Cloning and expression profiling of Cyp1a gene in Lutjanus argentimaculatus under 4-bromodiphenyl ether (BDE-3) and decabromodiphenyl ether (BDE-209) exposure
-
摘要: 细胞色素P450酶 (Cytochrome P450, CYPs) 由P450基因编码,其中Cyp1a基因参与不同类型外源物质的生物转化和代谢。克隆了紫红笛鲷 (Lutjanus argentimaculatus) Cyp1a基因,对其组织表达模式进行分析,探讨了不同质量浓度 (10、50和250 μg·L−1) 一溴联苯醚 (4-bromodiphenyl ether, BDE-3) 和十溴联苯醚 (decabromodiphenyl ether, BDE-209) 胁迫对紫红笛鲷肝脏Cyp1a表达及7-乙氧基香豆素-O-脱乙基酶 (7-ethoxyresorufin O-deethylase, EROD) 活性的影响。结果表明,紫红笛鲷Cyp1a cDNA全长2540 bp,开放阅读框长1 566 bp,编码521个氨基酸。同源分析结果表明紫红笛鲷CYP1A与花鲈 (Lateolabrax maculatus) CYP1A蛋白相似性最高 (92.69%),进化树分析与白梭吻鲈 (Sander lucioperca) 聚为一支,进化地位最近。Cyp1a基因在紫红笛鲷肝脏表达量最高,其次是脑和鳃,肌肉最低。10 μg·L−1 BDE-3和BDE-209未对Cyp1a基因表达和EROD活性产生影响,而50和250 μg·L−1BDE-3胁迫7~15 d则对两者产生显著抑制,且呈现剂量效应。与BDE-3相反,50和250 μg·L−1 BDE-209 处理组Cyp1a基因表达和EROD活性显著增加,且Cyp1a基因表达与EROD活性呈显著正相关。高浓度BDE-3和BDE-209可对紫红笛鲷肝脏Cyp1a基因的表达产生影响,但两者的影响模式不同。Abstract: Cytochrome P450 enzymes (CYPs) are encoded by P450 genes, in which cytochrome P450 1A (Cyp1a) genes mainly involve in biotransformation and metabolism of numerous xenobiotics. In this study, we cloned the Cyp1a gene from Lutjanus argentimaculatus, and investigated its tissue expression pattern. In addition, we evaluated different concentrations (10, 50 and 250 μg·L−1) of BDE-3 and BDE-209 on Cyp1a gene profile and 7-ethoxyresorufin-O-deethylase (EROD) activity in liver of L. argentimaculatus. The results show that the full length of Cyp1a cDNA was 2 540 bp with 1 566 open reading frame encoding 521 amino acids. The sequence homology of L. argentimaculatus CYP1A was the highest (92.69%) with that of Lateolabrax maculatus. Phylogenetic analysis results indicate that CYP1A was closely aligned with Sander lucioperca protein. Cyp1a transcripts were most abundant in liver, followed by brain and gill, but lowest in muscle. 10 μg·L−1 of BDE-3 and BDE-209 showed no effects on both Cyp1a expression and EROD activity, while high concentrations (50 and 250 μg·L−1) of BDE-3 down-regulated both of them significantly in a concentration-dependent manner on 7th-15th day. In contrast, exposure to 50 and 250 μg·L−1 of BDE-209 resulted in increasing of hepatic Cyp1a level and EROD activity. Moreover, Cyp1a genes levels and EROD activities showed a good correlation. High concentrations of BDE-3 and BDE-209 can affect Cyp1a gene expression in liver of L. argentimaculatus in different manners.
