GH46家族壳聚糖酶酸碱耐受性的关键氨基酸位点的鉴定

程伊梦, 孙慧慧, 刘淇, 赵玲, 曹荣

程伊梦, 孙慧慧, 刘淇, 赵玲, 曹荣. GH46家族壳聚糖酶酸碱耐受性的关键氨基酸位点的鉴定[J]. 南方水产科学, 2022, 18(2): 48-56. DOI: 10.12131/20210290
引用本文: 程伊梦, 孙慧慧, 刘淇, 赵玲, 曹荣. GH46家族壳聚糖酶酸碱耐受性的关键氨基酸位点的鉴定[J]. 南方水产科学, 2022, 18(2): 48-56. DOI: 10.12131/20210290
CHENG Yimeng, SUN Huihui, LIU Qi, ZHAO Ling, CAO Rong. Identification of key amino acid sites for pH stability of GH46 family chitosanase[J]. South China Fisheries Science, 2022, 18(2): 48-56. DOI: 10.12131/20210290
Citation: CHENG Yimeng, SUN Huihui, LIU Qi, ZHAO Ling, CAO Rong. Identification of key amino acid sites for pH stability of GH46 family chitosanase[J]. South China Fisheries Science, 2022, 18(2): 48-56. DOI: 10.12131/20210290

GH46家族壳聚糖酶酸碱耐受性的关键氨基酸位点的鉴定

基金项目: 国家重点研发计划项目 (2019YFD0901902)
详细信息
    作者简介:

    程伊梦 (1997—),女,硕士研究生,研究方向为壳聚糖酶的挖掘及改造。E-mail: 2804810307@qq.com

    通讯作者:

    孙慧慧 (1988—),女,副研究员,博士,从事水产动物精深加工与综合利用研究。E-mail: sunhh@ysfri.ac.cn

  • 中图分类号: TQ 936.2

Identification of key amino acid sites for pH stability of GH46 family chitosanase

  • 摘要: 壳寡糖具有多种生物活性,是目前仅知的唯一碱性寡糖,在食品、农业和生物医药领域应用广泛。壳聚糖酶可以特异性切割壳聚糖中的β-1,4糖苷键,形成不同聚合度的壳寡糖,因此,获得具有良好稳定性的壳聚糖酶是大规模酶法制备壳寡糖的关键。为了鉴定影响糖苷水解酶 (Glycoside hydrolase, GH) 46家族壳聚糖酶酸碱耐受性的相关氨基酸位点,选取来自芽孢杆菌 (Bacillus sp.) DAU101 (最适pH为7.5) 的壳聚糖酶为模板,以来自芽孢杆菌的壳聚糖酶Csn-BAC为研究对象,综合同源建模和序列比对的方法,选取了4个候选位点并构建了4个突变体 (V1: P68A; V2: A137G; V3: A203M; V4: H234E)。结果显示,与Csn-BAC相比,4个突变体的热稳定性均出现了不同程度的下降,而酸碱耐受性有了明显的提升。结果表明,选取的氨基酸位点对酸碱耐受性均产生了显著的影响,同时表明该策略在改造壳聚糖酶稳定性方面是一种有效的方法。
    Abstract: Chitooligosaccharides, which have a variety of biological activities, are the only known basic oligosaccharide widely used in food, agriculture and biomedicine. Chitosanases can cleave the β-1,4 glycosidic bonds in chitosan specifically to form chitooligosaccharides with different degrees of polymerization. Therefore, obtaining chitosanases with good stability is the key for the large-scale enzymatic preparation of chitooligosaccharides. In order to identify the amino acid sites affecting the pH stability of GH46 family chitosanases, the chitosanase from Bacillus sp. DAU101 (optimal pH 7.5) was selected as template and the chitosanase Csn-BAC from Bacillus sp. MD-5 as the research object. By combining homology modeling and sequence alignments, four candidate sites were selected, and the corresponding mutants were obtained (V1: P68A; V2: A137G; V3: A203M; V4: H234E). Compared with Csn-BAC, the thermal stabilities of four mutants showed varying degrees of reduction, while the pH stability was significantly improved. These results indicate that the selected amino acid sites have an obvious effect on pH tolerance, and this strategy is an effective way to modify the stability of chitosanase.
  • 鲤疱疹病毒3型(Cyprinid herpesvirus 3,CyHV-3)也称为锦鲤疱疹病毒(Koi herpesvirus,KHV)[1],引起的锦鲤疱疹病毒病(KHVD)可以造成锦鲤(Cyprinus carpio haematopterus)、鲤(C. carpio) 80%以上的死亡率[2-5]。自20世纪90年代末出现以来,这种具有高度传染性的病原已给世界范围内的鲤鱼养殖业和锦鲤养殖业造成了严重的经济损失[6]

