维氏气单胞菌重要致病因子基因对环境条件的响应

王茜, 邓益琴, 孙承文, 林梓阳, 苏雯晓, 刘梦瑶, 程长洪, 郭志勋, 冯娟

王茜, 邓益琴, 孙承文, 林梓阳, 苏雯晓, 刘梦瑶, 程长洪, 郭志勋, 冯娟. 维氏气单胞菌重要致病因子基因对环境条件的响应[J]. 南方水产科学, 2022, 18(5): 74-80. DOI: 10.12131/20210273
引用本文: 王茜, 邓益琴, 孙承文, 林梓阳, 苏雯晓, 刘梦瑶, 程长洪, 郭志勋, 冯娟. 维氏气单胞菌重要致病因子基因对环境条件的响应[J]. 南方水产科学, 2022, 18(5): 74-80. DOI: 10.12131/20210273
WANG Qian, DENG Yiqin, SUN Chengwen, LIN Ziyang, SU Wenxiao, LIU Mengyao, CHENG Changhong, GUO Zhixun, FENG Juan. Responses of important virulence factors of Aeromonas veronii to environmental conditions[J]. South China Fisheries Science, 2022, 18(5): 74-80. DOI: 10.12131/20210273
Citation: WANG Qian, DENG Yiqin, SUN Chengwen, LIN Ziyang, SU Wenxiao, LIU Mengyao, CHENG Changhong, GUO Zhixun, FENG Juan. Responses of important virulence factors of Aeromonas veronii to environmental conditions[J]. South China Fisheries Science, 2022, 18(5): 74-80. DOI: 10.12131/20210273

维氏气单胞菌重要致病因子基因对环境条件的响应

基金项目: 国家重点研发计划“蓝色粮仓科技创新”专项 (2019YFD0900105-3);中国水产科学研究院中央级公益性科研院所基础科研业务专项资金资助 (2020XT0407, 2021SD15)
详细信息
    作者简介:

    王 茜 (1996—),女,硕士研究生,研究方向为鱼类细菌性疾病免疫防治技术。E-mail: 1196960352@qq.com

    通讯作者:

    冯 娟 (1973—),女,研究员,博士,从事鱼类疾病防治研究。E-mail: jannyfeng@163.com

  • 中图分类号: S 941

Responses of important virulence factors of Aeromonas veronii to environmental conditions

  • 摘要: 鞭毛蛋白 (Flagellin)、密度感应系统 (Quorum sensing, QS) 和Ⅲ型分泌系统 (Type Ⅲ secretion system, T3SS) 是与维氏气单胞菌 (Aeromonas veronii) 致病性相关的重要因子,且受多种环境条件的共同调控。为研究外界环境因子变化对维氏气单胞菌致病因子的影响,以2株维氏气单胞菌的ascF、fliE和luxR致病因子为研究对象,通过实时荧光定量PCR技术从转录水平上探究了ascF、fliE和luxR基因对温度、pH、无机盐离子和培养转速等环境因子的响应。结果表明,维氏气单胞菌的3个基因对偏酸性环境 (pH 6.5~7.0)、中低培养转速 (150~210 r·min−1) 和锌离子 (Zn2+)、镁离子 (Mg2+) 为正响应;2株不同分子分型的维氏气单胞菌的3个基因的响应模式各有不同,说明了2株不同分子分型的维氏气单胞菌的致病机制可能有所差异;另外,维氏气单胞菌的重要致病因子受环境条件的调控,而呈现不同的变化规律,为进一步分析维氏气单胞菌的发病机制提供参考。
    Abstract: As important pathogenic factors of Aeromonas veronii, flagellin, quorum sensing and Type III secretion system (T3SS) are closely related to their pathogenicity and regulated by various environmental conditions. In order to study the effect of variation in external environmental factors on the pathogenic factors of A. veronii, we used the ascF, fliE and luxR factors of A. veronii as objects by real-time PCR method. The response of ascF, fliE and luxR genes to environmental factors such as temperature, pH, rotating speed and ions were explored at the transcription level. The results show that the three genes of A. veronii had a positive response to acidic environment (pH 6.5−7.0), low and medium speed (150−210 r·min−1), Zn2+ and Mg2+. The response patterns of the three genes of the two strains of A. veronii with different molecular types were different, indicating that the pathogenic mechanisms of A. veronii might be different. Besides, the important virulence factors of A. veronii were regulated by environmental conditions and showed different regular change. The results provide references for further research on the pathogenesis of A. veronii.
  • 海湾是陆地与海域相接的半封闭海域,受陆地和人类活动影响显著,随着近年来海水养殖、海洋工程和滨海旅游等行业的发展以及城镇化的快速推进,海湾生态环境发生了显著变化[1-4]。海湾食物网结构随着生态环境的变化产生了哪些改变,其主要渔业生物营养级如何变化,尚了解不多,尤其是华南海域。华南海域生境类型多样,地形地貌、经济发展水平和海域生态环境状况差别显著。海陵湾和陵水湾是华南地区的两个重要海湾,分别位于广东西部和海南南部。近年来两个海湾的海水水质[5]、沉积物[6]和浮游生物[7]等均发生了显著变化,但关于这2个海湾食物网营养结构特征的研究仍十分欠缺,仅见于海南新村湾海草床中主要鱼类及大型无脊椎动物食物来源的研究[8]

