandarin fish (Siniperca chuatsi), to improve the extensive and empirical processing mode and to ameliorate the quality of traditional fermented S. chuatsi, we optimized the fermentation process conditions (fermentation temperature, fermentation time, strain ratio and starter inoculation amount) inocuted with mixture starter by single factor and response surface tests. Then we determined the moisture, pH, amino nitrogen, total acid, thiobarbituric acid reactive value (TBARS) and total volatile base nitrogen (TVB-N) content and compared them with traditional natural fermented fish, so as to investigate the effect of inoculation fermentation on its quality. The optimal fermentation process for S . chuatsi was obtained (mass ratio of Pediococcus pentosaceuLactobacillus sakeiStaphylococcus carnosus of 1∶1∶3; inoculum of 1.0%; fermentation temperature of 22 ℃; fermentation time of 4 d). Compared with naturally fermented S. chuatsi, the mass fractions of moisture and pH of the inoculated mixed starter fermented fish decreased by 2.04% and 0.46%, respectively. In a shorter fermentation time, its mass fraction of amino nitrogen was similar with that of naturally fermented fish, and the mass fraction of total acid increased by 29.27%. The mass fractions of TBARS and TVB-N decreased by 35.00% and 53.10%, respectively. In conclusion, the inoculated mixed starter culture fermentation of S. chuatsi helps to improve its quality and safety, shorten the fermentation time, and control the fermentation process.
  • 无乳链球菌 (Streptococcus agalactiae) 也称B族链球菌 (Group B Streptococcus, GBS),是一种人、鱼共患的革兰氏阳性菌[1]。与许多其他致病菌一样,无乳链球菌具有许多毒力因子可提高病原体感染或破坏宿主的能力[2],其毒力因子可通过影响宿主细胞的黏附和侵袭以逃避宿主免疫[3],从而有效削弱机体免疫系统和新陈代谢过程中诱发的生理变化[4],严重时会降低机体的先天防御力,进而诱导机体死亡。作为一种由病原菌引起的常见疾病,链球菌病在罗非鱼养殖中具有破坏性影响[5]。2019年,无乳链球菌和海豚链球菌 (S. iniae) 给罗非鱼养殖业造成的经济损失约达25亿元[6]。此外,无乳链球菌感染还可导致斑马鱼 (Danio rerio)[7]在内的多种鱼体患病并大量死亡。硬骨鱼感染无乳链球菌的典型症状包括鱼体表变黑、眼球突出或混浊、发白、出血、腹部斑点和鳃盖内侧出血等[8]。目前已有学者从菌株的分离鉴定和分型、防治链球菌感染的药物筛选、疫苗研制等方面进行了无乳链球菌感染鱼体的研究报道[9]。关于无乳链球菌感染卵形鲳鲹 (Trachinotus ovatus) 的发病机理和调节机制方面的研究仍有不足。

    卵形鲳鲹作为我国南方深远海养殖的主要品种,年产量近20万吨[10]。近年来,随着养殖环境变化以及养殖密度增加,导致卵形鲳鲹病害频发,给养殖产业造成严重的经济损失。Cai等[11]2016年首次报道了无乳链球菌感染卵形鲳鲹,感染后可导致其大量死亡,死亡率最高可达每天2%[12]。有研究报道,无乳链球菌侵袭生物体主要通过血流和主要器官在全身传播。作为鱼类的重要免疫调节器官,肝脏、脾脏和肾脏是病原菌入侵鱼体时的广泛研究对象。例如,罗非鱼感染无乳链球菌后可导致其肝脏、肠、鳃、脾、头肾和脑发生不同程度的病变,其中在肾脏和脾脏中检测到较高的细菌密度[5]。杂交蛇头鱼 (Channa maculata♀ × C. argus♂) 脾脏中存在的免疫和凋亡相关通路在舒伯特气单胞菌 (Aeromonas schubert) 感染中发挥重要作用[13]。爱德华氏菌 (Edwardsiella) 感染可诱导许氏平鲉 (Sebastes schlegeli) 脾、肝和头肾中钙网蛋白的显著上调,从而减少病原体在其体内的传播和复制[14]。然而,对卵形鲳鲹脾脏在无乳链球菌入侵后的调控机制研究仍有不足。

    因此,本研究在已有研究基础上,通过酶活性测定、组织病理学观察和实时定量PCR探究了卵形鲳鲹脾脏在无乳链球菌感染后的生理生化反应和凋亡诱导机制,以期为卵形鲳鲹抗病育种及长期健康养殖提供参考依据。