    由于KHVD的严重危害,灭活疫苗[7]、弱毒疫苗[8-10]等研究相继被报道。DNA疫苗利用重组DNA技术将保护性抗原基因插入真核表达载体,接种于体内进行抗原表达[11]。DNA疫苗成本低、运输方便,不仅可以快速响应新病原以及变异病原[12],还可以诱导体液免疫与细胞免疫,被称为第三代疫苗[13]。目前已经有2种鱼用DNA疫苗获准上市:传染性造血器官坏死病病毒(IHNV)的DNA疫苗,该疫苗已经于2005年在加拿大获准上市[14-15];鲑胰腺病病毒(SPDV)的DNA疫苗也在欧盟和挪威获准上市[16]。CyHV-3 DNA疫苗的研究也取得了一些进展,肌内注射重组质粒pIRES-ORF25、pIRES-ORF81均可以诱导锦鲤、鲤产生高水平的抗体并具有良好的免疫保护效果[17-18];后续研究表明,CyHV-3 ORF25构建的DNA疫苗保护效果受到免疫途径和攻毒方式的影响[19]

    CyHV-3具有一个大小约295 kb的双链DNA基因组,这个基因组有156个不同的蛋白编码开放阅读框(ORF)[20-21]。囊膜蛋白是DNA疫苗设计的重要靶标,目前能够确定CyHV-3编码14个囊膜蛋白[21-23],除ORF25、ORF81以外,其他囊膜蛋白的保护效果也值得关注。CyHV-3 ORF65基因是CyHV-3的主要囊膜蛋白基因[21]。生物信息分析显示,该蛋白具有良好的免疫原性[24]。本研究以ORF65插入pEGFP-N1构建的重组质粒作为DNA疫苗,分析其体内外表达及诱导产生特异性抗体的情况,为开发新型CyHV-3 DNA疫苗提供实验依据。

    pEGFP-ORF65/Top10、pET32a-modORF65/BL21重组质粒克隆、表达菌株由本实验室前期构建、保存[24-25]。pEGFP-N1载体由本实验室前期保存。建鲤脑细胞系(CCB-J)由本实验室建立(待发表)。鼠抗鲤多克隆抗体由本实验室前期制备[25]。Lipofectamine 3000试剂盒购自Invitrogen公司。CyHV-3毒株由本实验室分离。质粒大量制备提取试剂盒购自百泰克公司。无内毒素质粒小提中量试剂盒、组织DNA提取试剂盒均购自天根公司。BCA蛋白定量测定试剂盒购自鼎国昌盛公司。His Bind纯化试剂为Novagen公司产品。其他试剂均为国产分析纯。10 g左右的健康建鲤(C. carpio var. Jian)购自成都通威水产苗种有限责任公司。

    根据无内毒素质粒小提试剂盒的说明书分别提取质粒pEGFP-ORF65、pEGFP-N1。将CCB-J细胞[(3~5)×105 mL−1]接种于24孔板,细胞长至80%~90%融合度时,按照lip3000说明书将提取的质粒转染至CCB-J细胞,同时设置未转染质粒的CCB-J对照组,转染24 h后荧光显微镜观察。