-
广东鲂 (Megalobrama terminalis) 是一种江河洄游鱼类,在我国南方水系中占有重要的渔业生产地位[1-2]。我国南方水系复杂多样,并经历了多次河流袭夺,而气候变化导致的海平面波动是形成其特有河网系统的重要因素之一[3]。由于广东鲂对淡水环境依赖性较强,因此,海平面波动产生的地理隔离,对广东鲂种群的遗传结构产生了一定影响。Chen等[3]指出3个广东鲂地理遗传种群分别为珠江、漠阳江和海南岛万泉河种群,并发现广东鲂种群在不同的淡水栖息地中表现出明显的适应性分化。刘凯等[4]研究表明,受地理分布、食物来源、遗传特征和栖息环境等因素的叠加影响,鱼类的不同地理种群在肌肉营养成分上能够产生相对稳定的变异。然而,不同广东鲂地理种群肌肉营养成分是否存在显著差异尚不清楚。目前,对广东鲂研究多在于早期资源、资源捕捞量、性腺发育、繁殖策略、消化生理等方面[1-3,5-8],针对不同广东鲂种群肌肉营养成分和能量密度的研究尚未见报道。由于人类活动的不断加强 (如水利水电工程、航道治理、水污染、过度捕捞等),珠江野生广东鲂种群数量持续下降[2,7-8],漠阳江和万泉河广东鲂种群则呈现规模小、片段化分布特征,在其他陆河河流如榕江、鉴江、韩江中已难以监测到野生样本。因此,本研究测定了万泉河、漠阳江、西江广东鲂种群肌肉营养成分和能量密度,探究不同地理广东鲂种群肌肉营养成分差异,以期充实鱼类营养学和能量生态学研究材料,也为不同广东鲂的野生地理种群的分类保护和合理利用提供科学依据。
1. 材料与方法
1.1 样本采集
2020年6—7月分别于海南省琼海市万泉河琼海段 (QH, 110°27"36'E, 19°12"36'N)、广东省阳江市漠阳江段 (YJ, 111°42"2'E, 22°48"7'N) 以及广东省肇庆市珠江干流 (西江) 肇庆江段 (ZQ, 112°24"35'E, 23°5"24'N) 采集到150尾广东鲂,各采样点50尾 (雌、雄各25尾) 。采用哈希水质分析仪测量取样点的水温、盐度、溶解氧 (Dissolved oxygen, DO) 和pH,并测量样品的体长和体质量。采样站位的环境信息和样本生物学信息见表1。采用液氮快速冷冻样本,于–20 ℃冷冻保存,随后带回实验室−80 ℃保存。采集背部中后段肌肉 (每尾在相同位置采集20 g肌肉) 用于检测肌肉成分。各项指标由广东省质量监督食品检验站进行检测,各实验组均设置3个重复,每个重复含10尾样本 (背部肌肉捣碎)。
表 1 3个广东鲂地理种群环境信息和样本生物学信息Table 1. Basic environmental information, biological information of three M. terminalis populations指标
Index采样点 Sampling site 琼海 QH 阳江 YJ 肇庆 ZQ 环境指标 Environmental index 水温 Water temperature/℃ 30.0±0.2 29.2±0.4 28.6±0.3 盐度 Salinity 0.03±0.01 0.01±0.02 0.01±0.01 酸碱度 pH 7.7±0.3 7.9±0.3 7.8±0.3 溶解氧质量浓度 DO/(mg∙L−1) 6.8±0.2 6.7±0.2 7.0±0.2 生物学指标 Biological index 体长 Body length ($\overline { X}\pm { \rm {SD}} $)/mm 233±17.6 253±20.7 271±27.3 体质量 Body mass ($\overline { X}\pm { \rm {SD}} $)/g 354±19.4 424±33.1 521±30.1 1.2 肌肉营养成分和能量密度测定方法
