紫红笛鲷Cyp1a基因克隆、表达及其对一溴联苯醚和十溴联苯醚胁迫的响应

张喆, 巩秀玉, 兰丽丽, 王学锋, 马胜伟, 陈海刚, 张林宝

张喆, 巩秀玉, 兰丽丽, 王学锋, 马胜伟, 陈海刚, 张林宝. 紫红笛鲷Cyp1a基因克隆、表达及其对一溴联苯醚和十溴联苯醚胁迫的响应[J]. 南方水产科学, 2022, 18(4): 54-64. DOI: 10.12131/20210271
引用本文: 张喆, 巩秀玉, 兰丽丽, 王学锋, 马胜伟, 陈海刚, 张林宝. 紫红笛鲷Cyp1a基因克隆、表达及其对一溴联苯醚和十溴联苯醚胁迫的响应[J]. 南方水产科学, 2022, 18(4): 54-64. DOI: 10.12131/20210271
ZHANG Zhe, GONG Xiuyu, LAN Lili, WANG Xuefeng, MA Shengwei, CHEN Haigang, ZHANG Linbao. Cloning and expression profiling of Cyp1a gene in Lutjanus argentimaculatus under 4-bromodiphenyl ether (BDE-3) and decabromodiphenyl ether (BDE-209) exposure[J]. South China Fisheries Science, 2022, 18(4): 54-64. DOI: 10.12131/20210271
Citation: ZHANG Zhe, GONG Xiuyu, LAN Lili, WANG Xuefeng, MA Shengwei, CHEN Haigang, ZHANG Linbao. Cloning and expression profiling of Cyp1a gene in Lutjanus argentimaculatus under 4-bromodiphenyl ether (BDE-3) and decabromodiphenyl ether (BDE-209) exposure[J]. South China Fisheries Science, 2022, 18(4): 54-64. DOI: 10.12131/20210271

紫红笛鲷Cyp1a基因克隆、表达及其对一溴联苯醚和十溴联苯醚胁迫的响应

基金项目: 国家自然科学基金项目 (31702352);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金项目 (2021SD17, 2019TS14);农业农村部财政专项项目 (NHYYSWZZZYKZX2020, NFZX2021)
详细信息
    作者简介:

    张 喆 (1981—),女,副研究员,博士,从事海洋生态学研究。E-mail: zhangzhe@scsfri.ac.cn

  • 中图分类号: X 171.5

Cloning and expression profiling of Cyp1a gene in Lutjanus argentimaculatus under 4-bromodiphenyl ether (BDE-3) and decabromodiphenyl ether (BDE-209) exposure

  • 摘要: 细胞色素P450酶 (Cytochrome P450, CYPs) 由P450基因编码,其中Cyp1a基因参与不同类型外源物质的生物转化和代谢。克隆了紫红笛鲷 (Lutjanus argentimaculatus) Cyp1a基因,对其组织表达模式进行分析,探讨了不同质量浓度 (10、50和250 μg·L−1) 一溴联苯醚 (4-bromodiphenyl ether, BDE-3) 和十溴联苯醚 (decabromodiphenyl ether, BDE-209) 胁迫对紫红笛鲷肝脏Cyp1a表达及7-乙氧基香豆素-O-脱乙基酶 (7-ethoxyresorufin O-deethylase, EROD) 活性的影响。结果表明,紫红笛鲷Cyp1a cDNA全长2540 bp,开放阅读框长1 566 bp,编码521个氨基酸。同源分析结果表明紫红笛鲷CYP1A与花鲈 (Lateolabrax maculatus) CYP1A蛋白相似性最高 (92.69%),进化树分析与白梭吻鲈 (Sander lucioperca) 聚为一支,进化地位最近。Cyp1a基因在紫红笛鲷肝脏表达量最高,其次是脑和鳃,肌肉最低。10 μg·L−1 BDE-3和BDE-209未对Cyp1a基因表达和EROD活性产生影响,而50和250 μg·L−1BDE-3胁迫7~15 d则对两者产生显著抑制,且呈现剂量效应。与BDE-3相反,50和250 μg·L−1 BDE-209 处理组Cyp1a基因表达和EROD活性显著增加,且Cyp1a基因表达与EROD活性呈显著正相关。高浓度BDE-3和BDE-209可对紫红笛鲷肝脏Cyp1a基因的表达产生影响,但两者的影响模式不同。
    Abstract: Cytochrome P450 enzymes (CYPs) are encoded by P450 genes, in which cytochrome P450 1A (Cyp1a) genes mainly involve in biotransformation and metabolism of numerous xenobiotics. In this study, we cloned the Cyp1a gene from Lutjanus argentimaculatus, and investigated its tissue expression pattern. In addition, we evaluated different concentrations (10, 50 and 250 μg·L−1) of BDE-3 and BDE-209 on Cyp1a gene profile and 7-ethoxyresorufin-O-deethylase (EROD) activity in liver of L. argentimaculatus. The results show that the full length of Cyp1a cDNA was 2 540 bp with 1 566 open reading frame encoding 521 amino acids. The sequence homology of L. argentimaculatus CYP1A was the highest (92.69%) with that of Lateolabrax maculatus. Phylogenetic analysis results indicate that CYP1A was closely aligned with Sander lucioperca protein. Cyp1a transcripts were most abundant in liver, followed by brain and gill, but lowest in muscle. 10 μg·L−1 of BDE-3 and BDE-209 showed no effects on both Cyp1a expression and EROD activity, while high concentrations (50 and 250 μg·L−1) of BDE-3 down-regulated both of them significantly in a concentration-dependent manner on 7th-15th day. In contrast, exposure to 50 and 250 μg·L−1 of BDE-209 resulted in increasing of hepatic Cyp1a level and EROD activity. Moreover, Cyp1a genes levels and EROD activities showed a good correlation. High concentrations of BDE-3 and BDE-209 can affect Cyp1a gene expression in liver of L. argentimaculatus in different manners.
  • 渔业数据是进行渔业科学领域研究的基础,是渔业管理者系统、也是准确地掌握渔业生产实际及变化情况的主要依据,其精度直接影响研究调查结果的精准度[1-2]。电子捕捞日志利用北斗无线传输终端等智能电子设备及互联网技术,采集渔船动态及渔获物等相关信息数据[3-4]。与传统的渔捞日志相比,电子捕捞日志具有填写方便、容易保存、查询简单、利用率高、不易丢失和损坏、全面覆盖不同渔区等优点。由于电子捕捞日志采集过程中受海况、天气等自然因素和船员文化水平、责任心等人为因素的影响,存在错报、漏报、误报的现象,因此亟须采集与分析系统中电子捕捞日志的可信度。北斗船位数据(以下简称北斗数据)实时获取渔船的船位、航速、航向等渔船动态信息且具有较高的精度,可以弥补电子捕捞日志的不足[5-7]。本文通过对北斗数据和电子捕捞日志数据获取的作业信息进行对比分析,旨在提高电子捕捞日志数据的精准性,以期为渔业资源管理、科学管理和渔业绿色健康发展提供基础资料。