    实验所用卵形鲳鲹均来自中国水产科学研究院南海水产研究所深圳试验基地,平均体质量为31.15 g。实验开始前,选取无病原感染、健壮的500尾卵形鲳鲹,转入与实验条件一致的实验桶进行暂养,养殖水温为 (27±0.5) ℃,盐度25‰,溶解氧质量浓度保持在5.5 mg·L−1以上。每天投喂2次,饲喂量约占体质量的4%。选用的无乳链球菌菌株2021年分离自中国水产科学研究院南海水产研究所深圳试验基地的患病卵形鲳鲹。

    实验开始前,将细菌接种于BHI液体培养基中,并在180 r·min−1、27 ℃的摇床上孵育24 h。将BHI液体培养物在8 000 r·min−1[15]的条件下离心8 min,收集沉淀物。然后用无菌磷酸盐缓冲溶液 (PBS) 洗涤沉淀4次,用不同浓度 (1.0×1010、1.0×109、1.0×108、1.0×107和1.0×106 CFU·mL−1) 的无乳链球菌注射感染卵形鲳鲹。感染后,观察鱼的行为变化,记录不同感染浓度下死亡率与时间的关系,根据死亡率最终得到半致死浓度为1.0×108 CFU·mL−1

    感染实验在150 L的水族箱中进行,水体140 L。选取300尾健康的卵形鲳鲹,随机平均分为6组,其中3个处理组,3个对照组。按照预实验结果,将鱼麻醉后处理组每尾鱼腹腔注射200 μL无乳链球菌 (1.0×108 CFU·mL−1),对照组注射相同剂量的无菌PBS溶液。

    注射后的第0、第6、第12、第24、第48、第72、第96和第120小时取样,每个时间点取3尾鱼,用40 mg·L−1丁香酚麻醉。鱼体经体积分数为75%乙醇消毒后,用1.5 mL无菌注射器静脉取血,将3尾鱼的血液混合置于2.0 mL离心管中静置5 h,离心 (1 000 r·min−1、20 min) 分离获得血清,置于1.5 mL冻存管中,于−80 ℃冰箱中保存用于分析酶活性等相关指标。另外用肝素钠 (100 IU·mL−1) 润洗后的离心管分别收集第0和第120小时血液用于血常规检测。取新鲜的脾脏组织液氮速冻后置于−80 ℃冰箱中备用;另取新鲜脾脏组织通过生理盐水清洗表面血液后用4%多聚甲醛固定用于组织学检查。

    对鱼样品进行宏观和组织学检查,记录外部和内部形态变化。将固定在多聚甲醛中的脾脏组织用体积分数为70%的乙醇清洗,经过脱水后使用常规技术进行石蜡包埋、切片,切片厚度5 μm,并用苏木精-伊红染色,使用正置荧光显微镜 (NIKON ECLIPSE C1) 获得切片图像[16]

    通过全自动血液细胞分析 (深圳迈瑞生物医疗电子股份有限公司,BC-5000Vet) 检测血液中白细胞 (WBC)、嗜中性粒细胞 (NE)、淋巴细胞 (LYM)、红细胞 (RBC)、血小板 (PLT)、血红蛋白浓度 (HGB)、红细胞比容 (HCT)、平均红细胞体积 (MCV)、平均红细胞血红蛋白浓度 (MCHC)、平均血小板体积 (MPV) 和血小板压积 (PCT) 的变化。

    对照组和实验组卵形鲳鲹血清中乳酸脱氢酶 (LDH),脾脏中酸性磷酸酶 (ACP) 和碱性磷酸酶 (ALP) 的活性采用北京华英生物技术研究所试剂盒和酶标仪 (华卫德朗DR-200BS) 进行测定。

    按照RNA提取试剂盒 (广州美基生物科技有限公司) 说明书提取卵形鲳鲹脾脏总RNA,质量分数为1%琼脂糖凝胶电泳和NanoDrop 2000 (Thermo Fisher,美国) 检测其质量和浓度,使用 PrimeScript™ RT试剂盒和gDNA Eraser合成cDNA,于−20 ℃冰箱中储存备用。

    使用Primer Premier 5设计Caspase-3Caspase-8Caspase-9的引物序列 (表1),由于EF-不受无乳链球菌感染的影响,因此选择EF-作为内参基因。通过实时荧光定量PCR仪 (Roche Light Cycler® 480 II,罗氏诊断产品有限公司,上海) 进行实时定量PCR (qRT-PCR),反应体系为12.5 μL。反应条件为95 ℃预变性30 s;95 ℃变性5 s,60 ℃退火30 s,72 ℃延伸 30 s,共40个循环。每个样品重复3次实验,在获得每个样品的阈值之后,使用2−ΔΔt方法计算Caspase-3Caspase-8Caspase-9 mRNA的相对表达水平,使用SPSS 20.0软件进行统计分析。数据以“平均值±标准差 ( $\overline { X}\pm { \rm {SD}} $ )”表示。所有统计分析均使用单因素方差分析 (One-way ANOVA) 进行比较,P<0.05表示差异显著。