样本水分测定采用GB 5009.3—2016;粗蛋白测定采用GB 5009.5—2016;脂肪测定采用GB 5009.4—2016;灰分测定采用GB 5009.4—2016;氨基酸测定采用GB T5009.124—2016;脂肪酸测定采用GB 5009.168—2016。采用电感耦合等离子体质谱仪 (7700 Series) 依据GB 5009—2016测定样本中钾 (K)、钙 (Ca)、钠 (Na)、磷 (P)、镁 (Mg)、锌 (Zn)、铁 (Fe)、铜 (Cu)、锰 (Mn) 等矿质元素含量。根据联合国粮农组织/世界卫生组织 (FAO/WHO) 提出和1991年中国预防医学科学院营养与食品卫生研究所提出的氨基酸评分模式,计算氨基酸评分 (Amino acid score, AAS)、化学评分 (Chemical score, CS) 和必需氨基酸指数 (Essential amino acid index, EAAI) [9-10]。Phillipson微量能量仪 (Gentry Instruments Inc., Aiken, South Carolina, USA) 测定能量密度。
1.3 数据分析
采用单因素方差分析 (One-way ANOVA) 检验不同广东鲂地理种群肌肉营养成分差异显著性。如差异显著,则采用多重比较方法比较平均数之间的差异,显著性水平为0.05。数据分析采用SPSS 19.0统计软件进行。实验数据均用“平均值±标准差 (
$\overline X \pm {\rm{SD}} $ )”表示。采用R (3.1.14) 对3个广东鲂种群肌肉生化分析结果进行主成分分析 (Principal component analysis, PCA)。2. 结果
2.1 一般营养成分和能量密度分析
万泉河广东鲂肌肉水分质量分数显著高于西江种群,而粗蛋白质质量分数则显著低于西江种群 (P<0.05,表2)。粗脂肪和灰分质量分数在3个地理种群中均无显著性差异。西江种群肌肉能量密度显著高于万泉河和漠阳江种群 (P<0.05)。
表 2 3个广东鲂地理种群肌肉中的一般营养成分和能量密度Table 2. Nutritional composition of muscle of three M. terminalis populations项目
Item广东鲂种群 M. terminalis population 琼海 QH 阳江 YJ 肇庆 ZQ 水分质量分数 Moisture mass fraction/% 79.0±0.5a 78.2±0.9ab 77.0±0.6b 粗蛋白质质量分数 Crude protein mass fraction/% 18.3±0.5b 19.1±0.7ab 20.2±0.5a 粗脂肪质量分数 Crude lipid mass fraction/% 1.2±0.1 1.1±0.1 1.3±0.1 粗灰分质量分数 Ash mass fraction/% 1.1±0.1 1.2±0.1 1.2±0.1 能量密度 Energy density/(kJ·g−1) 3.1±0.1b 3.2±0.2b 3.6±0.2a 注:同行不同上标字母表示差异显著 (P<0.05),下表同此。 Note: Different superscript letters within the same row indicate significant difference (P<0.05). The same case in the following tables. 2.2 氨基酸组成分析与评价
3个广东鲂地理种群共检测出18种常见氨基酸 (表3)。西江种群肌肉中的总氨基酸含量 (Total amino acids, TAA) 最高,漠阳江种群次之,万泉河种群最低。在必需氨基酸 (Essential aamino acid, EAA) 中,西江种群的赖氨酸和亮氨酸含量显著高于万泉河种群 (P<0.05),漠阳江种群介于两者之间。呈味氨基酸中,西江种群肌肉中的天冬氨酸、谷氨酸、甘氨酸和丙氨酸含量均显著高于万泉河种群 (P<0.05)。漠阳江种群肌肉中必需氨基酸/总氨基酸 (EAA/TAA) 最高,而西江种群最低。呈味氨基酸/总氨基酸 (DAA/TAA) 在3个广东鲂地理种群肌肉中无明显差异。芳香氨基酸/支链氨基酸 (BCAA/AAA) 在万泉河种群肌肉中最高,漠阳江种群次之,西江种群最低。将3个广东鲂地理种群肌肉的EAAI进行标准模式 (FAO/WHO) 及全鸡蛋蛋白质模式2种评价 (表3),分别计算出各EAA的AAS、CS和EAAI (表4)。万泉河、漠阳江和西江种群肌肉中的第一限制性氨基酸为蛋氨酸+半胱氨酸,第二限制性氨基酸为缬氨酸,其余各EAA的AAS均高于1;各EAA的CS与AAS结果保持一致。3个广东鲂地理种群肌肉中的EAAI达80以上,说明其氨基酸组成十分均衡。其中西江种群肌肉EAAI最高 (85.05)。