    在食物网研究中,稳定同位素技术的使用日益普遍,根据加拿大342 种鱼的营养级分析结果[9],发现稳定同位素法得出的结果与胃含物分析法无显著差异,证明了用稳定同位素技术研究鱼类营养级的可靠性。由于碳稳定同位素比值在捕食者和食物间变化很小,平均富集0~1‰,故可用于区分食物来源和贡献量[10];氮稳定同位素比值在捕食者和食物间通常能富集3‰左右,可用来确定生物在食物网中的营养位置[11-12]。在长江口和南黄海春季拖网渔获物营养级的研究[13]中发现,生物资源种类的营养级存在空间和生物种类差异,显示出渔业生物营养级对生境差异的响应。华南典型海域主要渔业生物营养级对生境差异有哪些响应特征,有待进一步了解。本研究应用稳定同位素技术分析了华南典型海湾主要渔业生物的碳、氮稳定同位素组成和营养结构,以期能了解渔业资源群落结构和食物网对生态环境变化的响应,为科学认知人类活动影响下的海湾生态系统演化规律提供基础数据。

    2个海湾的定点底拖网调查站位见图1。拖网船均系当地渔民渔船,网口高4 m﹑宽5 m,网囊网目3 cm×3 cm。所有渔获样品均进行现场低温冷冻保存。带回实验室后随机选取主要的渔业生物进行取样分析。

    图  1  海陵湾和陵水湾采样站点图
    Fig. 1  Sampling stations of Hailing Bay and Lingshui Bay

    现场使用5 L有机玻璃采水器采集水样,温度和盐度由YSI (556 MPS) 多参数水质测量仪测得。营养盐分析均参照Liu等[14]的方法,使用Lachat QC8500 流动注射比色法测定营养盐。

    鱼类样品取其背部白色肌肉,蟹类去壳取第一螯足肌肉,头足类取胴体肌肉。所有样品经冷冻干燥48 h后,研磨过筛 (80目),最后置于干燥器中保存。

    所有样品的δ13C和δ15N均在中国科学院水生生物研究所分析完成。样品的稳定同位素分析仪器为Finnigan delta plus和Flash EA1112联用仪,为了保证测试结果的准确性,每测试10个样品后加测一个标准样,并且对个别样品进行2~3次的复测,样品δ13C和δ15N分析精度为±0.2‰。

    碳、氮稳定同位素值计算公式:

    δ=[(Rsample/Rstandard) −1]×1 000

    式中δ代表碳、氮同位素 (δ13C和δ15N);Rsample表示所测样品的同位素比值 (13C/12C或15N/14N);Rstandard是国际上通用的标准物的重轻同位素丰度之比,碳稳定同位素标准物为美洲拟箭石 (PDB),氮稳定同位素标准物为大气氮。

    根据Layman等[15]提出的构建δ13C-δ15N二维坐标系来代表群落的营养生态位,本文选取6种度量参数:δ15N差值 (NR),表示营养层次和多样性水平;δ13C差值 (CR) 表示摄食来源多样性水平;总面积 (TA),表示食物网中营养多样性的总程度;平均离心距离 (CD),表示食物网中营养多样性平均水平;平均最邻近距离 (NND),表示群落的整体密度;平均最邻近距离标准差 (SDNND),表示营养生态位分布范围水平。在这6种参数中,前4种参数 (NR、CR、TA和CD) 用来反映营养结构多样性,后2种参数 (NND和SDNND) 用来研究营养冗余度。参数数值通过MATLAB软件进行计算。

    海陵湾水环境要素主要由丰头河的陆源冲淡水及外海水控制,其夏季平均水温略高于陵水湾 (表1),但盐度低于陵水湾。陵水湾与新村港相通,因此其水环境质量既受南海海水影响,又受新村港影响。近年来,由于陵水湾新村港内养殖面积激增,养殖污水、船坞废水及生活污水的大量排放,致海域内水质变差。陵水湾总溶解无机氮平均浓度是海陵湾的6倍多,而溶解无机磷平均浓度也是海陵湾的3倍多。