    北斗数据从中国水产科学研究院南海水产研究所南海渔业中心的“南海渔船动态监控平台”中获取,主要包括渔船的北斗ID (identity,身份标识号码)、经纬度、航速、航向、定位时间等数据,数据时间分辨率为3 min,空间分辨率为10 m[8-9]。电子捕捞日志数据从南海渔业中心构建的“广东渔业资源数据采集与分析系统”中提取,主要包括渔船北斗ID、作业方式、主机功率、捕捞品种、渔获产量、放网时间、起网时间、作业渔区、作业网次等数据[3]。安装北斗无线终端且符合填报要求的拖网渔船共27艘,从中选取9艘拖网渔船2018年8月17日—2019年4月30日的作业状态进行分析,去除电子捕捞日志中部分填报的起网时间与放网时间相同及船位数据丢失的记录条数,9艘拖网船电子捕捞日志记录的数量和研究分析的样本数量见表1

    表  1  9艘拖网船电子捕捞日志记录数量和样本数量分布
    Table  1  Distribution of electronic fishing logs records and sample size of nine trawlers
    渔 船
    vessel
    北斗终端号
    Beidou ID
    记录数量
    number of records
    样本数量
    number of samples
    粤新会渔 01282 Yuexinhui fishing 01282 286061 102 82
    粤新会渔 01240 Yuexinhui fishing 01240 284688 152 136
    粤新会渔 01286 Yuexinhui fishing 01286 273232 126 122
    粤新会渔 01239 Yuexinhui fishing 01239 286068 212 185
    粤茂滨渔 47239 Yuemaobin fishing 47239 279739 98 90
    粤新会渔 02163 Yuexinhui fishing 02163 284792 149 90
    粤茂滨渔 42278 Yuemaobin fishing 42278 279721 106 102
    粤新会渔 00070 Yuexinhui fishing 00070 283442 171 108
    粤新会渔 01268 Yuexinhui fishing 01268 284801 106 90
    下载: 导出CSV 
    | 显示表格

    利用北斗数据结合拖网渔船作业特点进行状态划分[10-12],提取北斗数据中拖网渔船的作业时间。选取“粤新会渔01239”2018年10月24日0时—10月24日24时(图1-a), “粤新会渔01286”2018年9月3日0时—9月3日24时(图1-b), “粤新会渔01240”2018年9月24日0时—9月24日24时(图1-c), “粤新会渔01282”2018年8月28日0时—8月28日24时(图1-d), “粤茂滨渔47239”2018年8月28日0时—8月28日24时(图1-e), “粤新会渔01263”2018年9月20日0时—9月20日24时(图1-f), “粤茂滨渔42278”2018年8月18日0时—8月18日24时(图1-g), “粤新会渔00070”2018年9月22日0时—9月22日24时(图1-h)和“粤新会渔01268”2019年1月25日0时—1月25日24时(图1-i)时间段内的北斗数据进行分析,9艘拖网船此时间段作业状态可划分为航行(A段)、拖网作业(B段)和抛锚或漂流(C段) 3种状态(图1)。捕捞过程包括航行,到达某渔场后开始放网,进行拖网作业和停泊收网。北斗数据显示作业时航向差值为0°左右且变动不大。由此可确定“粤新会渔01239”2个网次、 “粤新会渔01286”3个网次、 “粤新会渔01240”3个网次、 “粤新会渔01282”2个网次、 “粤茂滨渔47239”2个网次、 “粤新会渔01263”2个网次、 “粤茂滨渔42278”2个网次、 “粤新会渔00070”2个网次和“粤新会渔01268”2个网次的具体作业时间以及对应的经纬度。电子捕捞日志数据的作业时间为填报起网和放网的时间间隔。由于起网过程拖速可能不会明显下降,因此默认拖速大于4 kn或小于2 kn时为网次间转变的信号。

    图  1  北斗船位数据中作业状态的判断
    Fig. 1  Judgment of fishing status in Beidou position data

    电子捕捞日志数据中个别填报的作业时间中包括航行、抛锚或漂流的时间,因此可信度分析时电子捕捞日志提取的作业时间应减去航行、抛锚或漂流的时间。

    利用SPSS 20.0中的配对样本t检验和简单相关性分析分别对2种方法提取的作业时间进行分析,判断电子捕捞日志数据中作业时间的可信度。计算公式为:

    $$ D = E - V $$ (1)
    $$ \overline {{D}} = \dfrac{{{{D}}_1 + {{D}}_2 + {{D}}_3 + \cdots {{D_n}}}}{{{n}}} $$ (2)
    $${{D_{\text {σ}} }} = \sqrt{{\dfrac{{\left( {{{D}}_1 - \overline {{D}} } \right)^2 + \left( {{{D}}_2 - \overline {{D}} } \right)^2 + \cdots + \left( {{{D_n}} - \overline {{D}} } \right)^2}}{{{n}}}}}$$ (3)

    式中D为2种方法提取的作业时间的差值(h);$\overline D $为差值的平均数;Dσ为差值的标准差;V为北斗数据提取的作业时间(h);E为电子捕捞日志数据提取的作业时间(h);Dn为第n个样本数据由2种方法提取的作业时间的差值,取值$1,2,3 \cdots n$

    利用差值的平均数对电子捕捞日志数据提取的作业时间进行校正,计算公式为:

    $${{T}} = {{E_n}} - {{\overline D}}$$ (4)