    表  1  引物信息及序列
    Table  1  Primers and sequences information applied in this study
    引物名称
    Primer name
    引物序列 (5'—3')
    Primer sequence (5'–3')
    应用
    Application
    Caspase-3-F GCTGCTCTACTGCTTCTGCCTGATG qRT-PCR
    Caspase-3-R TGGCTGAGGATTGTGATGTTGCTG
    Caspase-8-F GCAACAAAACAGCCATCCA qRT-PCR
    Caspase-8-R GCAGGGGTAAAGGGTCATT
    Caspase-9-F GAATGGCGTCCGTCTGGTCATC qRT-PCR
    Caspase-9-R GGCAGCACGTCTCAGTTCAGC
    EF--F AAGCCAGGTATGGTTGTCAACTTT qRT-PCR
    EF--R CGTGGTGCATCTCCACAGACT
    下载: 导出CSV 
    | 显示表格

    人工感染无乳链球菌24 h后,卵形鲳鲹游动不定、食欲不振、嗜睡、运动不协调,且明显观察到角膜混浊、突眼、眼出血、内脏充血和内鳃盖充血等典型病变 (图1),并在感染后48 h出现大量死亡。组织病理学分析显示,脾脏发生较为严重的病变损伤,典型特征为白髓中B淋巴细胞和T淋巴细胞的坏死和丢失;轻度至中度病变表现为脾炎,白髓区域显著减少,淋巴细胞数目降低。在严重病变中,脾脏白髓弥漫性坏死至白髓区域完全消失,伴有网状内皮增生,可见大量被HE染成棕黄色的“小结”(图2)。未感染的卵形鲳鲹脾脏具有正常的红髓和白髓。

    图  1  卵形鲳鲹感染无乳链球菌后内部和外部病变
    注:a. 角膜混浊、突眼、眼出血;b. 内脏充血;c. 内鳃盖充血 (箭头所指)。
    Fig. 1  Internal and external lesions recorded on T. ovatus specimens affected by S. agalactia
    Note: a. Corneal opacity, exophthalmia and eye hemorrhage; b. Gut congestion; c. Congestion in the inner gill cap (Arrow).
    图  2  卵形鲳鲹脾脏组织病理学特征
    注:a. 健康脾脏组织切片;b—c. 感染无乳链球菌120 h 后脾脏组织切片。
    Fig. 2  Histopathological characteristics of spleen of T. ovatus
    Note: a. Healthy spleen tissue section; b−c. Spleen tissue section 120 h after infection with S. agalactiae.

    卵形鲳鲹感染无乳链球菌后血液参数见表2。与对照组相比,感染个体的红细胞数量、血红蛋白浓度和红细胞比容明显降低 (P<0.05),白细胞、嗜中性粒细胞、淋巴细胞数量则出现相反的趋势 (P<0.05),与对照组相比嗜中性粒细胞和淋巴细胞数量增加近3倍。同时平均红细胞体积明显增大,其他指标未见明显变化。

    表  2  卵形鲳鲹感染无乳链球菌对血液学指标的影响
    Table  2  Effect of S. agalactiae infection on hematological parameters of T. ovatus
    项目
    Item
    对照组
    Control
    感染组
    Infection
    白细胞数量 WBC/(109·L−1) 8.32±0.94 13.67±0.58*
    嗜中性粒细胞数量 NE/(109·L−1) 0.18±0.09 0.54±0.12*
    淋巴细胞数量 LYM/(109·L−1) 1.01±0.35 3.04±0.75*
    红细胞数量 RBC/(109·L−1) 5.25±1.07 3.08±0.25*
    血红蛋白浓度 HGB/(g·L−1) 179.67±10.25 129.58±9.58*
    红细胞比容 HCT/% 35.69±0.55 23.37±0.17*
    平均红细胞体积 MCV/fL 160.63±1.27 190.31±0.79*
    平均红细胞血红蛋白量
    MCH/pg
    39.75±2.47 41.11±3.73
    平均红细胞血红蛋白质量浓度
    MCHC/(g·L−1)
    289.21±2.99 292.36±4.13
    血小板数量 PLT/(109·L−1) 19.68±0.25 13.43±0.86
    平均血小板体积 MPV/fL 7.91±1.39 7.41±1.05
    血小板压积 PCT/% 0.70±0.17 0.75±0.11
    注:*. 与对照组相比存在显著性差异 (P<0.05)。 Note: *. Significant difference compared with the control group (P<0.05).
    下载: 导出CSV 
    | 显示表格