    质粒的制备同1.2.3。取15尾健康建鲤分为3组(n=5),在尾柄肌肉分别注射PBS、pEGFP-N1、pEGFP-ORF65,注射剂量为3 μg·尾−1 (100 μL)质粒或100 μL·尾−1 PBS,实验期间水温控制在20~25 ℃,免疫5 d,丁香酚(20 mg·L−1)麻醉后处死,去除尾柄皮肤及浅表层肌肉,进行活体成像实验,观察荧光蛋白表达。

    根据质粒大提试剂盒的说明书分别提取质粒pEGFP-ORF65、pEGFP-N1。测定浓度后,用PBS将质粒稀释至30 ng·μL−1,−20 ℃保存。取75尾健康建鲤分为3组(n=25),在尾柄肌肉分别注射pEGFP-ORF65 (DNA疫苗组)、pEGFP-N1 (空载体对照组)、PBS (空白对照组),注射剂量为3 μg·尾−1 (100 μL)质粒或100 μL·尾−1 PBS,免疫期间水温控制在20~25 ℃;免疫3次,每次间隔2周,每次免疫2周后每组随机抽取5尾鱼,丁香酚(20 mg·L−1)麻醉后尾静脉采集外周血(100 μL·尾−1),分离血清,−20 ℃保存;采血后建鲤放回原玻璃缸。

    pET32a-modORF65/BL21诱导表达后纯化重组的CyHV-3 pORF65作为包被抗原,以实验室前期制备的鼠抗鲤IgM多克隆抗体作为检测抗体,采用间接ELISA方法,检测免疫后的血清特异性抗体水平[25]

    第3次免疫2周后,在1.2.3免疫的pEGFP-ORF65组、pEGFP-N1组和PBS组中,每组分别随机选择20尾进行攻毒实验,具体方法参照文献[26]进行。攻毒实验期间,水温控制在23~25 ℃,每天记录各组死亡情况,攻毒后连续观察21 d。提取死亡建鲤的脑组织DNA作为模板,按照文献报道的方法进行CyHV-3检测[27]

    采用SPSS 13.0软件对数据进行统计分析,其中抗体水平采用t检验,攻毒保护采用χ2检验。P<0.05有显著性差异,P<0.01有极显著性差异。

    转染实验表明,重组质粒pEGFP-ORF65可以表达pORF65与增强型绿色荧光蛋白(EGFP)形成的融合蛋白,采用lip3000转染24 h后,荧光显微镜观察到CCB-J细胞生长良好(图1-a),融合蛋白在CCB-J细胞中可以表达(图1-b)。

    图  1  重组质粒pEGFP-ORF65在CCB-J细胞中的表达
    CCB-J转染细胞明场观察(a)和CCB-J转染细胞荧光观察(b);箭头表示部分表达融合蛋白的细胞
    Figure  1.  Expression of pEGFP-ORF65 fusion protein in CCB-J
    Bright field image (a) and fluorescent image (b) of pEGFP-ORF65 transfected CCB-J cells; arrows indicate parts of transfected cells.

    3组建鲤分别在尾柄肌肉注射PBS、pEGFP-N1、pEGFP-ORF65,5 d后对建鲤尾柄肌肉进行活体成像观察,由于鱼的体表鳞片及黏液会引起反光,造成假阳性,因此观察的尾柄部分去除了体表皮肤及浅表层肌肉。结果显示,PBS组的建鲤尾柄肌肉处没有绿色荧光,pEGFP-N1组和pEGFP-ORF65组的建鲤尾柄肌肉均有EGFP蛋白表达(图2)。

    图  2  重组质粒pEGFP-ORF65在建鲤尾柄中的表达
    建鲤尾柄的荧光观察(a)和建鲤尾柄的明场与荧光叠加图片(b);方框示不同实验组尾柄肌肉的绿色荧光蛋白表达情况(纵坐标示光密度值);箭头示未去除的皮肤及黏液反射激发光造成的非特异性反光
    Figure  2.  Expression of pEGFP-ORF65 fusion protein in caudal peduncle
    Fluorescent image (a) and merged image (b) of caudal peduncle after the intramuscular injections of PBS, pEGFP-N1 and pEGFP-ORF65; the box indicates the fluorescence from the caudal peduncle muscle tissue; the arrows indicate the non-specific reflected fluorescence caused by the skin and mucus.