    式中T为校正后的电子捕捞日志数据提取的作业时间(h);En为第n个样本数据中电子捕捞日志数据提取的作业时间,取值$1,2,3 \cdots n$

    计算2种方法提取的作业时间的相对误差判定校正结果的可信度,计算公式为:

    $${\rm{\delta }} = \left( {{{T}} - {{V}}} \right)/{{V}} \times 100{\text{%}}$$ (5)

    式中δ为相对误差(%),相对误差δ在±10%以内被认为处于可信范围内。用作业时间重复率表征作业时间的可信度,计算公式为:

    $${{\rm{\eta }}_t} = {N_{ t}}/N \times 100{\text{%}}$$ (6)

    式中ηt为作业时间的重复率(%);NtEn值经$\overline D $值校正后的δ值在10%以内记录数量;N为总样本数量。

    利用SPSS 20.0中的简单相关性分析对作业网次、渔获量与D值的相关性进行分析,对捕捞努力量(作业时间)与渔获量的相关性进行分析,分析2种方法提取的作业时间产生差值的原因,初步判断电子捕捞日志数据中渔获量的可信度。

    利用SPSS 20.0中的配对样本t检验分析对2种方法提取的作业网次进行分析,判断电子捕捞日志数据中作业网次的可信性。用作业网次重复率表征作业网次的可信度。计算公式为:

    $${{\rm{\eta }}_{\rm h}} = {N_{\rm h}}/N \times 100{\text{%}}$$ (7)

    式中ηh为作业时间的重复率(%);Nh为指电子捕捞日志数据记录的作业网次和北斗数据提取的作业网次相同的记录数量。

    根据北斗数据提取的平均作业经纬度和电子捕捞日志记录的起放网平均经纬度,利用ArcGis 10.0绘制北斗船位轨迹和电子捕捞日志记录轨迹分布图。统计两者作业经纬度在同一渔区的记录数量占总样本数量的百分比,即作业渔区的重复率,表征作业渔区的可信度,计算公式为:

    $${{\rm{\eta }}_{\rm a}} = {N_{\rm a}}/N \times 100{\text{%}}$$ (8)

    式中ηa为作业时间的重复率(%);Na为北斗数据提取的平均作业经纬度和电子捕捞日志记录的起放网平均经纬度在同一渔区的记录数量。

    结果显示,虽然9艘拖网渔船的E值和V值均存在极显著性差异(P<0.01,表2),但两者存在极显著相关性(P<0.01,表3)。分析D值,9艘拖网船的差值集中在1~2 h (表4);“粤新会渔01240” “粤新会渔01239”和“粤茂滨渔47239”作业网次无显著性差异(P>0.05),其他6艘渔船作业网次均存在极显著性差异(P<0.01,表2);“粤新会渔01263” “粤新会渔01282”和“粤茂滨渔47239”的作业时间经$\overline D $值校正后的δ值较分散,其他6艘船的作业时间经$\overline D $值校正后的δ值绝大多数在10%以内(图2)。

    表  2  作业时间和作业网次的差异显著性检验
    Table  2  Significant difference test between fishing time and hauls
    船名
    vessel
    作业时间
    fishing time
    作业网次
    fishing haul
    粤新会渔 01282
    Yuexinhui fishing 01282
    0.000** 0.000**
    粤新会渔 01240
    Yuexinhui fishing 01240
    0.000** 0.332
    粤新会渔 01286
    Yuexinhui fishing 01286
    0.000** 0.000**
    粤新会渔 01239
    Yuexinhui fishing 01239
    0.000** 0.880
    粤茂滨渔 47239
    Yuemaobin fishing 47239
    0.000** 0.226
    粤新会渔 02163
    Yuexinhui fishing 02163
    0.000** 0.000**
    粤茂滨渔 42278
    Yuemaobin fishing 42278
    0.000** 0.000**
    粤新会渔 00070
    Yuexinhui fishing 00070
    0.000** 0.000**
    粤新会渔 01268
    Yuexinhui fishing 01268
    0.000** 0.000**
    注:**. 显著性极大差异 (P<0.01);*. 显著性差异 (P<0.05) Note: **. very significant difference (P<0.01); *. signficant difference (P<0.05)
    下载: 导出CSV 
    | 显示表格
    表  3  作业时间的相关性分析
    Table  3  Relative coefficient of fishing time
    船名
    vessel
    相关系数
    relative coefficient
    粤新会渔 01282 Yuexinhui fishing 01282 0.824**
    粤新会渔 01240 Yuexinhui fishing 01240 0.752**
    粤新会渔 01286 Yuexinhui fishing 01286 0.769**
    粤新会渔 01239 Yuexinhui fishing 01239 0.936**
    粤茂滨渔 47239 Yuemaobin fishing 47239 0.833**
    粤新会渔 02163 Yuexinhui fishing 02163 0.853**
    粤茂滨渔 42278 Yuemaobin fishing 42278 0.863**
    粤新会渔 00070 Yuexinhui fishing 00070 0.959**
    粤新会渔 01268 Yuexinhui fishing 01268 0.821**
    注:**. 相关性极显著(P<0.01);*. 相关性显著(P<0.05);表5同此 Note: **. very significant correlation (P<0.01); *. signficant correlation (P<0.05); the same case in Table 5.
    下载: 导出CSV 
    | 显示表格
    表  4  作业时间的差值
    Table  4  Difference value of fishing time
    船名
    vessel
    差值/h
    difference value
    粤新会渔 01282 Yuexinhui fishing 01282 1.71±1.21
    粤新会渔 01240 Yuexinhui fishing 01240 1.63±0.57
    粤新会渔 01286 Yuexinhui fishing 01286 1.67±0.30
    粤新会渔 01239 Yuexinhui fishing 01239 1.61±0.37
    粤茂滨渔 47239 Yuemaobin fishing 47239 1.07±1.22
    粤新会渔 02163 Yuexinhui fishing 02163 1.29±1.57
    粤茂滨渔 42278 Yuemaobin fishing 42278 1.35±1.72
    粤新会渔 00070 Yuexinhui fishing 00070 1.12±0.55
    粤新会渔 01268 Yuexinhui fishing 01268 1.48±0.67
    下载: 导出CSV 
    | 显示表格
    图  2  校正后作业时间的相对误差
    Fig. 2  Fractional error of fishing time after calibration