    卵形鲳鲹感染无乳链球菌后的血清和脾脏生化指标变化见图3,相较于对照组,感染组个体的血清LDH和脾脏中ALP、ACP活性显著增加 (P<0.05),并于第6小时达到峰值 (P<0.01);同时随着感染时间延长,其活性均逐渐降低但ACP与对照组相比仍有极显著差异 (P<0.01)。其中LDH活性在感染6 h后升高最为显著 (P<0.01),活性约为对照组的10倍。

    图  3  卵形鲳鲹感染无乳链球菌后生化指标变化
    注:a. 不同时间血浆乳酸脱氢酶变化水平;b. 不同时间脾脏碱性磷酸酶变化水平;c. 不同时间脾脏酸性磷酸酶变化水平;**. 差异极显著 (P<0.01);*. 差异显著 (P<0.05)。
    Fig. 3  Changes of biochemical indexes after infection of T. ovatus at different time
    Note: a. The levels of plasma lactate dehydrogenase at different time before and after the challenge; b. The levels of spleen alkaline phosphatase at different time before and after the challenge; c. The levels of spleen acid phosphatase at different time before and after the challenge; **. Very significant difference (P<0.01); *. Significant difference (P<0.05).

    卵形鲳鲹感染无乳链球菌后凋亡基因表达谱见图4。在第0—第120小时的实验期内,Caspase-3Caspase-8Caspase-9的mRNA表达水平随时间推移均不断升高。其中Caspase-8基因表达水平在感染第6小时显著高于对照组 (P<0.05),并在第120小时达到峰值 (P<0.01);Caspase-3在感染后第120小时达到峰值;Caspase-9在感染后第12小时表达量显著升高 (P<0.05),并在第72小时达到峰值后趋于稳定。

    图  4  卵形鲳鲹感染无乳链球菌后脾脏凋亡基因相对表达量
    注:**. 差异极显著(P<0.01);*. 差异显著 (P<0.05)。
    Fig. 4  Relative expression of apoptosis genes in spleen after T. ovatus infection with S. agalactiae
    Note: **. Very significant difference (P<0.01); *. Significant difference (P<0.05).

    本研究通过无乳链球菌体外注射实验感染鱼体后,自患病鱼中分离得到的菌株经形态分析和16S RNA测序比对后均与无乳链球菌具有高度一致性,因此确定其为无乳链球菌感染。经腹腔注射200 μL浓度为1.0×108 CFU·mL−1的病原菌后,在48 h后实验组死亡率开始增加,这与罗非鱼人工注射相似剂量无乳链球菌后的死亡高峰期接近[17]。观察发现实验组卵形鲳鲹出现与自然感染无乳链球菌后相似的临床症状[18],组织病理学分析显示,卵形鲳鲹在无乳链球菌感染后表现出脾脏炎症病变并伴有含铁血黄素沉积。有研究表明,机体对铁元素利用受阻导致脾脏中含铁血黄素的积累或红细胞被大量破坏是鱼类对环境应激的重要信号[19],因此,脾脏中含铁血黄素的检测对卵形鲳鲹的健康监测具有重要意义。本研究中,脾脏作为卵形鲳鲹的主要淋巴器官在无乳链球菌感染后损伤严重,造成无法区分红髓和白髓以及淋巴细胞减少,同时可见产生大量炎症细胞,这与罗非鱼在自然状态下感染无乳链球菌后的组织切片结果相似[3]

    血清生化参数是组织或器官在临床病理学研究中的重要指标[20]。研究表明,高于或低于基线水平的酶活性通常反映组织或器官代谢紊乱,严重时会引起细胞凋亡[21]。细胞凋亡是感染的最终结果,主要包括细胞坏死、凋亡和自噬[22]。LDH作为糖酵解途径中的末端酶,在辅酶NADH协助下可将乳酸转化为丙酮酸。当机体受到外界压力时,LDH可以进行逆反应并将丙酮酸 (糖酵解的最终产物) 转化为乳酸[23]。而细胞内LDH的释放是细胞坏死的特征之一。本研究中感染无乳链球菌后卵形鲳鲹血清中LDH显著升高,表明机体可能存在细胞凋亡情况并伴有病理性坏死反应,机体通过凋亡过程清除体内坏死的细胞并参与病原体入侵后的免疫调控过程。此外,ALP和ACP作为溶酶体中的主要水解酶参与生物体的先天免疫过程,参与包括生长和细胞分化等一系列生理代谢活动,常被作为病原菌感染的敏感指标,在评估鱼类病原菌引发的疾病中起重要作用[23-25]。Sharkoori等[26]研究指出ALP和ACP活性可作为细胞坏死的指标。本研究发现,无乳链球菌感染可使卵形鲳鲹脾脏中ALP和ACP活性在短时间内显著升高,这可能是由于脾脏组织功能活性增加促使其在短时间内大量合成,以降低病原菌感染对机体的损害[27]。此外,本研究中ACP活性变化与南亚野鲮 (Labeo rohita)感染嗜水气单胞菌 (A. hydrophila) 后的变化相似[28],推测可能是机体内溶酶体在抵抗无乳链球菌感染过程中大量增殖,促使溶酶体膜破裂,致使膜内保持潜伏状态的ACP被激活。