    表  1  海陵湾和陵水湾海水环境参数特征
    Table  1  Characteristics of environmental parameters of Hailing Bay and Lingshui Bay ${ {\overline {\mathit{\boldsymbol{X}}}}}{\bf \pm {{SD}}}$
    参数
    parameter
    海陵湾
    Hailing Bay
    陵水湾
    Lingshui Bay
    水温/℃
    temperature
    29.71±1.20 29.61±0.83
    盐度
    salinity
    34.53±1.06 35.37±0.29
    溶解无机磷/mg∙L−1
    dissolved inorganic phosphorus
    0.005±0.001 0.016±0.006
    溶解无机氮/mg∙L−1
    dissolved inorganic nitrogen
    0.023±0.009 0.153±0.077
    下载: 导出CSV 
    | 显示表格

    海陵湾共分析了14种渔业生物的稳定同位素值 (表2),其中鱼类12种﹑蟹类2种。δ13C介于−16.41‰~−13.97‰,均值为 (−15.36±0.62)‰,其中丽叶鲹 (Alepes djedaba) 的δ13C最低,少鳞 (Sillago japonica) 的δ13C最高;δ15N变化从短尾小沙丁 (Sardinella sindensis) 的12.94‰到多齿蛇鲻 (Saurida tumbil) 的16.7‰,均值为(15.53±0.94)‰。

    表  2  海陵湾主要渔业生物的稳定同位素比值 (δ13C和δ15N) 和取样体长 (L)
    Table  2  Stable isotope signature (δ13C and δ15N) and length (L) for major fishery species in Hailing Bay

    species
    碳稳定同位素/‰
    δ13C
    氮稳定同位素/‰
    δ15N
    长度 (L)/mm
    length
    多齿蛇鲻 Saurida tumbil −15.35 16.70 45~278
    丽叶鲹 Alepes djedaba −16.41 15.90 74~90
    平鲷 Rhabdosargus sarba −15.50 15.58 95~115
    细鳞䱨 Terapon jarbua −15.92 16.09 51~120
    汉氏棱鳀 Thryssa hamiltonii −15.61 16.19 89~157
    六指马鲅 Polydactylus sextarius −15.02 16.17 120~127
    长棘鲾 Leiognathus fasciatus −14.78 15.73 58~85
    少鳞 Sillago japonica −13.97 16.48 111~140
    南方䲗 Callionymus meridionalis −15.32 15.29 82~98
    斑头舌鳎 Cynoglossus puncticeps −15.73 15.97 92~123
    短尾小沙丁 Sardinella sindensis −15.52 15.23 106~115
    黄斑篮子鱼 Siganus canaliculatus −16.12 13.71 98~146
    远海梭子蟹 Portunus pelagicus −14.96 13.635 13~70
    红星梭子蟹 Portunus sanguinolentus −14.82 14.69 26~59
    范围/‰ range −16.41~−13.97 12.94~16.7
    平均值/‰ $ \overline X \pm {\rm{SD}} $ −15.36±0.62  15.53±0.94
    下载: 导出CSV 
    | 显示表格

    陵水湾共分析了15种渔业生物的稳定同位素值 (表3),其中鱼类11种、蟹类2种和头足类2种。δ13C介于−19.8‰~−15.35‰,均值为 (−17.44±1.21)‰,其中黄斑篮子鱼 (Siganus canaliculatus) 的δ13C最低,锈斑蟳 (Charybdis feriatus) 的δ13C最高;δ15N介于10.91‰~15.57‰,均值为 (13.78±1.31) ‰,其中带鱼 (Trichiurus lepturus) 拥有最高的δ15N。