    采用间接ELISA方法检测PBS、pEGFP-N1、pEGFP-ORF65注射免疫后的血清特异性抗体水平,结果显示,pEGFP-ORF65免疫组的血清抗CyHV-3 pORF65特异性抗体水平随着免疫次数增加逐渐升高,第2次免疫2周后特异性抗体水平显著高于PBS组与pEGFP-N1组(P<0.05);第3次免疫2周后,pEGFP-ORF65免疫组特异性抗体水平与PBS组和pEGFP-N1组存在极显著差异(P<0.01)。PBS组和pEGFP-N1组3次免疫后的抗CyHV-3 pORF65特异性抗体水平无显著性差异(图3)。

    图  3  建鲤血清抗CyHV-3 pORF65特异性抗体水平检测
    “*”或“**”表示显著性差异P<0.05或P<0.01;“ns”表示无显著性差异
    Figure  3.  Detection of anti-CyHV-3 pORF65 antibody in Jian carp serum after immunization of PBS, pEGFP-N1, pEGFP-ORF65
    The asterisks or double asterisks indicate significant difference at P<0.05 or P<0.01, respectively. "ns" indicates no significant difference.

    建鲤在第3次免疫2周后进行攻毒实验,攻毒6 d后建鲤开始死亡,攻毒15 d死亡率趋于稳定,结果显示PBS组、pEGFP-N1组和pEGFP-ORF65组分别死亡15尾、14尾和2尾,成活率分别为25%、30%和90% (图4)。χ2检验显示,与PBS或pEGFP-N1对照组相比,pEGFP-ORF65免疫后,显著提高了攻毒建鲤的成活率(P<0.01)。死亡建鲤出现肾脏病变、充血坏死等典型KHVD症状[28-29],对死亡的建鲤进行CyHV-3检测,结果均为阳性(图5)。

    图  4  CyHV-3攻毒后的免疫建鲤成活率曲线
    Figure  4.  Survival of Jian carps immunized with PBS, pEGFP-N1 and pEGFP-ORF65 post CyHV-3 infection
    图  5  CyHV-3检测结果
    M. DNA分子标准(DL2 000);1~12. 攻毒实验后部分死亡建鲤;13. CyHV-3阳性对照;14. 阴性对照
    Figure  5.  Detection of CyHV-3 DNA by PCR
    M. DNA marker (DL2 000); 1−12. parts of dead carps from the challenge test; 13. positive control; 14. negative control

    前期研究表明DNA疫苗可以在0.001 μg·尾−1或0.01 μg·尾−1的免疫剂量下为鱼苗及鱼种(体质量0.8~10 g)提供免疫保护;但是也有实验表明,低剂量DNA疫苗免疫可能无法提供有效的保护,因此实验中一般采用0.5~50 μg·尾−1的免疫剂量[19, 30];Zhou等[17-18]在CyHV-3 DNA疫苗的研究中发现1 μg·尾−1、10 μg·尾−1、50 μg·尾−1的免疫剂量并没有造成锦鲤或鲤(体质量200~300 g)特异性血清抗体水平的显著性差异。根据上述报道,本研究选择3 μg·尾−1的剂量免疫建鲤(体质量约10 g)。

    DNA疫苗的接种途径有肌肉注射、腹腔注射、口服、浸泡等方式,其中效果最好、最稳定的为肌肉注射,这成为DNA疫苗免疫的主要方式[16]。在鱼类病毒性疾病DNA疫苗研究中,单次、2次或3次免疫(多次免疫,每次间隔3周或15 d)的免疫方案均有报道,在一些研究中,加强免疫可以提高疫苗的相对保护率[16, 19]。本研究采用了3次免疫,每次间隔2周的免疫方案,结果表明,加强免疫(二免及三免后)可以显著提高建鲤血清的特异性抗体水平。