表 3 3个广东鲂地理种群肌肉氨基酸组成Table 3. Comparison of amino acid composition of muscles of three M. terminalis populations项目
Item广东鲂种群 M. terminalis population 琼海 QH 阳江 YJ 肇庆 ZQ 天冬氨酸* Asp 1.80±0.04b 1.82±0.07b 1.99±0.05a 苏氨酸# Thr 0.80±0.02 0.80±0.03 0.86±0.04 丝氨酸 Ser 0.72±0.02 0.73±0.03 0.80±0.04 谷氨酸* Glu 2.78±0.06b 2.68±0.10b 2.99±0.14a 脯氨酸 Pro 0.61±0.02 0.63±0.02 0.66±0.04 甘氨酸* Gly 0.83±0.04b 0.87±0.04ab 0.97±0.06a 丙氨酸* Ala 1.06±0.02b 1.09±0.03b 1.18±0.08a 缬氨酸#△ Val 0.85±0.02 0.87±0.03 0.92±0.04 蛋氨酸 Met 0.53±0.01 0.53±0.02 0.57±0.03 异亮氨酸#△ Ile 0.78±0.02 0.79±0.02 0.83±0.03 亮氨酸#△ Leu 1.41±0.03b 1.41±0.05ab 1.52±0.05a 半胱氨酸 Cys 0.11±0.07 0.19±0.03 0.43±0.15 酪氨酸◆ Tyr 0.62±0.02 0.61±0.02 0.66±0.02 苯丙氨酸# Phe 0.72±0.02 0.74±0.02 0.80±0.03 赖氨酸# Lys 1.73±0.05a 1.73±0.09ab 1.87±0.03b 组氨酸○ His 0.42±0.01 0.45±0.04 0.48±0.05 精氨酸○ Arg 1.07±0.04 1.07±0.04 1.17±0.07 色氨酸# Trp 0.27±0.04 0.35±0.03 0.37±0.05 氨基酸总量 TAA 17.11±0.58a 17.37±0.69a 19.07±0.57b 呈味氨基酸总量 DAA 6.47±0.06a 6.46±0.08a 7.13±0.07b 必需氨基酸/非必需氨基酸 EAA/NEAA/% 72.41 73.03 69.95 必需氨基酸/总氨基酸 EAA/TAA/% 38.34 38.51 37.60 半必需氨基酸/总氨基酸 SEAA/TAA/% 8.36 8.41 8.26 芳香氨基酸/支链氨基酸 BCAA/AAA/% 4.90 5.03 4.05 注:#. 必需氨基酸;○. 半必需氨基酸;*. 呈味氨基酸;△. 支链氨基酸;◆. 芳香氨基酸。 Note: #. Essential amino acid; ○. Semiessential amino acid; *. Delicious amino acid; △. Branched chain amino acid; ◆. Aromatic amino acid. 表 4 3个广东鲂地理种群肌肉氨基酸评价Table 4. Evaluation of essential amino acids composition of muscle of three M. terminalis populations评价模式
Evaluation method氨基酸