    双变量相关性分析结果显示,“粤新会渔01240”和“粤新会渔00070”的作业网次与D值呈显著性相关(P<0.05),“粤新会渔01286” “粤新会渔01239”和“粤茂滨渔42278”的作业网次与D值呈极显著性相关(P<0.01),“粤新会渔01282” “粤茂滨渔47239” “粤新会渔02163”和“粤新会渔01268”的作业网次与D值无显著相关性(P>0.05);“粤新会渔01240” “粤新会渔01239” “粤新会渔02163”和“粤新会渔01268”的渔获量对D值产生显著影响(P<0.05),其他5艘渔船的渔获量对D值无显著影响(P>0.05);“粤新会渔01286” “粤新会渔01239” “粤新会渔01240”和“粤茂滨渔47239”的作业时间与渔获量均呈极显著相关(P<0.01),“粤茂滨渔42278”的作业时间与渔获量呈显著相关(P<0.05),其中“粤新会渔01239”的作业时间对渔获量影响最大(0.464),其次是“粤新会渔01286” (0.415)、 “粤新会渔01240” (0.393)、 “粤茂滨渔47239” (0.348)和“粤茂滨渔42278” (0.221),其他4艘船的作业时间与渔获量无显著相关性(P>0.05,表5)。

    表  5  不同渔船作业网次、渔获量与差值,作业时间与渔获量的相关系数
    Table  5  Correlation coefficient between fishing hauls, catches and difference, and fishing time and catches of different fishing vessels
    船名
    vessel
    指标
    index
    作业网次
    fishing haul
    渔获量
    catch
    作业时间
    fishing time
    粤新会渔 01282 Yuexinhui fishing 01282 差值 0.067 0.122
    粤新会渔 01240 Yuexinhui fishing 01240 0.183* 0.209*
    粤新会渔 01286 Yuexinhui fishing 01286 0.353** 0.112
    粤新会渔 01239 Yuexinhui fishing 01239 0.273** 0.187*
    粤茂滨渔 47239 Yuemaobin fishing 47239 0.337 0.226
    粤新会渔 02163 Yuexinhui fishing 02163 0.021 0.247*
    粤茂滨渔 42278 Yuemaobin fishing 42278 0.312** 0.182
    粤新会渔 00070 Yuexinhui fishing 00070 0.223* 0.025
    粤新会渔 01268 Yuexinhui fishing 01268 0.014 0.318*
    粤新会渔 01282 Yuexinhui fishing 01282 渔获量 0.175
    粤新会渔 01240 Yuexinhui fishing 01240 0.348**
    粤新会渔 01286 Yuexinhui fishing 01286 0.415**
    粤新会渔 01239 Yuexinhui fishing 01239 0.464**
    粤茂滨渔 47239 Yuemaobin fishing 47239 0.393**
    粤新会渔 02163 Yuexinhui fishing 02163 0.140
    粤茂滨渔 42278 Yuemaobin fishing 42278 0.221*
    粤新会渔 00070 Yuexinhui fishing 00070 0.169
    粤新会渔 01268 Yuexinhui fishing 01268 0.094
    下载: 导出CSV 
    | 显示表格

    虽然不同日期北斗数据作业的轨迹与电子捕捞日志记录的轨迹存在一定误差,但两者提取的作业路径基本相似,其中“粤新会渔01239”作业渔区的重复率最高(86.9%,图3), “粤茂滨渔00070”作业渔区的重复率最低(56.9%),其余6艘渔船作业渔区的重复率均在60%以上。

    图  3  北斗船位轨迹和电子捕捞日志记录轨迹的分布
    Fig. 3  Distribution of path of Beidou position and electronic fishing logs

    电子捕捞日志数据的可信度结果表明, “粤新会渔01239”作业时间的重复率最高(81.5%), “粤茂滨渔47239”最低(24.7%); “粤新会渔01240”作业网次的重复率最高(86.9%),“粤新会渔01268”最低(35.4%)。从整体看,作业渔区的重复率高于作业时间和作业网次的重复率(图4)。

    图  4  电子捕捞日志数据的可信度分析
    Fig. 4  Credibility analysis of electronic fishing log data

    电子捕捞日志数据对不同作业类型渔获产量、渔获种类及生物学参数、单船单品种产量、不同海域不同种类产量等进行统计分析,将为渔业产业结构调整[13]、渔业资源总量管理、限额捕捞[14]、定点上岸、渔获物可追溯及渔港监管[15]等方面提供数据支撑。国外学者较早利用船位监控系统的位置数据验证航海捕捞日志[16-17],而我国对电子捕捞日志数据的采集和应用尚处于起步阶段,对可信度的分析较少,而电子捕捞日志的层层错报、漏报、误报等现象严重影响到渔业领域研究的精准度,因此对电子捕捞日志的可信度进行分析十分必要[18]。结果显示,虽然9艘拖网渔船的E值和V值均存在极显著性差异(P<0.01),但两者均存在极显著相关性(P<0.01),说明电子捕捞日志上报的作业时间有研究性和利用性意义。9艘拖网船的差值均集中在1~2 h,原因可能是电子捕捞日志填报的作业时间大多数是一天中开始起网至一天中结束放网的时间间隔,据搭乘安装北斗终端拖网船实地调查可知,一天平均作业两网次,这中间包括第一网次起网填报结束至第二网次放网填报结束的时间间隔40 min以及两网次起网后分类筛选渔获物的时间65 min。作业时间经$\overline D $校正后,δ大多数在10%以内,本研究结果与张胜茂等[12]研究的由人工记录和北斗数据提取的作业时间差占人工记录的起放网之间平均时长的4.8%不同,原因可能是后者的人工记录来自专门从事科学研究的人员,人工记录的日志比较仔细、准确;而本研究中记录人员是普通渔民,主观性较强,仔细和认真程度也很难达到科研人员的水平;此外,北斗数据和电子捕捞日志数据提取的作业时间在起放网过程也会产生误差,因此相对误差在±10%以内被认为是合理范围。