    CyHV-3 ORF25全基因序列为1 806 bp,将其中的约840 bp插入pIRES-neo真核表达载体,免疫锦鲤(3次免疫,每次间隔3周),3免2周后注射攻毒,结果表明在3个免疫剂量下(1 μg·尾−1、10 μg·尾−1、50 μg·尾−1)的锦鲤死亡率分别为20%、17.5%、12.5%,对照组死亡率在85%~92.5%[17]。CyHV-3 pORF81是第一个鉴定的CyHV-3囊膜蛋白[31],将CyHV-3 ORF81插入pIRES-neo真核表达载体,采用与上述报道类似的免疫方案,分3个剂量(1 μg·尾−1、10 μg·尾−1、50 μg·尾−1)免疫后攻毒,免疫组死亡率为17.5%、15%、15%,对照组死亡率则为87.5%~97.5%[14, 18]。本研究采用3 μg·尾−1的剂量免疫建鲤,3次免疫,每次间隔2周,3免2周后的攻毒实验表明,pEGFP-ORF65免疫组死亡率为10%,PBS组、pEGFP-N1组的死亡率分别为75%、70%。

    本研究结果表明,基于CyHV-3 ORF65构建的DNA疫苗可以诱导抗CyHV-3特异性抗体生成,为建鲤提供免疫保护,本研究为CyHV-3防控提供了一种技术手段。同时,该DNA疫苗的免疫持续期、抗体水平与免疫保护率的关系、免疫方案的优化等也值得进一步研究。

  • 图  1   Csn-BAC生物信息学分析

    Figure  1.   Bioinformatics analysis of Csn-BAC

    图  2   Csn-BAC突变体的SDS-PAGE分析

    Figure  2.   SDS-PAGE analysis of Csn-BAC variants

    图  3   Csn-BAC突变体酶活分析

    Figure  3.   Enzyme specific activity analysis of Csn-BAC variants

    图  4   Csn-BAC突变体酶学性质分析

    Figure  4.   Enzymatic property of Csn-BAC variants

    表  1   定点突变引物

    Table  1   Primers for directed evolution

    引物
    Primer name
    序列 (5'—3')
    Sequence (5'—3')
    P68A上游引物
    Fw P68A
    GCCCGTCACCCAATGCCTCGACATATCCATA
    P68A下游引物
    Rv P68A
    TATGGATATGTCGAGGCATTGGGTGACGGGC
    A137G上游引物
    Fw A137G
    CGAAATTCCTTATCATTTCCAAGCGACTTCCAGGCA
    A137G下游引物
    Rv A137G
    TGCCTGGAAGTCGCTTGGAAATGATAAGGAATTTCG
    A203M上游引物
    Fw A203M
    TTGGTGACCCGCCCATTTTTTTGTTCGTACGTTTAATCAAGGC
    A203M下游引物
    Rv A203M
    GCCTTGATTAAACGTACGAACAAAAAAATGGGCGGGTCACCAA
    H234E上游引物
    Fw H234E
    GTCACGGGTGTCCTCATTTGCCGGATTCATCAGATCG
    H234E下游引物
    Rv H234E
    CGATCTGATGAATCCGGCAAATGAGGACACCCGTGAC
    下载: 导出CSV

    表  2   Csn-BAC及其突变体反应动力学参数

    Table  2   Reaction kinetic parameters of chitosanase Csn-BAC and its mutants

    酶 
    Enzyme 
    米氏常数
    Km/(mg·mL−1)
    周转率
    Kcat/s−1
    催化效率
    Kcat/Km/[mL·(mg·s) −1]
    野生型 Csn-BAC7.25556.0076.65
    突变体 V13.68307.2283.37
    突变体 V23.13409.49130.66
    突变体 V37.27540.8874.39
    突变体 V43.16322.68102.19
    下载: 导出CSV
  • [1]

    BHUVANACHANDRA B, SIVARAMAKRISHNA D, ALIM S, et al. New class of chitosanase from Bacillus amyloliquefaciens for the generation of chitooligosaccharides[J]. J Agr Food Chem, 2021, 69(1): 78-87. doi: 10.1021/acs.jafc.0c05078

    [2]