Amino acids广东鲂种群 M. terminalis population 琼海 QH 阳江 YJ 肇庆 ZQ 氨基酸评分 AAS 苏氨酸 Thr 1.09 1.05 1.07 缬氨酸 Val 0.94 0.92 0.92 色氨酸 Trp 1.53 1.91 1.91 异亮氨酸 Ile 1.06 1.03 1.03 亮氨酸 Leu 1.09 1.05 1.07 赖氨酸 Lys 1.73 1.66 1.70 苯丙氨酸 Phe+酪氨酸 Tyr 1.20 1.17 1.19 蛋氨酸 Met+半胱氨酸 Cys 0.82 0.78 0.80 化学评分 CS 苏氨酸 Thr 0.93 0.90 0.91 缬氨酸 Val 0.71 0.69 0.69 色氨酸 Trp 0.96 1.24 1.31 异亮氨酸 Ile 0.80 0.78 0.78 亮氨酸 Leu 0.90 0.86 0.88 赖氨酸 Lys 1.34 1.28 1.31 苯丙氨酸 Phe+酪氨酸 Tyr 0.81 0.78 0.80 蛋氨酸 Met+半胱氨酸 Cys 0.47 0.45 0.46 必需氨基酸指数 EAAI 83.31 83.37 85.05 2.3 脂肪酸组成分析
3个广东鲂地理种群肌肉中共检测出23种常见脂肪酸 (表5),其中包括7 种饱和脂肪酸 (Saturated fatty acid, SFA) 7种单不饱和脂肪酸 (Monounsaturated fatty acid, MUFA) 和9种多不饱和脂肪酸 (Polyunsaturated fatty acids, PUFA)。SFA中C14:0、C16:0和C22:0在万泉河种群肌肉中的含量显著高于漠阳江和西江种群 (P<0.05)。万泉河种群肌肉中MUFA总量显著低于西江和漠阳江种群 (P<0.05)。其中,C16:1、C18:1 n-9t、C18:1 n-9c漠阳江种群肌肉中含量最高,而在万泉河种群肌肉中含量最低。C22:1 n-9、C24:1在漠阳江种群肌肉中含量显著低于西江和万泉河种群。西江种群肌肉中二十二碳六希酸 (DHA) 含量最高,显著高于万泉河和漠阳江种群 (P<0.05)。PUFA在万泉河种群肌肉中含量最高,西江种群次之,漠阳江种群最低。
表 5 3个广东鲂地理种群肌肉脂肪酸组成Table 5. Comparison of fatty acids of muscles of three M. terminalis populations% 项目
Item广东鲂种群 M. terminalis population 琼海 QH 阳江 YJ 肇庆 ZQ 肉豆蔻酸 C14:0 5.36±0.85a 3.53±0.41b 3.40±0.32b 十五碳酸 C15:0 1.02±0.25 0.66±0.05 0.70±0.13 棕榈酸 C16:0 27.33±1.47 a 21.83±1.16 b 21.80±1.99 b 珠光脂酸 C17:0 2.03±0.35 0.99±0.18 1.13±0.33 硬脂酸 C18:0 11.34±1.79a 5.97±1.03b 8.14±1.65ab 花生酸 C20:0 0.29±0.05a 0.15±0.02b 0.21±0.07ab 花生酸 C22:0 0.30±0.08a 0.10±0.01c 0.17±0.01b ∑饱和脂肪酸 SFA 47.67±2.12a 33.23±2.85b 35.56±4.35b 肉豆蔻烯酸 C14:1 0.06±0.02 0.12±0.02 0.08±0.01 棕榈油酸 C16:1 6.21±1.22b 10.45±1.73a 8.10±0.52ab 顺-11-二十碳一烯酸 C20:1 2.32±0.36 1.85±0.08 2.06±0.15 顺-15-二十四碳一烯酸 C24:1 0.27±0.09a 0.06±0.01b 0.24±0.10a 反式油酸 C18:1 n-9t 0.21±0.05b 0.43±0.07a 0.35±0.07ab 油酸 C18:1 n-9c 16.73±3.87b 35.53±4.35a 31.80±3.65a 二十二碳一烯酸 C22:1 n-9 1.09±0.36a 0.11±0.03b 1.03±0.61a ∑单不饱和脂肪酸 MUFA 26.89±3.93a 48.54±5.20b 43.66±7.08b 亚油酸 C18:2 n-6c 4.30±0.64a 2.23±0.33b 1.59±0.64b α-亚麻酸 C18:3 n-3 5.54±0.86a 4.03±1.56ab 2.35±0.51b