    相关性分析结果表明,部分渔船的作业网次和差值呈显著正相关,说明作业网次越多,差值越大,作业网次对作业时间的可信度影响较大,原因可能是这些渔船填报的作业时间是一天一条,其中包括上一网次起网至下一网次放网间的非作业时间,因此在电子捕捞日志的管理过程中,应分网次逐条上报,对于填报错误的渔民进行培训和指导,逐步增加电子捕捞日志的可信度;部分渔船的渔获量与差值呈显著正相关,说明渔获量越多,起网后分类筛选渔获物的时间越长,电子捕捞日志填报的作业时间越长,与北斗数据提取的作业时间的差值越大,可见渔获量也在一定程度上影响作业时间的重复率。综上所述,利用“粤新会渔01282” “粤新会渔01240” “粤新会渔01286” “粤新会渔01239”“粤茂滨渔47239” “粤新会渔02163” “粤茂滨渔42278” “粤新会渔00070”和“粤新会渔01268”拖网渔船的电子捕捞日志数据提取的作业时间做可信度分析时,应分别减去1.71、1.63、1.67、1.61、1.07、1.29、1.35、1.12和1.48 h。尽管电子捕捞日志与北斗数据记录的作业时间有一定的误差,但是通过本研究分析可知,该误差不可避免,并且类似误差在其他研究中也均有报道,如Joo等[19]对实测数据和北斗数据分析时也存在一定误差。

    本研究中部分渔船的作业网次存在极显著性差异(P<0.01),且作业网次的重复率低至35.4%,重复率低的原因可能是渔民一天中作业2~3网次,但是填报作业时间是一天中开始放网和结束起网的时间差,只填报了1条,最后作业网次也错填为1网次。出现这种情况时,管理者应及时与渔民联系,引导渔民正确填报电子捕捞日志。从整体上看,作业渔区较作业时间和作业网次的可信度高,但仍有填报出错的情况,原因可能是渔民填报的是某一时刻渔船所在渔区,而渔船在作业期间位置不断变化,可能会横跨相邻的渔区。根据北斗数据作业轨迹与电子捕捞日志记录轨迹分布证实了以上可能性原因。为了初步判定电子捕捞日志记录的渔获物的可信度,本文分析了捕捞努力量与渔获量的相关性,结果显示4艘拖网船的作业时间与渔获量均呈极显著相关(P<0.01),一艘拖网船的作业时间与渔获量呈显著相关(P<0.05),此结果与张志敏和徐年军[20]研究的渔获量和北斗数据提取的捕捞努力量之间的相关性结果相似。而另外4艘船的作业时间与渔获量无显著相关性(P>0.05),可能是渔民忘填、漏填或者该船捕捞区域渔获量较少,捕捞渔获物量差别不明显等导致的结果。总之,无论是从渔民角度还是管理者角度分析,该偏差不可避免,因此需要研究人员和管理人员对渔船位置进行实时监控,监督渔民填报电子捕捞日志,达到降低北斗数据与电子捕捞日志数据偏差,增加电子捕捞日志可信度的目的。

    本研究仅选取9艘拖网渔船2018年8月17日至2019年4月30日时间段上传的电子捕捞日志数据和北斗数据为研究对象得出判定可信度的方法,而其他捕捞方式包括罩网[21-23]、刺网[24-26]、钓具[27]和张网[28-29]等作业类型的可信度尚未分析,时间较短、船只数量少,不能整体上很好地反映电子捕捞日志的可信度。此外,本文仅对电子捕捞日志的可信度进行分析,未探索校正电子捕捞日志的方法。总体看来,对电子捕捞日志可信度的探索尚处于起步阶段,相关科学问题有待于进一步深入研究。在今后的研究中,应探索其他作业类型的电子捕捞日志可信度的判定方法,增加研究时间段,利用可信度高的电子捕捞日志数据验证船只的行为[30],与北斗数据结合用于探索渔获量和捕捞努力量的空间分布[31]、模拟渔场变迁[32]、分析捕捞活动[33-34]及某种渔业资源的时空分布[35-36],分析拖网捕捞对渔业资源种群的影响[6]等。还应利用可信度较高的渔获物产量进行渔业资源评估[37],研究渔业资源种类组成、数量分布、评估渔业资源密度和现存资源量[38-40],逐步提高渔业资源评估的准确度,为实现限额捕捞提供必要的前提[30, 41]

  • 图  1   紫红笛鲷Cyp1a核苷酸序列及其推导氨基酸序列

    Figure  1.   Nucleotide and deduced amino acid sequence of Cyp1a of L. argentimaculatus

    图  2   紫红笛鲷CYP1A二级 (a) 和三级结构 (b) 预测

    Figure  2.   Prediction of secondary structure (a) and tertiary structure (b) of L. argentimaculatus CYP1A

    图  3   紫红笛鲷CYP1A推导氨基酸多重序列比较

    Figure  3.   Multiple sequence alignment of deduced amino acid sequence of CYP1A of L. argentimaculatus

    图  4   紫红笛鲷CYP1A进化树分析

    Figure  4.   Phylogenetic analysis of L. argentimaculatus CYP1A

    图  5   Cyp1a mRNA在紫红笛鲷的组织表达

    注:不同字母代表存在显著性差异(P<0.05), 后图同此。

    Figure  5.   Tissue expression of Cyp1a mRNA in L. argentimaculatus

    Note: Different ltters represent significant dfference (P<0.05). The same case in fllowing figures.