    血常规检验对于病原体感染的监测具有重要意义[29]。病原菌感染鱼体后可通过细胞膜扩散到血液系统,并对机体血液氧气输送能力和血液电解质平衡产生负面影响[30]。血液中红细胞比容、红细胞和血红蛋白浓度是评估鱼类在暴露于各种环境压力、化学毒性和细菌感染后健康状况的重要指标[25]。本研究中,实验组红细胞比容、红细胞和血红蛋白浓度均显著低于对照组,与草鱼 (Ctenopharyngodon idella)[31]人工感染草鱼呼肠孤病毒 (Grass carp reovirus) 后的变化相似,因此认为血液生化特性可用作卵形鲳鲹对无乳链球菌感染的敏感指标。此外,有研究发现,红细胞比容、红细胞和血红蛋白浓度降低会造成贫血,这可能是细菌感染动物后抑制红细胞生成或是细菌感染导致红细胞生命周期缩短而引起贫血状态[32]。同时本研究中实验组平均红细胞体积较大,推测其可能伴有红细胞增多症。以往研究发现,由于鱼类与哺乳动物不同,幼体红细胞比成体红细胞小,细胞质较少,当外源微生物入侵后可使鱼平均红细胞体积增大[33]。此外,有研究报道,血液中白细胞、嗜中性粒细胞和淋巴细胞数量常因病原菌感染而增多[34]。本研究发现,受感染鱼白细胞、嗜中性粒细胞和淋巴细胞的含量显著升高,可能是病原菌感染诱导机体产生可逆性造血干细胞损伤后出现的侵袭性炎症病变或血液早期再增殖,机体在试图通过发展获得性免疫而增强对病原体的抗性[35]

    当先天免疫被破坏导致应激反应受阻时,细胞会遭受严重损伤并启动凋亡或坏死。细胞凋亡是由基因编码的自杀程序的作用引起的,该程序触发了一系列特征性的形态和生化变化,Caspase是鱼类检测细胞凋亡的关键指标[36]。细胞凋亡通常通过外在途径 (受体-凋亡途径) 和内在途径 (线粒体-凋亡途径) 两种主要途径发生[37],其中外在途径通过细胞外信号调节死亡受体,募集相关死亡结构域和Caspase-8相关的蛋白质,随后Caspase-8的激活直接或间接地激活Caspase-3。内在途径是由细胞色素C与凋亡蛋白酶激活因子 (Apaf-1) 结合,激活下游效应子Caspase-9后进一步激活Caspase-3[38]。河豚 (Takifugu obscurus)[39]感染嗜水气单胞菌后头肾中Caspase-3Caspase-8的mRNA表达水平显著上调,促使细胞凋亡。此外,已有研究报道无乳链球菌诱导的细胞凋亡可以改变水生动物凋亡相关基因的表达水平[40]。本研究发现,无乳链球菌可诱导卵形鲳鲹脾脏中Caspase-3Caspase-8Caspase-9基因的转录水平显著增加,表明机体的内外凋亡途径可同时参与对病原体入侵的免疫调控过程。

  • 图  1   菌种配比对发酵鳜鱼弹性和感官品质的影响

    Figure  1.   Effects of strain ratio on elasticity and sensory quality of fermented S. chuatsi

    图  2   发酵温度对发酵鳜鱼弹性和感官品质的影响

    Figure  2.   Effect of fermentation temperature on elasticity and sensory quality of fermented S. chuatsi

    图  3   发酵时间对发酵鳜鱼弹性和感官品质的影响

    Figure  3.   Effect of fermentation time on elasticity and sensory quality of fermented S. chuatsi

    图  4   接种量对发酵鳜鱼弹性和感官品质的影响

    Figure  4.   Effect of inoculation amount on elasticity and sensory quality of fermented S. chuatsi

    图  5   发酵温度、发酵时间与接种量对发酵鳜鱼感官评分的交互影响

    Figure  5.   Interactive effects of fermentation temperature, fermentation time and inoculation amount on sensory score of fermented S. chuatsi

    表  1   响应面试验因素与水平

    Table  1   Response surface test factors and levels

    因素
    Factor
    水平 Level
    −101
    A:发酵温度
    Fermentation temperature/℃
    15 20 25
    B:发酵时间
    Fermentation time/d
    3 4 5
    C:接种量
    Inoculation amount/%
    0.5 1.0 1.5
    下载: 导出CSV