γ-亚麻酸 C18:3 n-6 0.14±0.02a 0.08±0.02ab 0.01±0.00b 顺,顺-11,14-二十碳二烯酸 C20:2 0.39±0.08 0.34±0.01 0.36±0.04 顺-11,14,17-二十碳三烯酸 C20:3 n-3 0.32±0.05 0.27±0.06 0.21±0.08 顺,顺,顺-8,11,14-二十碳三烯酸 C20:3 n-6 0.39±0.09a 0.22±0.03b 0.14±0.01c 花生四烯酸 C20:4 n-6 (ARA) 5.27±0.89a 2.94±0.42b 4.88±0.95a 二十碳五烯酸 C20:5 n-3 (EPA) 3.16±0.72 4.06±0.10 4.09±0.87 二十二碳六烯酸 C22:6 n-3 (DHA) 5.74±1.03b 3.95±0.13c 7.03±1.28a ∑多不饱和脂肪酸 PUFA 25.11±2.83a 18.04±2.47b 20.64±5.61ab 2.4 矿质元素组成分析
3个广东鲂地理种群肌肉中均含有丰富的矿质元素,其中K质量分数最高,Ca次之 (表6)。西江种群肌肉中K和Ca质量分数显著高于万泉河种群,而Na和Mg质量分数则显著低于万泉河种群 (P<0.05)。万泉河种群肌肉Zn质量分数显著高于漠阳江和西江种群,而Mn和Fe质量分数显著低于漠阳江和西江种群 (P<0.05)。
表 6 3个广东鲂地理种群肌肉矿质元素组成Table 6. Mineral element of muscle of three M. terminalis populationsmg∙kg−1 元素
Element广东鲂种群 M. terminalis population 琼海 QH 阳江 YJ 肇庆 ZQ 钾 K 3 340.05±105.36b 3 460.04±192.92ab 3 820.36±221.12a 钙 Ca 1 050.12±28.87 b 1 100.25±40.02 ab 1 200.11±34.64 a 钠 Na 487.34±58.96a 345.35±7.23b 385.57±30.66b 镁 Mg 298.65±3.79 303.05±2.65 332.31±5.51 磷 P 241.59±25.97 230.45±2.08 247.78±4.04 锌 Zn 6.47±0.15a 4.16±0.18b 3.82±0.17b 铁 Fe 3.06±0.13c 4.75±0.14b 6.43±0.18a 铜 Cu 0.12±0.00 0.12±0.01 0.13±0.01 锰 Mn 0.21±0.01c 0.38±0.02b 0.64±0.01a 2.5 3个广东鲂种群生化分析结果的主成分分析
综合3个广东鲂种群生化分析结果,并进行PCA。西江种群分布距均万泉河和漠阳江种群较远,万泉河种群和漠阳江种群相对较近。PCA共提取了2个主成分,对变异的累积贡献率为80.25%。其中主成分1的贡献率为50.75%,主成分2的为29.50% (图1)。
3. 讨论
鱼类肌肉中蛋白质和脂肪含量是评价其营养价值的重要指标[11]。3 个广东鲂地理种群肌肉的粗蛋白质量分数 (18.3%~20.2%) 高于团头鲂 (Megalobrama amblycephala)、鲤 (Cyprinus carpio)、鲢 (Hypophthalmichthys molitrix)、鳙 (H. nobilis) 和草鱼 (Ctenopharyngodon idella),与翘嘴鲌 (Culter alburnus) 接近[12-13]。3个广东鲂地理种群肌肉粗脂肪质量分数 (1.1%~1.3%) 较团头鲂、翘嘴鲌、鲢、鳙、斑鳜 (Siniperca scherzeri) 等低[12-14],与常见的海水鱼类如牙鲆 (Paralichthys olivaceus)[15]、黄斑篮子鱼 (Siganus oramin)[16]和日本鳗鲡 (Anguilla japonica)[17]类似,表现出典型的低脂肪、高蛋白的特点。本研究发现,3个广东鲂种群肌肉生化PCA结果显示西江种群分布距万泉河和漠阳江种群较远,可能是由于栖息地环境因子以及饵料生物种类存在明显差异。