    YANG G, SUN H, CAO R, et al. Characterization of a novel glycoside hydrolase family 46 chitosanase, Csn-BAC, from Bacillus sp. MD-5[J]. Int J Biol Macromol, 2020, 146: 518-523. doi: 10.1016/j.ijbiomac.2020.01.031

    [3] 吴玉潇, 徐海涛, 高云华, 等. 壳寡糖的生物活性研究进展[J]. 明胶科学与技术, 2015, 35(3): 128-132. doi: 10.3969/j.issn.1004-9657.2015.03.004
    [4]

    ZOU P, YANG X, WANG J, et al. Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides[J]. Food Chem, 2016, 190: 1174-1181. doi: 10.1016/j.foodchem.2015.06.076

    [5]

    YANG F, LUAN B, SUN Z, et al. Application of chitooligosaccharides as antioxidants in beer to improve the flavour stability by protecting against beer staling during storage[J]. Biotechnol Lett, 2017, 39(2): 305-310. doi: 10.1007/s10529-016-2248-3

    [6]

    MUANPRASAT C, CHATSUDTHIPONG V. Chitosan oligosaccharide: biological activities and potential therapeutic applications[J]. Pharmacol Ther, 2016, 170: 80-97.

    [7] 潘珍, 程冬冬, 位晓娟, 等. 壳五糖对骨肉瘤细胞抗肿瘤作用的研究[J]. 国际骨科学杂志, 2020, 41(2): 114-120. doi: 10.3969/j.issn.1673-7083.2020.02.011
    [8]

    RAHMAN M H, HJELJORD L G, AAM B B, et al. Antifungal effect of chito-oligosaccharides with different degrees of polymerization[J]. Eur J Plant Pathol, 2015, 141: 147-158. doi: 10.1007/s10658-014-0533-3

    [9]

    MEI Y X, DAI X Y, YANG W, et al. Antifungal activity of chitooligosaccharides against the dermatophyte Trichophyton rubrum[J]. Int J Biol Macromol, 2015, 77: 330-335.

    [10]

    DAS S N, MADHUPRAKASH J, SARMA P V S R N, et al. Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants[J]. Crit Rev Biotechnol, 2015, 35(1): 29-43. doi: 10.3109/07388551.2013.798255

    [11]

    KRITCHENKOV A S, KLETSKOV A V, EGOROV A R, et al. New water-soluble chitin derivative with high antibacterial properties for potential application in active food coatings[J]. Food Chem, 2021, 343: 128696. doi: 10.1016/j.foodchem.2020.128696

    [12]

    LIAQAT F, ELTEM R. Chitooligosaccharides and their biological activities: a comprehensive review[J]. Carbohydr Polym, 2018, 184: 243-259. doi: 10.1016/j.carbpol.2017.12.067

    [13] 鲁晶娣. Bacillus nakamurai壳聚糖酶的酶学性质及其活性位点研究[D]. 柳州: 广西科技大学, 2019: 1-2.
    [14] 李燕. 壳聚糖酶解及降解产物的分析与应用[D]. 天津: 天津科技大学, 2018: 1-4.
    [15]

    THADATHIL N, VELAPPAN S P. Recent developments in chitosanase research and its biotechnological applications: a review[J]. Food Chem, 2014, 150: 392-399. doi: 10.1016/j.foodchem.2013.10.083

    [16]

    SUN H, GAO L, XUE C, et al. Marine-polysaccharide degrading enzymes: status and prospects[J]. Compr Rev Food Sci F, 2020, 19: 2767-2796. doi: 10.1111/1541-4337.12630

    [17]

    SUN H, MAO X, GUO N, et al. Discovery and characterization of a novel chitosanase from Paenibacillus dendritiformis by phylogeny-based enzymatic product specificity prediction[J]. J Agr Food Chem, 2018, 66: 4645-4651. doi: 10.1021/acs.jafc.7b06067

    [18]

    SUN H, YANG G, CAO R, et al. Expression and characterization of a novel glycoside hydrolase family 46 chitosanase identified from marine mud metagenome[J]. Int J Biol Macromol, 2020, 159: 904-910. doi: 10.1016/j.ijbiomac.2020.05.147

    [19]

    QIN Z, CHEN Q M, LIN S, et al. Expression and characterization of a novel cold-adapted chitosanase suitable for chitooligosaccharides controllable preparation[J]. Food Chem, 2018, 253(1): 139-147.