    表  2   感官评价标准

    Table  2   Sensory evaluation criteria

    项目  
    Item  
    感官评分 Sensory score
    16~2010~156~100~5
    色泽 Color 肉色均匀,呈白色,有光泽 肉色较均匀,呈白色,光泽较好 肉色分布较不均,呈淡黄色,光泽度一般 肉色分布明显不均匀,呈黄色,光泽度差
    气味 Odor 具有鱼肉发酵后的特殊气味,无异味 发酵气味稍淡或稍浓,无明显异味 发酵气味稍淡或稍浓,有轻微异味 无发酵气味,有明显异味
    口感 Mouthfeel 肉质细腻、紧实且具有弹性 肉质较为细腻,较紧实,较有弹性 肉质一般,紧实和弹性一般 肉质粗糙,松散无弹性
    滋味 Taste 滋味鲜美,回味悠长无异味,咸度适中 滋味较鲜美, 回味较长无异味,咸度较重或较淡 滋味一般,回味较短且有轻微异味,咸度较重或较淡 滋味差,无回味且异味重,咸度太重或无咸味
    组织状态 Texture 肉质完整,呈明显蒜瓣状 肉质较完整,蒜瓣状较明显 肉质基本完整,基本呈蒜
    瓣状
    肉质不完整,不呈蒜瓣状
    下载: 导出CSV

    表  3   Box-Behnken试验设计与结果

    Table  3   Box-Behnken test design and results

    试验号
    Test No.
    A:发酵温度
    Fermentation
    temperature
    B:发酵时间
    Fermentation
    time
    C:接种量
    Inoculation
    amount
    感官评分
    Sensory
    score
    1 −1 0 −1 71.3
    2 0 0 0 84.6
    3 1 1 0 74.4
    4 −1 1 0 73.2
    5 0 0 0 84.7
    6 −1 −1 0 70.1
    7 0 0 0 83.5
    8 0 1 1 76.0
    9 0 −1 −1 77.6
    10 1 0 −1 78.4
    11 −1 0 1 71.5
    12 0 0 0 85.2
    13 0 1 −1 75.3
    14 0 0 0 84.2
    15 1 0 1 80.0
    16 1 −1 0 79.3
    17 0 −1 1 78.7
    下载: 导出CSV

    表  4   感官评分回归模型方差分析

    Table  4   Variance analysis of sensory score regression model

    方差来源
    Source
    总偏差平方和
    Sum of squares
    自由度
    Degree of freedom
    平均偏差平方和
    Mean of square
    FP显著性
    Significance
    模型 Model405.81945.0950.32<0.0001极显著
    A84.50184.5094.31<0.000 1极显著
    B5.7815.786.450.038 7显著
    C1.6211.621.810.220 7不显著
    AB16.00116.0017.860.003 9极显著
    AC0.4910.490.550.483 7不显著
    BC0.04010.0400.0450.838 7不显著
    A2146.321146.32163.30<0.000 1极显著
    B277.67177.6786.69<0.000 1极显著
    C244.34144.3449.480.000 2极显著
    误差项 Residual6.2770.90
    失拟项 Lack of fit4.6631.553.850.112 7不显著
    纯误差 Pure error1.6140.40
    所有项 Cor total412.0816
    下载: 导出CSV

    表  5   发酵鳜鱼理化指标

    Table  5   Physiochemical properties of fermented mandarin fish

    理化指标
    Physiochemical property
    接种发酵
    Inoculated
    fermentation
    自然发酵
    Natural
    fermentation
    pH 6.49±0.03 6.95±0.01
    水分质量分数
    Moisture mass fraction/%
    76.28±0.40 78.32±0.78
    氨基态氮质量分数
    Amino nitrogen mass fraction/(g·kg−1)
    0.66±0.01 0.67±0.02
    总酸质量分数
    Total acids mass fraction/(g·kg−1)
    0.53±0.005 0.41±0.01
    硫代巴比妥酸反应值
    TBARS/(mg·kg−1)
    0.13±0.01 0.20±0.01
    挥发性盐基氮质量分数
    TVB-N mass fraction/[mg·(100 g)−1]
    37.43±1.25 79.80±1.70
    下载: 导出CSV
  • [1]

    SHEN Y Y, WU Y Y, WANG Y Q, et al. Contribution of autochthonous microbiota succession to flavor formation during Chinese fermented mandarin fish (Siniperca chuatsi)[J]. Food Chem, 2021, 348: 129107. doi: 10.1016/j.foodchem.2021.129107

    [2]

    WANG Y Q, SHEN Y Y, WU Y Y, et al. Comparison of the microbial community and flavor compounds in fermented mandarin fish (Siniperca chuatsi): three typical types of Chinese fermented mandarin fish products[J]. Food Res Int, 2021, 144: 110365. doi: 10.1016/j.foodres.2021.110365