    表  3  陵水湾主要渔业生物的稳定同位素比值 (δ13C 和 δ15N) 和取样体长 (L)
    Table  3  Stable isotope signature (δ13C and δ15N) and length (L) for major fishery species in Lingshui Bay
    种类
    species
    碳稳定同位素/‰
    δ13C
    氮稳定同位素/‰
    δ15N
    长度 (L)/mm
    length
    多齿蛇鲻 Saurida tumbil −17.44 14.63 113~215
    二长棘犁齿鲷 Evynnis cardinalis −17.20 14.77 72~189
    短尾大眼鲷 Priacanthus macracanthus −18.15 10.91 70~84
    长尾大眼鲷 Priacanthus tayenus −16.80 14.29 132~134
    竹䇲鱼 Trachurus japonicus −18.15 13.54 110~159
    花斑蛇鲻 Saurida undosquamis −18.09 13.18 49~121
    日本鳗鲡 Anguillidae japonica −15.60 15.14 280~322
    篮圆鲹 Decapterus maruadsi −18.44 13.97 103~169
    黄斑篮子鱼 Siganus canaliculatus −19.80 11.41 167~176
    刺鲳 Psenopsis anomala −18.24 14.00 130~145
    带鱼 Trichiurus lepturus −17.30 15.57 118~212
    看守长眼蟹 Podophthalmus vigil −15.96 12.74 40~53
    锈斑蟳 Charybdis feriatus −15.35 15.07 51~80
    杜氏枪乌贼 Loligo duvauceli −18.31 13.74 30~200
    日本无针乌贼 Sepiella japonica −16.73 13.78 34~222
    范围/‰ range −19.8~−15.35 10.91~15.57
    平均值/‰ $ \overline X \pm {\rm{SD}}$ −17.44±1.21  13.78±1.31
    下载: 导出CSV 
    | 显示表格

    基于δ13C-δ15N的双位图,并根据双位图计算出基于稳定同位素量化的营养结构的群落范围指标 (表4)。结果表明2个海湾的食物链长度和食物来源广泛度均不高。

    表  4  典型海域食物网营养结构
    Table  4  Trophic structure of food web in typical sea areas
    区域
    area
    年份
    year
    总面积
    TA
    平均离心距离
    CD
    平均最邻近距离
    NND
    平均最邻近距离标准差
    SDNND
    δ13C差值
    CR
    δ15N差值
    NR
    海陵湾
    Hailing Bay
    2015 5.10 0.93 0.55 0.35 2.44 3.06
    陵水湾
    Lingshui Bay
    2015 11.18 1.49 0.60 0.54 4.45 4.66
    海州湾[16]
    Haizhou Bay
    2014 13.00 1.37 0.61 0.64 3.70 6.40
    海州湾[16]
    Haizhou Bay
    2015 7.15 1.36 0.42 0.24 1.70 6.04
    南海西南陆架区[17]
    southwestern continental shelf of South China Sea
    2013 5.8 1.0 0.37 0.43 3.4 4.3
    下载: 导出CSV 
    | 显示表格

    海陵湾CR和NR分别为2.44和3.06,TA约为5.1,CD为0.93,显示出海陵湾主要渔业生物营养结构多样性较低。NND和SDNND分别为0.55和0.35,表明海陵湾食物网营养冗余较高 (图2)。

    图  2  海陵湾主要生物种类的碳、氮稳定同位素比值
    Fig. 2  δ13C and δ15N values of major species in Hailing Bay

    陵水湾的CR和NR分别为4.45和4.66,TA约为11.18,CD为1.49,显示出陵水湾营养结构多样性较低,但好于海陵湾。NND和SDNND分别为0.60 和0.54,表明陵水湾食物网营养冗余较高,但冗余程度低于海陵湾 (图3)。

    图  3  陵水湾主要生物种类的碳、氮稳定同位素比值
    Fig. 3  δ13C and δ15N values of major species in Lingshui Bay

    与海州湾和南海西南陆架区相比,海陵湾和陵水湾均呈现出食物链长度不足的特征,TA、CD、NND、SDNND均相差不大,处于较低水平,说明这些海湾和近海区域均存在食物链长度不足、捕捞压力大、食物网营养结构冗余的现象 (表4)。

    浮游生物等基础饵料生物δ13C和δ15N的变化,通过捕食者的摄食影响到鱼类,进而传递到整个食物网[18]。许思思等[19]分析了近50年来渤海捕捞渔获物资源结构的变化特征及影响因素,指出营养盐的变化会改变浮游植物的群落结构,导致渔业资源结构的改变。陵水湾渔业生物CR高于海陵湾,可能与陵水湾物质输入导致渔业生物食物来源更广泛有关。陵水湾内存在大量的水产养殖,陆源输入营养物质也较多[20],因此陵水湾渔业生物的CR高于海陵湾,但整体CR均不高。

    陵水湾渔业生物NR值和TA值都高于海陵湾,显示陵水湾较海陵湾食物链更长,多样性水平更高。以3.4‰作为一个营养级的氮稳定同位素富集度来计算,陵水湾渔业生物营养级级距仅为1.37,而海陵湾主要渔业生物营养级级距小于1,说明陵水湾和海陵湾均处于高营养级生物较少、食物网受干扰较多 (捕捞活动造成高营养级生物损失) 的状态。