    [20]

    GUO N, SUN J, WANG W, et al. Cloning, expression and characterization of a novel chitosanase from Streptomyces albolongus ATCC 27414[J]. Food Chem, 2019, 286: 696-702. doi: 10.1016/j.foodchem.2019.02.056

    [21]

    QU G, ZHAO J, ZHENG P, et al. Recent advances in directed evolution[J]. Chin J Biotech, 2018, 34(1): 1-11.

    [22]

    YANY Y, ZHENG Z, XIAO Y et al. Cloning and characterization of a cold-adapted chitosanase from marine bacterium Bacillus sp. BY01[J]. Molecules, 2019, 24(21): 3915. doi: 10.3390/molecules24213915

    [23]

    WANG Y, QIN Z, FAN L, et al. Structure-function analysis of Gynuella sunshinyii chitosanase uncovers the mechanism of substrate binding in GH family 46 members[J]. Int J Biol Macromol, 2020, 165: 2038-2048. doi: 10.1016/j.ijbiomac.2020.10.066

    [24]

    LIU Y, LI Y, TONG S, et al. Expression of a Beauveria bassiana chitosanase (BbCSN-1) in Pichia pastoris and enzymatic analysis of the recombinant protein[J]. Protein Expres Purif, 2019, 166: 105519.

    [25]

    YOON H, KIM H, LIM Y, et al. Thermostable chitosanase from Bacillus sp. strain CK4: cloning and expression of the gene and characterization of the enzyme[J]. Appl Environ Microb, 2000, 66(9): 3727-3734. doi: 10.1128/AEM.66.9.3727-3734.2000

    [26]

    LEE Y S, YOO J S, CHUNG S Y, et al. Cloning, purification, and characterization of chitosanase from Bacillus sp. DAU101[J]. Appl Microbiol Biot, 2006, 73(1): 113-121. doi: 10.1007/s00253-006-0444-0

    [27]

    LARKIN M A, BLACKSHIELDS G, BROWN N P, et al. Clustal W and Clustal X version 2.0[J]. Bioinformatics, 2007, 23(21): 2947-2948. doi: 10.1093/bioinformatics/btm404

    [28]

    BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72(1/2): 248-254.

    [29]

    LI Y, GOU Y, LIU Z, et al. Structure-based rational design of chitosanase CsnMY002 for high yields of chitobiose[J]. Colloid surfaces B, 2021, 202(8): 111692.

    [30]

    ZHANG J, CAO H, LI S, et al. Characterization of a new family 75 chitosanase from Aspergillus sp. W-2[J]. Int J Biol Macromol, 2015, 81: 362-369. doi: 10.1016/j.ijbiomac.2015.08.026

    [31] 王琦, 崔阳, 刘进宝, 等. 壳聚糖酶的基因克隆表达及酶学性质研究[J]. 食品与生物技术学报, 2019, 38(1): 147-155. doi: 10.3969/j.issn.1673-1689.2019.01.022
    [32] 王亚妮. GH46家族壳聚糖酶的结构解析与催化机理研究[D]. 上海: 华东理工大学, 2020: 14.
    [33] 杨光, 盛军, 陈亚东, 等. 枯草芽孢杆菌壳聚糖酶基因在毕赤酵母中的表达及酶学性质[J]. 中国水产科学, 2017, 24(6): 1288-1297.
    [34]

    XING P, LIU D, YU W G, et al. Molecular characterization of an endo-type chitosanase from the fish pathogen Renibacterium sp. QD1[J]. J Mar Biol Assoc UK, 2014, 94(4): 681-686. doi: 10.1017/S0025315413001859

    [35] 罗洒. 新型壳聚糖酶的高效表达及壳寡糖制备工艺研究[D]. 上海: 华东理工大学, 2019: 21.
    [36]