    [3] 沈颖莹, 吴燕燕, 李来好, 等. 发酵鳜鱼营养成分和安全性评价[J]. 南方水产科学, 2020, 16(3): 103-112. doi: 10.12131/2090247
    [4]

    WEN R, SUN F, WANG Y, et al. Evaluation the potential of lactic acid bacteria isolates from traditional beef jerky as starter cultures and their effects on flavor formation during fermentation[J]. LWT, 2021, 142: 110982. doi: 10.1016/j.lwt.2021.110982

    [5] 石建喜, 许艳顺, 姜启兴, 等. 混合菌种和盐含量对发酵鲢鱼肉品质的影响研究[J]. 食品与生物技术学报, 2018, 37(11): 1219-1224. doi: 10.3969/j.issn.1673-1689.2018.11.016
    [6]

    HAN J, ZHANG J, LIN X, et al. Effect of autochthonous lactic acid bacteria on fermented Yucha quality[J]. LWT, 2020, 123: 109060. doi: 10.1016/j.lwt.2020.109060

    [7] 张大为, 张洁, 田永航. 发酵酸鱼工艺条件的优化及品质分析[J]. 现代食品科技, 2019, 35(10): 139-147.
    [8] 张潇, 龚吉军, 唐静, 等. 不同发酵剂与发酵条件对鲊鱼生物安全性的影响[J]. 食品工业科技, 2016, 37(4): 205-210.
    [9] 周迎芹, 杨明柳, 殷俊峰, 等. 清酒乳杆菌对臭鳜鱼食用品质及挥发性风味物质的影响[J]. 中国食品学报, 2021, 21(9): 160-168.
    [10] 杨召侠, 刘洒洒, 高宁, 等. 臭鳜鱼发酵工艺优化及挥发性风味物质分析[J]. 中国食品学报, 2019, 19(5): 253-262.
    [11] 邹大维, 熊建军, 刘桂琼, 等. 鱼酱酸调味料中总酸、氨基酸态氮检测分析[J]. 中国调味品, 2018, 43(3): 143-145. doi: 10.3969/j.issn.1000-9973.2018.03.033
    [12] 张婷, 吴燕燕, 李来好, 等. 不同贮藏条件下咸鱼品质的变化规律[J]. 食品工业科技, 2012, 33(23): 330-334.
    [13] 曹辰辰, 冯美琴, 健孙, 等. 响应面法优化益生发酵剂接种发酵香肠工艺[J]. 食品科学, 2019, 40(6): 69-76. doi: 10.7506/spkx1002-6630-20181009-069
    [14] 龚珏, 唐善虎, 李思宁, 等. 乳酸菌对发酵牦牛肉灌肠理化性质及挥发性风味物质的影响[J]. 食品与发酵工业, 2020, 46(4): 57-64.
    [15] 刘洒洒. 臭鳜鱼自然及接菌发酵过程中微生物菌落演化与品质变化规律研究[D]. 大连: 大连工业大学, 2018: 34-52.
    [16]

    HU Y, CHEN Q, WEN R, et al. Quality characteristics and flavor profile of Harbin dry sausages inoculated with lactic acid bacteria and Staphylococcus xylosus[J]. LWT, 2019, 114: 108392. doi: 10.1016/j.lwt.2019.108392

    [17]

    LIU X, QIAN M, SHEN Y, et al. An high-throughput sequencing approach to the preliminary analysis of bacterial communities associated with changes in amino acid nitrogen, organic acid and reducing sugar contents during soy sauce fermentation[J]. Food Chem, 2021, 349: 129131. doi: 10.1016/j.foodchem.2021.129131

    [18] 彭毅秦, 乔明锋, 易宇文, 等. 小米椒发酵过程理化指标动态变化分析[J]. 中国调味品, 2018, 43(4): 64-68. doi: 10.3969/j.issn.1000-9973.2018.04.013
    [19] 贺永玲, 杨松, 闫晓明, 等. 鳜鱼发酵过程营养物质动态变化[J]. 食品工业科技, 2016, 37(2): 73-76.
    [20]

    CANDOGAN K, WARDLAW F B, ACTON J C. Effect of starter culture on proteolytic changes during processing of fermented beef sausages[J]. Food Chem, 2009, 116(3): 731-737. doi: 10.1016/j.foodchem.2009.03.065

    [21] 令狐青青, 张雪, 童晓倩, 等. 纳豆芽孢杆菌 (Bacillus natto) 发酵鱿鱼碎肉的工艺优化[J]. 食品科学, 2015, 36(19): 148-152. doi: 10.7506/spkx1002-6630-201519026
    [22]