    图  6   BDE-3 (a) 和BDE-209 (b) 胁迫对紫红笛鲷肝脏Cyp1a基因表达的影响

    Figure  6.   Effects of BDE-3 (a) and BDE-209 (b) on Cyp1a expression in liver of L. argentimaculatus

    图  7   BDE-3 (a) 和BDE-209(b) 胁迫对紫红笛鲷肝脏EROD活性的影响

    Figure  7.   Effects of BDE-3 (a) and BDE-209 (b) on EROD activities in liver of L. argentimaculatus

    图  8   Cyp1a基因表达量与7-乙氧基香豆素-O-脱乙基酶活性相关性分析

    Figure  8.   Correlation between Cyp1a relative expression and EROD activity

    表  1   实验所用引物

    Table  1   Primers used in experiment

    引物名称
    Primer name
    引物序列 
    Primer sequence (5'–3')
    用途
    Purpose
    cyp1a-F GTCTCCGTTGCTAATGTGATCTGTGG Cyp1a中间片段克隆
    cyp1a-R GTGATGTCCCGAATGTTGTCCTTGTC
    cyp1a-5P1 GACCATGACAGGGCAGTGGATATG 5' RACE PCR
    cyp1a-5P2 GAGTCAGTGATGTCACGAATGTTG
    cyp1a-3P1 AATGTGCTTTGGCCGACGCTACAA 3' RACE PCR
    cyp1a-3P2 CTGCTCAGCTTGGTGAACCTCAGT
    cyp1a-YZF CTCGGGCAAGAACTTTACTA 序列全长验证
    cyp1a-YZR GTATCTCCTTATACTTCACT
    cyp1a-qF GTCTCTGTTGCTAACGTGATCTGTGG RT-PCR[22]
    cyp1a-qR cyp1a-R
    18S-qF GTCAAACCCTTTGTCTCCGA
    18S-qR CGATGATCAATGTGTCCTGC
    下载: 导出CSV
  • [1]

    LU K, SONG Y, ZENG R. The role of cytochrome P450-mediated detoxification in the insect adaptation to xenobiotics[J]. Curr Opin Insect Sci, 2021, 43: 103-107. doi: 10.1016/j.cois.2020.11.004

    [2]

    LAU I C K, FEYEREISEN R, NELSON D R, et al. Analysis and preliminary characterisation of the cytochrome P450 monooxygenases from Frankia sp. EuI1c (Frankia inefficax sp. )[J]. Arch Biochem Biophys, 2019, 669: 11-21. doi: 10.1016/j.abb.2019.05.007

    [3]

    MILLER J C, HOLLATZ A J, SCHULER M A. P450 variations bifurcate the early terpene indole alkaloid pathway in Catharanthus roseus and Camptotheca acuminate[J]. Phytochemistry, 2021, 183: 112626. doi: 10.1016/j.phytochem.2020.112626

    [4]

    YANG T, LI T, FENG X, et al. Multiple cytochrome P450 genes: conferring high levels of permethrin resistance in mosquitoes, Culex quinquefasciatus[J]. Sci Rep, 2021, 11(1): 9041. doi: 10.1038/s41598-021-88121-x

    [5]

    NELSON D R. Cytochrome P450 diversity in the tree of life[J]. Biochim Biophys Acta Proteins Proteom, 2018, 1866(1): 141-154. doi: 10.1016/j.bbapap.2017.05.003

    [6] 张文领, 牟希东, 胡隐昌, 等. 福寿螺细胞色素P450 基因CYP3192A1 的克隆与表达分析[J]. 南方水产科学, 2017, 13(1): 66-75. doi: 10.3969/j.issn.2095-0780.2017.01.009
    [7]

    HAN J, KIM D, KIM H, et al. Genome-wide identification of 52 cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus and their B[α]P-induced expression patterns[J]. Comp Biochem Physiol D, 2017, 23: 49-57.

    [8] 高锴, 闫佩, 檀翠玲, 等. 虹鳟鱼鳃及肝脏多种CYP1 基因表达模式作为生物标志物监测海河水污染状况[J]. 环境科学, 2015, 36(10): 3878-3883.
    [9]

    PENG F, HARDY E M, BÉRANGER R, et al. Human exposure to PCBs, PBDEs and bisphenols revealed by hair analysis: a comparison between two adult female populations in China and France[J]. Environ Pollut, 2020, 267: 115425. doi: 10.1016/j.envpol.2020.115425

    [10]

    DA C, WANG R, XIA L, et al. Sediment records of polybrominated diphenyl ethers (PBDEs) in Yangtze River Delta of Yangtze River in China[J]. Mar Pollut Bull, 2021, 160: 111714.

    [11]

    LIU B, SONG N, JIANG T, et al. Polybrominated diphenyl ethers in surface sediments from fishing ports along the coast of Bohai Sea, China[J]. Mar Pollut Bull, 2021, 164: 112037. doi: 10.1016/j.marpolbul.2021.112037

    [12]

    YUAN J, SUN X, CHE S, et al. AhR-mediated CYP1A1 and ROS overexpression are involved in hepatotoxicity of decabromodiphenyl ether (BDE-209)[J]. Toxicol Lett, 2021, 352: 26-33. doi: 10.1016/j.toxlet.2021.09.008

    [13]

    LI Y, MA F, LI Z, et al. Exposure to 4-bromodiphenyl ether during pregnancy blocks testis development in male rat fetuses[J]. Toxicol Lett, 2021, 342: 38-49. doi: 10.1016/j.toxlet.2021.02.004

    [14]

    YAO Y, WANG B, HE Y, et al. Fate of 4-bromodiphenyl ether (BDE3) in soil and the effects of co-existed copper[J]. Environ Pollut, 2020, 261: 114214. doi: 10.1016/j.envpol.2020.114214

    [15] 李嘉伟, 尹晓宇, 周旖旎, 等. 五溴联苯醚(BDE-99)和羟基五溴联苯醚(5-OH-BDE-99)经由THRβ影响斑马鱼胚胎眼部色素的沉着[J]. 生态毒理学报, 2020, 15(5): 181-188.
    [16]

    THORNTON L M, PATH E M, NYSTROM G S, et al. Embryo-larval BDE-47 exposure causes decreased pathogen resistance in adult male fathead minnows (Pimephales promelas)[J]. Fish Shellfish Immunol, 2018, 80: 80-87. doi: 10.1016/j.fsi.2018.05.059

    [17] 王余江, 樊琳, 陈创奇, 等. 视黄酸和多溴联苯醚联合暴露对斑马鱼运动行为的影响[J]. 生态毒理学报, 2019, 14(2): 260-267. doi: 10.7524/AJE.1673-5897.20180206002
    [18]

    YANG J, ZHAO H, CHAN K M. Toxic effects of polybrominated diphenyl ethers (BDE 47 and 99) and localization of BDE-99-induced cyp1a mRNA in zebrafish larvae[J]. Toxicol Rep, 2017, 4: 614-624. doi: 10.1016/j.toxrep.2017.11.003

    [19]

    SØFTELAND L, PETERSEN K, STAVRUM A, et al. Hepatic in vitro toxicity assessment of PBDE congeners BDE47, BDE153 and BDE154 in Atlantic salmon (Salmo salar L. )[J]. Aquat Toxicol, 2011, 105(3/4): 246-263.