    渔业生物随着个体生长,食性会发生变化,渔业生物可选择和利用的食物来源更多样;摄食会趋向于高营养层次的生物,从而改变其营养级,占据更多的营养层次[21-24],如南海鸢乌贼 (Symplectoteuthis oualaniensis) δ15N随胴长增加变化显著,呈指数增长[25]。本研究中,主要渔业生物在不同发育阶段δ15N 和δ13C 发生变化。以陵水湾多齿蛇鲻和日本无针乌贼(Sepiella japonica)为例,由于取样体长有较大差异,δ15N和δ13C均随体长增加而增大,其中多齿蛇鲻和日本无针乌贼δ15N分别变化了1.42‰和2.78‰。以3.4‰作为一个营养级的氮稳定同位素富集度来计算[11],多齿蛇鲻和日本无针乌贼的营养级分别变化了0.42和0.82;而δ13C分别变化了0.19 ‰和0.86‰,表明随着多齿蛇鲻和日本无针乌贼的生长发育,其食物来源发生了改变。由此可见,陵水湾主要渔业生物在不同发育阶段食性发生变化,营养级亦随之变化。

    海陵湾主要渔业生物的δ13C和δ15N均显著高于陵水湾,但CR和NR低于陵水湾。陵水湾渔业生物NR和TA均高于海陵湾,表明陵水湾较海陵湾食物链更长,多样性水平较高。陵水湾渔业生物营养级级距仅为1.37,而海陵湾营养级级距小于1,说明陵水湾和海陵湾均处于高营养级生物较少、食物网受干扰较多的状态。

  • 图  1   维氏气单胞菌ascF、fliE、luxR毒力基因对温度的响应

    注:*. 与对照组相比,具有显著差异 (P<0.05);**. 与对照组相比,具有极显著差异 (P<0.01)。后图同此。

    Figure  1.   Responses of virulence factors (ascF, fliE, luxR) of A. veronii to temperature

    Note: *. Significant difference compared with the control group (P<0.05); **. Very significant difference compared with the control group (P<0.01). The same case in the following figures.

    图  2   维氏气单胞菌ascF、fliE、luxR毒力基因对pH的响应

    Figure  2.   Response of virulence factors (ascF, fliE, luxR) of A. veronii to pH

    图  3   维氏气单胞菌ascF、fliE、luxR毒力基因对无机盐离子的响应

    Figure  3.   Response of virulence factors (ascF, fliE, luxR) of A. veronii to ions

    图  4   维氏气单胞菌ascF、fliE、luxR毒力基因对转速的响应

    Figure  4.   Response of virulence factors (ascF, fliE, luxR) of A. veronii to rotating speed

    表  1   引物序列

    Table  1   Primer sequence

    基因
    Gene
    引物
    Primer
    引物序列 (5'—3')
    Primer sequence (5'–3')
    扩增长度
    Amplification length/bp
    退火温度
    Annealing temperature/℃
    16S rDNA 16S-F CCTACGGGAGGCAGCAG 101
    16S-R ATTACCGCGGCTGCTGG
    ascF ascF-F GCAGCACAAGATCAACAAATGG 60 62
    ascF-R GCCCGAGTCACGGTGGAGT
    fliE fliE-F GCAACGCCGCTGGCACAA 121 65
    fliE-R CGAAACGGGTACGCAGGTCA
    luxR luxR-F AGCAATCTGGGGAAGTTGGT 109 58.5
    luxR-R GCAAAACCGGCTCAATGAAC
    下载: 导出CSV
  • [1]

    RAMSAMY Y, MLISANA K P, AMOAKO D G, et al. Comparative pathogenomics of Aeromonas veronii from pigs in South Africa: dominance of the novel ST657 clone[J]. Microorganisms, 2020, 8(12): 2008-2024. doi: 10.3390/microorganisms8122008

    [2]

    ZHAO X, WU G, CHEN H, et al. Analysis of virulence and immunogenic factors in Aeromonas hydrophila: towards the development of live vaccines[J]. J Fish Dis, 2020, 43(7): 747-755. doi: 10.1111/jfd.13174

    [3]

    DHANAPALA P M, KALUPAHANA R, KALUPAHANA A W, et al. Characterization and antimicrobial resistance of environmental and clinical Aeromonas species isolated from fresh water ornamental fish and associated farming environment in Sri Lanka[J]. Microorganisms, 2021, 9(10): 2106. doi: 10.3390/microorganisms9102106

    [4]

    DWORACZEK K, DRZEWIECKA D, PEKALA S A, et al. Structural and serological studies of the O6-related antigen of Aeromonas veronii bv. sobria strain K557 isolated from Cyprinus carpio on a polish fish farm, which contains l-perosamine (4-amino-4, 6-dideoxy-L-mannose), a unique sugar characteristic for Aeromonas serogroup O6[J]. Mar Drugs, 2019, 17(7): 399. doi: 10.3390/md17070399