    ZHAO J, JIANG Q, XU Y, et al. Effect of mixed kojis on physiochemical and sensory properties of rapid-fermented fish sauce made with freshwater fish by-products[J]. Int J Food Sci Tech, 2017, 52(9): 2088-2096. doi: 10.1111/ijfs.13487

    [23] 周敏, 袁美兰, 陈丽丽, 等. 淡水鱼加工副产物低盐鱼露生化特性的研究[J]. 中国调味品, 2017, 42(1): 18-22. doi: 10.3969/j.issn.1000-9973.2017.01.005
    [24] 霍奕璇, 张玉娜, 王晓哲. 低值鱼调味品发酵中的成分变化研究[J]. 中国调味品, 2017, 42(6): 132-134. doi: 10.3969/j.issn.1000-9973.2017.06.028
    [25]

    BLAFSDBTTIR G, MARTINSDBTTIR E, OEHLENSCHBGER J, et al. Methods to evaluate fish review freshness in research and industry[J]. Trends Food Sci Tech, 1997, 8: 258-265. doi: 10.1016/S0924-2244(97)01049-2

    [26]

    SUN Q, CHEN Q, LI F, et al. Biogenic amine inhibition and quality protection of Harbin dry sausages by inoculation with Staphylococcus xylosus and Lactobacillus plantarum[J]. Food Control, 2016, 68: 358-366. doi: 10.1016/j.foodcont.2016.04.021

    [27]

    CHEN Q, KONG B, SUN Q, et al. Antioxidant potential of a unique LAB culture isolated from Harbin dry sausage: in vitro and in a sausage model[J]. Meat Sci, 2015, 110: 180-188. doi: 10.1016/j.meatsci.2015.07.021

    [28]

    TALON R, WALTER D, MONTEL M C. Growth and effect of staphylococci and lactic acid bacteria on unsaturated free fatty acids[J]. Meat Sci, 2000, 54(1): 41-47. doi: 10.1016/S0309-1740(99)00068-6

    [29] 李燕. 黄山臭鳜鱼发酵过程中微生物多样性的研究[D]. 杭州: 浙江工商大学, 2014: 112-121.
    [30]

    LIU Z, ZHANG M, LI Z, et al. Fermentation of bighead carp (Aristichthys nobilis) surimi and the characteristics of fermented bighead carp surimi products[J]. J Sci Food Agric, 2009, 89(3): 511-516. doi: 10.1002/jsfa.3488

  • 期刊类型引用(1)

    1. 朱轩仪,郑晓婷,邢逸夫,黄建华,董宏标,张家松. 三丁酸甘油酯提高凡纳滨对虾鳃组织抗周期性高温胁迫能力的研究. 南方水产科学. 2024(03): 66-75 . 本站查看

    其他类型引用(2)

推荐阅读
Comparative study on growth, hepatopancreas and gill histological structure, and enzyme activities oflitopenaeus vannameiunder so42−/cl−stress in low saline water
HE Zheng et al., SOUTH CHINA FISHERIES SCIENCE, 2025
A comparative study of environmental microbial communities between lotus-fish co-culture and conventional pond culture
LIU Meiqi et al., SOUTH CHINA FISHERIES SCIENCE, 2025
Investigation on behavioral preferences oflutjanus erythropterusjuvenile towards artificial reef models with different pore shapes and sizes
JIANG Manju et al., SOUTH CHINA FISHERIES SCIENCE, 2024
Characteristics of fish community structure and its relationship with environmental factors in marine ranching zone in southern area of yintan in guangxi
YU Jie et al., SOUTH CHINA FISHERIES SCIENCE, 2024
Population genetic diversity ofdosidicus gigasin the southeastern pacific ocean and its relationship with habitat factors
GOU Qianbo et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2025
Difference of the effects of environmental factors on habitat distribution ofdosidicus gigasin different regions in the eastern pacific ocean
CUI Jianan et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2024
The connexion between sex and immune responses
Forsyth, Katherine S., NATURE REVIEWS IMMUNOLOGY, 2024
Diversity and convergence of sex-determination mechanisms in teleost fish
Kitano, Jun et al., ANNUAL REVIEW OF ANIMAL BIOSCIENCES, 2024
Water periods impact the structure and metabolic potential of the nitrogen-cycling microbial communities in rivers of arid and semi-arid regions
WATER RESEARCH
"submesoscale kinetic energy induced by vertical buoyancy fluxes during the tropical cyclone haitang"
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2024
Powered by
图(5)  /  表(5)
计量
  • 文章访问数:  647
  • HTML全文浏览量:  237
  • PDF下载量:  41
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-10-10
  • 修回日期:  2021-11-25
  • 录用日期:  2021-12-14
  • 网络出版日期:  2021-12-22
  • 刊出日期:  2022-04-04

目录

/

返回文章
返回