    [20]

    BOON J P, ZANDEN J J, LEWIS W E, et al. The expression of CYP1A, vitellogenin and zona radiata proteins in Atlantic salmon (Salmo salar) after oral dosing with two commercial PBDE flame retardant mixtures: absence of short-term responses[J]. Mar Environ Res, 2002, 54(3-5): 719-724. doi: 10.1016/S0141-1136(02)00127-7

    [21]

    MUYOT F B, MAGISTRADO M L, MUYOT M C, et al. Growth performance of the mangrove red snapper (Lutjanus argentimaculatus) in freshwater pond comparing two stocking densities and three feed types[J]. Philippine J Fish, 2021, 28(1): 1-7.

    [22]

    CHEN H, ZHANG Z, ZHANG L, et al. Effects of di-n-butyl phthalate on gills- and liver-specific EROD activities and CYP1A levels in juvenile red snapper (Lutjanus argentimaculatus)[J]. Comp Biochem Physiol C, 2020, 232: 108757.

    [23]

    KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7): 1870-1874. doi: 10.1093/molbev/msw054

    [24] 余铭恩, 郑榕辉, 张玉生. 3种海洋鱼类肝微粒体EROD活性的测定[J]. 生态学报, 2014, 34(19): 5416-5424.
    [25]

    LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262

    [26]

    CHAUBE R, RAWAT A, INBARAJ R M, et al. Cloning and characterization of estrogen hydroxylase (cyp1a1 and cyp1b1) genes in the stinging catfish Heteropneustes fossilis and induction of mRNA expression during final oocyte maturation[J]. Comp Biochem Physiol A, 2021, 253: 110863. doi: 10.1016/j.cbpa.2020.110863

    [27]

    ARUKWE A. Complementary DNA cloning, sequence analysis and differential organ expression of β-naphthoflavone-inducible cytochrome P4501A in Atlantic salmon (Salmo salar)[J]. Comp Biochem Physiol C, 2002, 133(4): 613-624.

    [28]

    WOO S J, CHUNG J K. Cytochrome P450 1 enzymes in black rockfish, Sebastes schlegelii: molecular characterization and expression patterns after exposure to benzo[a]pyrene[J]. Aquat Toxicol, 2020, 226: 105566. doi: 10.1016/j.aquatox.2020.105566

    [29]

    COCCI P, MOSCONI G, PALERMO F A. Effects of 4-nonylphenol on hepatic gene expression of peroxisome proliferator-activated receptors and cytochrome P450 isoforms (CYP1A1 and CYP3A4) in juvenile sole (Solea solea)[J]. Chemosphere, 2013, 93(6): 1176-1181. doi: 10.1016/j.chemosphere.2013.06.058

    [30] 梁秋芳, 董小燕, 冯平. CYP2D 亚家族基因及其进化机制研究进展[J]. 广西师范大学学报 (自然科学版), 2021, 39(5): 58-63.
    [31]

    BURKIAN V, ZAMARATSKAIA G, SAKALLI S, et al. Tissue-specific expression and activity of cytochrome P450 1A and 3A in rainbow trout (Oncorhynchus mykiss)[J]. Toxicol Lett, 2021, 341: 1-10. doi: 10.1016/j.toxlet.2021.01.011

    [32]

    RUSNI S, SASSA M, TAKEHANA Y, et al. Correlation between cytochrome P450 1A (cyp1a) mRNA expression and ambient phenanthrene and pyrene concentration in Javanese medaka Oryzias javanicus[J]. Fish Sci, 2020, 86: 605-613. doi: 10.1007/s12562-020-01428-y

    [33]

    KIM R, KIM B, HWANG D, et al. Evaluation of biomarker potential of cytochrome P450 1A (CYP1A) gene in the marine medaka, Oryzias melastigma exposed to water-accommodated fractions (WAFs) of Iranian crude oil[J]. Comp Biochem Physiol C, 2013, 157(2): 172-182.

    [34]

    PETRULIS J R, CHEN G, BENN S, et al. Application of the ethoxyresorufin-O-deethylase (EROD) assay to mixtures of halogenated aromatic compounds[J]. Environ Toxicol, 2001, 16(2): 177-184. doi: 10.1002/tox.1022

    [35]

    ROY M A, SANT K E, VENEZIA O L, et al. The emerging contaminant 3, 3'-dichlorobiphenyl (PCB-11) impedes Ahr activation and Cyp1a activity to modify embryotoxicity of Ahr ligands in the zebrafish embryo model (Danio rerio)[J]. Environ Pollut, 2019, 254: 113027. doi: 10.1016/j.envpol.2019.113027

    [36]

    SMITH E M, IFTIKAR F I, HIGGINS S, et al. In vitro inhibition of cytochrome P450-mediated reactions by gemfibrozil, erythromycin, ciprofloxacin and fluoxetine in fish liver microsomes[J]. Aquat Toxicol, 2012, 109: 259-266. doi: 10.1016/j.aquatox.2011.08.022

    [37]

    DAR S A, GORA A H, BHAT I A, et al. Studies of anthelminthic benzimidazole derivatives on cytochrome P450 1A (CYP1A) dependent detoxification mechanism in Labeo rohita[J]. Aquaculture, 2017, 481: 79-84. doi: 10.1016/j.aquaculture.2017.08.015

    [38] 迟潇, 陈碧娟, 孙雪梅, 等. 基于IBR模型研究BDE-47和BDE-153对半滑舌鳎的毒性效应[J]. 生态毒理学报, 2020, 15(4): 192-202.
    [39]

    VEN L T M V, KUIL T, LEONARDS P E G, et al. A 28-day oral dose toxicity study in Wistar rats enhanced to detect endocrine effects of decabromodiphenyl ether (decaBDE)[J]. Toxicol Lett, 2008, 179(1): 6-14. doi: 10.1016/j.toxlet.2008.03.003

    [40]