    [5]

    BHOWMICK U D, BHATTACHARJEE S. Bacteriological, clinical and virulence aspects of Aeromonas-associated diseases in humans[J]. Pol J Microbiol, 2018, 67(2): 137-149. doi: 10.21307/pjm-2018-020

    [6]

    FU M Q, KUANG R, WANG W C, et al. Hepcidin protects yellow catfish (Pelteobagrus fulvidraco) against Aeromonas veronii-induced ascites disease by regulating iron metabolism[J]. Antibiotics, 2021, 10(7): 848. doi: 10.3390/antibiotics10070848

    [7] 王宝屯. 花鲈维氏气单胞菌致病性分析及灭活疫苗和中草药效果评价[D]. 上海: 上海海洋大学, 2021: 1.
    [8] 胡安东, 杨霞, 张飘, 等. 水生动物维氏气单胞菌病概述[J]. 贵州畜牧兽医, 2019, 43(2): 39-42. doi: 10.3969/j.issn.1007-1474.2019.02.012
    [9]

    YANG B, CHEN C, SUN Y, et al. Comparative genomic analysis of different virulence strains reveals reasons for the increased virulence of Aeromonas veronii[J]. J Fish Dis, 2020, 44(1): 13262.

    [10]

    LIU Y G, HAO C X, SHI S Y, et al. Transcriptome analysis of the immunomodulation by Arctium lappa L. polysaccharides in the Chinese mitten crab Eriocheir sinensis against Aeromonas hydrophila[J]. Aquaculture, 2021, 534(2): 736255.

    [11] 赵泽林, 单晓枫, 田磊, 等. 维氏气单胞菌TH0426株ompW基因的克隆、生物信息学分析及其原核表达[J]. 中国兽医学报, 2019, 39(8): 1545-1550.
    [12]

    LI T, RAZA S H A, YANG B T, et al. Aeromonas veronii infection in commercial freshwater fish: a potential threat to public health[J]. Animals, 2020, 10(4): 608. doi: 10.3390/ani10040608

    [13] 杨超, 董浚键, 刘志刚, 等. 大口黑鲈源维氏气单胞菌的分离鉴定[J]. 南方水产科学, 2021, 17(3): 54-61.
    [14] 宋明芳, 张冬星, 张海鹏, 等. 维氏气单胞菌毒力因子的研究进展[J]. 中国兽医科学, 2018, 48(8): 1038-1042.
    [15]

    ANA F B, MARIA J F. An update on the genus Aeromonas: taxonomy, epidemiology, and pathogenicity[J]. Microorganisms, 2020, 8(1): 129. doi: 10.3390/microorganisms8010129

    [16]

    PREDIGER K D C, DALLAGASSA C B, MORIEL B, et al. Virulence characteristics and antimicrobial resistance of Aeromonas veronii biovar sobria 312M, a clinical isolate[J]. Braz J Microbiol, 2020, 51(2): 511-518. doi: 10.1007/s42770-019-00180-5

    [17]

    YUWONO C, WEHRHAHN M C, LIU F, et al. The isolation of Aeromonas species and other common enteric bacterial pathogens from patients with gastroenteritis in an Australian population[J]. Microorganisms, 2021, 9(7): 1440. doi: 10.3390/microorganisms9071440

    [18] 高彩霞, 任燕, 王庆, 等. 草鱼源致病性维氏气单胞菌的分离鉴定及药物敏感性分析[J]. 安徽农业大学学报, 2018, 45(3): 409-415.
    [19] 覃初斌. 干酪乳杆菌对斑马鱼抵御气单胞菌感染的分子机制研究[D]. 杭州: 浙江大学, 2017: 9.
    [20]

    SHA J, WANG S, SUAREZ G, et al. Further characterization of a type III secretion system (T3SS) and of a new effector protein from a clinical isolate of Aeromonas hydrophila-Part I[J]. Microb Pathog, 2007, 43(4): 127-146. doi: 10.1016/j.micpath.2007.05.002

    [21] 丁晓燕. 环境因子对副溶血弧菌T3SS基因表达的影响及养殖环境细菌多样性分析[D]. 烟台: 烟台大学, 2016: 39-50 .
    [22]

    SONG H, ZHANG S, YANG B, et al. Effects of four different adjuvants separately combined with Aeromonas veronii inactivated vaccine on haematoimmunological state, enzymatic activity, inflammatory response and disease resistance in crucian carp[J]. Fish Shellfish Immunol, 2022, 120: 658-673. doi: 10.1016/j.fsi.2021.09.003