本研究还发现,西江种群能量密度显著高于漠阳江和万泉河种群。能量密度被认为是衡量鱼体能量储备水平的重要指标,能直接反映鱼类发育状况以及对外界环境因子的适应性[18]。鱼类生殖洄游是主动的、定期定向的高耗能运动,且鱼体自身能量储备有限,因此鱼类洄游须尽可能地调节自身身体结构、能量储备和代谢能力以适应生殖洄游的需要[19-20]。3个广东鲂种群生殖洄游距离存在明显差异,可能是导致种群间肌肉中能源物质的积累程度不同的主要原因之一。有研究发现鱼类肌肉能量累积和消耗与其洄游能力密切相关[21-22]。
鱼类肌肉中蛋白质的营养价值由各种EAA含量和组成比例决定[23-24]。本研究显示,在3个广东鲂种群肌肉中谷氨酸含量均最高,谷氨酸作为一种重要呈味氨基酸,具有促进脑发育、治疗神经系统疾病等作用[25]。3个广东鲂种群肌肉中谷氨酸含量均高于团头鲂与翘嘴鲌[12]。西江种群肌肉中谷氨酸含量显著高于漠阳江和万泉河种群,表明西江种群肌肉较万泉河和漠阳江种群风味更佳。3个广东鲂种群肌肉中赖氨酸含量均较高,其中,西江种群肌肉中赖氨酸含量最高。赖氨酸是人体EAA之一,不仅具有提高蛋白质利用率和促进人体生长发育的作用,还可以增强免疫力、改善神经系统、预防骨质疏松[24,26]。在FAO/WHO提出的人体均衡蛋白需求理想模式中,EAA/NEAA>60%的蛋白质质量较好[27],3个野生广东鲂种群肌肉均属于良好的蛋白源。西江种群肌肉中的EAAI最高 (85.05),说明其肌肉中EAA组成最为平衡,蛋白质营养价值最高。肌肉中的脂肪酸含量是影响肌肉风味的重要因素之一[28]。本研究发现,西江和漠阳江种群肌肉均表现出MUFA的高占比。有研究表明,MUFA在调节人体脂质代谢方面具有重要的生理作用[29]。PUFA中DHA与EPA含量是评价鱼类营养成分的关键指标[30]。西江种群肌肉中的DHA含量显著高于漠阳江和万泉河种群,表明西江种群肌肉的脂肪质量较高。
矿物质元素是构成人体组织的重要成分,参与人体内多种物质的代谢和生理活动[31]。3个广东鲂种群肌肉中Na、K、Ca等常规矿质元素以及Fe、Zn、Cu、Mn等微量元素均有检出。K、Fe、Zn等矿质元素含量低于异齿裂腹鱼 (Schizothoraxo connori)[32]。Ca含量显著高于褐点石斑鱼 (Epinephelus fuscoguttatus) 和青石斑鱼 (E. awoara) 等多种海鱼[31]。西江种群肌肉中Fe含量显著高于漠阳江和万泉河种群,而Zn含量则显著低于万泉河种群。Fe具有造血功能和促进人体生长的作用等,Zn可以促进儿童智力的正常发育[33]。3个广东鲂地理种群肌肉多种微量元素含量差异显著,这可能是由于栖息水环境的差异所致。万泉河种群相对西江种群,其主要栖息水域为河口,盐度相对较高,易受潮汐影响。有研究发现淡水环境中Fe含量均显著高于海水,Zn含量明显低于海水环境[34-35]。因此,栖息地环境差异导致了Zn在万泉河种群肌肉中富集度更高,Fe和Mn则在西江种群肌肉中富集度更高。
-
表 1 实验所用引物
Table 1 Primers used in experiment
引物名称
Primer name引物序列
Primer sequence (5'–3')用途
Purposecyp1a-F GTCTCCGTTGCTAATGTGATCTGTGG Cyp1a中间片段克隆 cyp1a-R GTGATGTCCCGAATGTTGTCCTTGTC cyp1a-5P1 GACCATGACAGGGCAGTGGATATG 5' RACE PCR cyp1a-5P2 GAGTCAGTGATGTCACGAATGTTG cyp1a-3P1 AATGTGCTTTGGCCGACGCTACAA 3' RACE PCR cyp1a-3P2 CTGCTCAGCTTGGTGAACCTCAGT cyp1a-YZF CTCGGGCAAGAACTTTACTA 序列全长验证 cyp1a-YZR GTATCTCCTTATACTTCACT cyp1a-qF GTCTCTGTTGCTAACGTGATCTGTGG RT-PCR[22] cyp1a-qR 同cyp1a-R 18S-qF GTCAAACCCTTTGTCTCCGA 18S-qR CGATGATCAATGTGTCCTGC -