    WANG B, WANG H, XIAO D, et al. In vitro effects of brominated flame retardants, selected metals and their mixtures on ethoxyresorufin-O-deethylase activity in Mossambica tilapia liver[J]. Ecotoxicol Environ Saf, 2018, 161: 350-355. doi: 10.1016/j.ecoenv.2018.05.084

    [41] 黄志斐, 马胜伟, 张喆, 等. BDE3胁迫对翡翠贻贝 (Perna viridis) SOD、MDA和GSH的影响[J]. 南方水产科学, 2012, 8(5): 25-30. doi: 10.3969/j.issn.2095-0780.2012.05.004
    [42]

    XIE Z, LU G, QI P. Effects of BDE-209 and its mixtures with BDE-47 and BDE-99 on multiple biomarkers in Carassius auratus[J]. Environ Toxicol Pharmacol, 2014, 38(2): 554-561. doi: 10.1016/j.etap.2014.08.008

    [43]

    YANG J, ZHU J, CHAN K M. BDE-99, but not BDE-47, is a transient aryl hydrocarbon receptor agonist in zebrafish liver cells[J]. Toxicol Appl Pharmacol, 2016, 305: 203-215. doi: 10.1016/j.taap.2016.06.023

    [44]

    SHARIFIAN S, HOMAEI A, KAMRANI E, et al. New insights on the marine cytochrome P450 enzymes and their biotechnological importance[J]. Int Biol Macromol, 2020, 142: 811-821. doi: 10.1016/j.ijbiomac.2019.10.022

    [45]

    SÁNCHEZ-OCAMPO E M, AZUELA G E, SALAS M S, et al. Alterations in viability and CYP1A1 expression in SH SY5Y cell line by pollutants present in Madín Dam, Mexico[J]. Sci Total Environ, 2020, 719: 137500. doi: 10.1016/j.scitotenv.2020.137500

    [46]

    LI Z, ZHONG L, MU W, et al. Effects of chronic exposure to tributyltin on tissue specific cytochrome P450 1 regulation in juvenile common carp[J]. Xenobiotica, 2016, 46(6): 511-515. doi: 10.3109/00498254.2015.1092618

    [47]

    CAPPELLETTI N, SPERANZA E, TATONE L, et al. Bioaccumulation of dioxin-like PCBs and PBDEs by detritus-feeding fish in the Rio de la Plata estuary, Argentina[J]. Environ Sci Pollut Res Int, 2015, 22(9): 7093-7100. doi: 10.1007/s11356-014-3935-z

    [48]

    KUIPER R V, BERGMAN Å, VOS J G, et al. Some polybrominated diphenyl ether (PBDE) flame retardants with wide environmental distribution inhibit TCDD-induced EROD activity in primary cultured carp (Cyprinus carpio) hepatocytes[J]. Aquat Toxicol, 2004, 68(2): 129-139. doi: 10.1016/j.aquatox.2004.03.005

    [49]

    WHAL M, LAHNI B, GUENTHER R, et al. A technical mixture of 2, 2', 4, 4'-tetrabromo diphenyl ether (BDE47) and brominated furans triggers aryl hydrocarbon receptor (AhR) mediated gene expression and toxicity[J]. Chemosphere, 2008, 73: 209-215. doi: 10.1016/j.chemosphere.2008.05.025

    [50]

    MERSON R R, KARCHNER S I, HAHN M E. Interaction of fish aryl hydrocarbon receptor paralogs (AHR1 and AHR2) with the retinoblastoma protein[J]. Aquat Toxicol, 2009, 94(1): 47-55. doi: 10.1016/j.aquatox.2009.05.015

    [51]

    ROY N K, CANDELMO A, DELLATORRE M, et al. Characterization of AHR2 and CYP1A expression in Atlantic sturgeon and shortnose sturgeon treated with coplanar PCBs and TCDD[J]. Aquat Toxicol, 2018, 197: 19-31. doi: 10.1016/j.aquatox.2018.01.017

  • 期刊类型引用(1)

    1. 马文语,杨维,秦小明,曹文红,林海生. 牡蛎酶解产物对糖皮质激素诱导骨质疏松大鼠的改善作用. 南方水产科学. 2025(02): 182-190 . 本站查看

    其他类型引用(1)

推荐阅读
Research on fish diversity in xijiang rare fish provincial nature reserve based on environmental dna technology
ZHONG Zhanyou et al., SOUTH CHINA FISHERIES SCIENCE, 2025
Fish community structure and environmental impact factors in three gorges reservoir during summer and autumn
WU Fan et al., SOUTH CHINA FISHERIES SCIENCE, 2025
Characterization of proteinase-producing strainbacillus tropicalisbtzb2 from source of fish in reef of south china sea
HU Xiaojuan et al., SOUTH CHINA FISHERIES SCIENCE, 2024
Investigation on behavioral preferences oflutjanus erythropterusjuvenile towards artificial reef models with different pore shapes and sizes
JIANG Manju et al., SOUTH CHINA FISHERIES SCIENCE, 2024
Morphological traits indicating decline of the vallisneria denseserrulata population in the pearl river network
JOURNAL OF HYDROECOLOGY, 2024
Gonadal histology and expression analysis of sex characteristic genes in grass carp at different ages
QI Bo et al., PROGRESS IN FISHERY SCIENCES, 2025
Research on pattern dynamics behavior of a fractional vegetation-water model in arid flat environment
Gao, Xiao-Long et al., FRACTAL AND FRACTIONAL, 2024
Freshwater fungal biology
Calabon, M. S., MYCOSPHERE, 2023
Analysis of morphological change of lentic water bodies by using spatial vulnerability index (svi) in tarai region of rapti river plains, india
GEOLOGY, ECOLOGY, AND LANDSCAPES, 2024
Identification of greywater flow characteristics in open channels
WATER CONSERVATION AND MANAGEMENT, 2024
Powered by
图(8)  /  表(1)
计量
  • 文章访问数:  607
  • HTML全文浏览量:  149
  • PDF下载量:  36
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-09-21
  • 修回日期:  2021-11-03
  • 录用日期:  2021-11-30
  • 网络出版日期:  2021-12-13
  • 刊出日期:  2022-08-04

目录

/

返回文章
返回