    [23]

    TIAN J X, KANG Y H, CHU G S, et al. Oral administration of Lactobacillus casei expressing flagellin A protein confers effective protection against Aeromonas veronii in common carp, Cyprinus carpio[J]. Int J Mol Sci, 2019, 21(1): 33. doi: 10.3390/ijms21010033

    [24]

    TAN J, ZHANG X, WANG X, et al. Structural basis of assembly and torque transmission of the bacterial flagellar motor[J]. Cell, 2021, 184(10): 2665-2679. doi: 10.1016/j.cell.2021.03.057

    [25]

    HU R M, YANG T C, YANG S H, et al. Deduction of upstream sequences of Xanthomonas campestris flagellar genes responding to transcription activation by FleQ[J]. Biochem Biophys Res Commun, 2005, 335(4): 1035-1043. doi: 10.1016/j.bbrc.2005.07.171

    [26]

    REED K A, HOBERT M E, KOLENDA C E, et al. The Salmonella typhimurium flagellar basal body protein FliE is required for flagellin production and to induce a proinflammatory response in epithelial cells[J]. J Biol Chem, 2002, 277(15): 13346-13353. doi: 10.1074/jbc.M200149200

    [27] 孙晓佳, 李婷婷, 赫彬彬, 等. 环境条件对温和气单胞菌群体感应基因luxI/luxR表达的影响[J]. 中国食品学报, 2021, 21(4): 71-78.
    [28]

    KAI P, BASSLER B L, et al. Quorum sensing signal-response systems in Gram-negative bacteria[J]. Nat Rev Microbiol, 2016, 14(9): 576-588. doi: 10.1038/nrmicro.2016.89

    [29] 励建荣, 李婷婷, 王当丰. 微生物群体感应系统及其在现代食品工业中应用的研究进展[J]. 食品科学技术学报, 2020, 38(1): 1-11.
    [30]

    BAZHENOV S, NOVOYATLOVA U, SCHEGLOVA E, et al. Influence of the luxR regulatory gene dosage and expression level on the sensitivity of the whole-cell biosensor to acyl-homoserine lactone[J]. Biosensors, 2021, 11(6): 166. doi: 10.3390/bios11060166

    [31]

    AWAN F, DONG Y, WANG N, et al. The fight for invincibility: environmental stress response mechanisms and Aeromonas hydrophila[J]. Microb Pathog, 2018, 116: 135-145. doi: 10.1016/j.micpath.2018.01.023

    [32]

    ROY P K, HA J W, MIZAN M, et al. Effects of environmental conditions (temperature, pH, and glucose) on biofilm formation of Salmonella enterica serotype Kentucky and virulence gene expression[J]. Poultry Sci, 2021, 100(7): 101209. doi: 10.1016/j.psj.2021.101209

    [33] 胡靖, 李爱华, 胡成钰, 等. 温度和pH值对嗜水气单胞菌毒力基因表达的影响[J]. 南京理工大学学报(自然科学版), 2006, 30(3): 375-380.
    [34] 庞欢瑛, 周泽军, 丁燏, 等. 溶藻弧菌 vscO基因在不同环境下的表达差异[J]. 吉首大学学报 (自然科学版), 2014, 35(4): 59-63.
    [35]

    WOLFGANG M C, LEE V T, GILMORE M E, et al. Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway[J]. Dev Cell, 2003, 4(2): 253-263. doi: 10.1016/S1534-5807(03)00019-4

    [36] 孔西曼, 张公亮, 王佳莹, 等. 环境因素对即食海参蜂房哈夫尼菌群体感应的影响[J]. 现代食品科技, 2017, 33(1): 87-92,105.
    [37] 赵丹丹, 刘琳, 王迪, 等. pH和NaCl质量浓度对发酵鱼糜中腐败菌Aeromonas veronii群体感应的影响[J]. 食品与发酵工业, 2018, 44(2): 33-39.
  • 期刊类型引用(13)