    GUPTA V, PRASANNA R, SRIVASTAVA A K, et al. Purification and characterization of a novel antifungal endo-type chitosanase from Anabaena fertilissima[J]. Ann Microbiol, 2012, 62(3): 1089-1098. doi: 10.1007/s13213-011-0350-2

    [37]

    CHEN X, ZHAi C, KANG L, et al. High-level expression and characterization of a highly thermostable chitosanase from Aspergillus fumigatus in Pichia pastoris[J]. Biotechnol Lett, 2012, 34(4): 689-694. doi: 10.1007/s10529-011-0816-0

    [38]

    ZHOU Y, CHEN X, LI X, et al. Purification and characterization of a new cold-adapted and thermo-tolerant chitosanase from marine bacterium Pseudoalteromonas sp. SY39[J]. Molecules, 2019, 24(1): 183. doi: 10.3390/molecules24010183

    [39]

    MA C, LI X, YANG K, et al. Characterization of a new chitosanase from a marine Bacillus sp. and the anti-oxidant activity of its hydrolysate[J]. Mar Drugs, 2020, 18(2): 126. doi: 10.3390/md18020126

    [40]

    SUN H H, CAO R, LI L H, et al. Cloning, purification and characterization of a novel GH46 family chitosanase, Csn-CAP, from Staphylococcus capitis[J]. Process Biochem, 2018, 75: 146-151. doi: 10.1016/j.procbio.2018.09.021

    [41] 鲁晶娣, 韦盘秋, 张兴猛, 等. 壳聚糖酶的研究进展[J]. 中国调味品, 2018, 43(12): 168-173. doi: 10.3969/j.issn.1000-9973.2018.12.033
    [42]

    LIANG T W, CHEN W T, LIN Z H, et al. An amphiprotic novel chitosanase from Bacillus mycoides and its application in the production of chitooligomers with their antioxidant and anti-inflammatory evaluation[J]. Int J Mol Sci, 2016, 17: 1302. doi: 10.3390/ijms17081302

    [43] 马帅, 杨绍青, 刘翊昊, 等. 枯草芽孢杆菌壳聚糖酶在毕赤酵母中的高效表达及其酶解特性[J]. 食品科学, 2019, 40(14): 99-106. doi: 10.7506/spkx1002-6630-20180809-086
    [44] 任晶, 赵华, 王虹, 等. 壳聚糖酶的分离纯化及其特性研究[J]. 天津科技大学学报, 2010, 25(6): 10-13. doi: 10.3969/j.issn.1672-6510.2010.06.003
    [45]

    AZEVEDO M, OLIVEIRA S T, SILVA C, et al. Secretory production in Escherichia coli of a GH46 chitosanase from Chromobacterium violaceum, suitable to generate antifungal chitooligosaccharides[J]. Int J Biol Macromol, 2020, 165: 1482-1495. doi: 10.1016/j.ijbiomac.2020.09.221

  • 期刊类型引用(3)

    1. 孙佳鑫,石连玉,姜晓娜,李池陶,葛彦龙,胡雪松,张晓峰,贾智英. 镜鲤抗疱疹病毒(CyHV-3)F_4抗病品系病毒表达量评估. 上海海洋大学学报. 2021(02): 258-265 . 百度学术
    2. 刘枝华,况文明,王伦,高富铭,陈松,董然然. 鲤鱼肠道中4种细菌的分离与生化鉴定. 贵州畜牧兽医. 2020(01): 45-49 . 百度学术
    3. 翁宏飚,沈卫锋,牛宝龙. 水产口服DNA疫苗研究进展. 浙江农业科学. 2020(10): 2125-2131+2135 . 百度学术

    其他类型引用(2)

图(4)  /  表(2)
计量
  • 文章访问数:  523
  • HTML全文浏览量:  217
  • PDF下载量:  33
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-10-08
  • 修回日期:  2021-11-30
  • 录用日期:  2021-12-14
  • 网络出版日期:  2021-12-07
  • 刊出日期:  2022-04-04

目录

/

返回文章
返回