    1. 张文博,黄洪辉,巩秀玉,刘华雪. 南海西部不同粒级浮游动物碳氮稳定同位素研究. 海洋环境科学. 2025(01): 89-96 . 百度学术
    2. 汪慧娟,徐姗楠,张文博,黄洪辉,齐占会,程琪,刘华雪. 基于碳氮稳定同位素的珠江口南沙海域渔业生物群落营养结构研究. 生态科学. 2024(02): 42-50 . 百度学术
    3. 邱星宇,刘庆霞,陈作志,蔡研聪,黄洪辉. 2023年春季南沙珊瑚岛礁主要鱼类碳氮稳定同位素研究. 热带海洋学报. 2024(06): 104-113 . 百度学术
    4. 邱星宇,刘庆霞,陈作志,蔡研聪,戴守辉,黄洪辉. 春季南沙西南部陆架区主要渔业生物营养结构. 中国水产科学. 2024(12): 1524-1538 . 百度学术
    5. 王子涵,曾聪,姜子禺,曹玲. 东海及其邻近海域受胁鱼类保护空缺分析. 热带海洋学报. 2023(01): 66-86 . 百度学术
    6. 李纯厚,齐占会. 中国渔业生态环境学科研究进展与展望. 水产学报. 2023(11): 132-147 . 百度学术
    7. 彭谦,王啟芳,宋普庆,黄丁勇,张涵,王建佳,郑新庆. 秋季涠洲岛珊瑚礁主要鱼类营养关系的初步研究. 海洋学报. 2023(09): 91-104 . 百度学术
    8. 杨蓉,李垒. 碳氮氧稳定同位素技术在水生态环境中的应用. 环境科学研究. 2022(01): 191-201 . 百度学术
    9. 王开立,龚玉艳,陈作志,许友伟,孙铭帅,蔡研聪,李佳俊,徐姗楠. 基于稳定同位素技术的南海北部蓝圆鲹的营养生态位. 生态学杂志. 2022(04): 724-731 . 百度学术
    10. 尹洪洋,朱文涛,马文刚,章翔,夏景全,许强,李建龙,何法庆,李秀保. 三亚蜈支洲岛海洋牧场区域夏季食物网研究. 生态学报. 2022(08): 3241-3253 . 百度学术
    11. 张婉茹,刘庆霞,黄洪辉,覃晓青,李佳俊,陈建华. 2020年冬季大亚湾西南海域主要渔业生物碳氮稳定同位素研究. 热带海洋学报. 2022(03): 147-155 . 百度学术
    12. 郭清扬,谷阳光,鲍虞园,李银康,周传江,颉晓勇. 中华鲎的食物组成及营养位置分析. 南方水产科学. 2021(04): 35-40 . 本站查看
    13. 汪慧娟,张文博,黄洪辉,徐姗楠,刘华雪. 基于碳、氮稳定同位素的大亚湾渔业生物群落营养结构. 南方水产科学. 2021(05): 101-109 . 本站查看

    其他类型引用(3)

推荐阅读
Quality improvement and mechanism analysis of non-rinsing tilapia surimi gel
LUO Yingying et al., SOUTH CHINA FISHERIES SCIENCE, 2025
Effects of disinfectants on population growth offabrea salina
ZHANG Xinyue et al., SOUTH CHINA FISHERIES SCIENCE, 2024
Improvement of gel strength of fermented tilapia surimi bylactiplantibacillus plantarumthrough inhibition of protein hydrolysis
CUI Qiaoyan et al., SOUTH CHINA FISHERIES SCIENCE, 2024
Effect of hanging pulp on quality improvement and protein stability of prepared tilapia fillets
WU Qingqing et al., SOUTH CHINA FISHERIES SCIENCE, 2024
Effect of experimental hyperthyroidism on catsper1 and catsper2 genes expression in the seminiferous tubules of balb/c mice: an experimental study
S. Sadeghi et al., INTERNATIONAL JOURNAL OF REPRODUCTIVE BIOMEDICINE (IJRM), 2020
The influence of various biostimulant formulas supplemented with microbes and their application frequency on corn productivity in tidal swamplands
M. Mukhlis et al., KNE SOCIAL SCIENCES, 2024
Absorption, distribution, metabolism, and excretion of [14c]iptacopan in healthy male volunteers and in in vivo and in vitro studiess
James, Alexander David et al., DRUG METABOLISM AND DISPOSITION, 2023
Biological activities, dft calculations, and molecular docking simulation of thymol-based compounds
Sahin, Dicle et al., CHEMISTRYSELECT, 2024
Cytomorphological findings in drug defaulters of tuberculous lymphadenitis
CYTOJOURNAL, 2023
An investigation into the correlation between intraperitoneal teicoplanin concentrations and treatment outcomes in peritoneal dialysis-associated peritonitis
FRONTIERS IN PHARMACOLOGY, 1905
Powered by
图(4)  /  表(1)
计量
  • 文章访问数:  799
  • HTML全文浏览量:  238
  • PDF下载量:  46
  • 被引次数: 16
出版历程
  • 收稿日期:  2021-09-22
  • 修回日期:  2022-02-20
  • 录用日期:  2022-02-23
  • 网络出版日期:  2022-03-06
  • 刊出日期:  2022-10-04

目录

/

返回文章
返回