[1] LU K, SONG Y, ZENG R. The role of cytochrome P450-mediated detoxification in the insect adaptation to xenobiotics[J]. Curr Opin Insect Sci, 2021, 43: 103-107. doi: 10.1016/j.cois.2020.11.004
[2] LAU I C K, FEYEREISEN R, NELSON D R, et al. Analysis and preliminary characterisation of the cytochrome P450 monooxygenases from Frankia sp. EuI1c (Frankia inefficax sp. )[J]. Arch Biochem Biophys, 2019, 669: 11-21. doi: 10.1016/j.abb.2019.05.007
[3] MILLER J C, HOLLATZ A J, SCHULER M A. P450 variations bifurcate the early terpene indole alkaloid pathway in Catharanthus roseus and Camptotheca acuminate[J]. Phytochemistry, 2021, 183: 112626. doi: 10.1016/j.phytochem.2020.112626
[4] YANG T, LI T, FENG X, et al. Multiple cytochrome P450 genes: conferring high levels of permethrin resistance in mosquitoes, Culex quinquefasciatus[J]. Sci Rep, 2021, 11(1): 9041. doi: 10.1038/s41598-021-88121-x
[5] NELSON D R. Cytochrome P450 diversity in the tree of life[J]. Biochim Biophys Acta Proteins Proteom, 2018, 1866(1): 141-154. doi: 10.1016/j.bbapap.2017.05.003
[6] 张文领, 牟希东, 胡隐昌, 等. 福寿螺细胞色素P450 基因CYP3192A1 的克隆与表达分析[J]. 南方水产科学, 2017, 13(1): 66-75. doi: 10.3969/j.issn.2095-0780.2017.01.009 [7] HAN J, KIM D, KIM H, et al. Genome-wide identification of 52 cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus and their B[α]P-induced expression patterns[J]. Comp Biochem Physiol D, 2017, 23: 49-57.
[8] 高锴, 闫佩, 檀翠玲, 等. 虹鳟鱼鳃及肝脏多种CYP1 基因表达模式作为生物标志物监测海河水污染状况[J]. 环境科学, 2015, 36(10): 3878-3883. [9] PENG F, HARDY E M, BÉRANGER R, et al. Human exposure to PCBs, PBDEs and bisphenols revealed by hair analysis: a comparison between two adult female populations in China and France[J]. Environ Pollut, 2020, 267: 115425. doi: 10.1016/j.envpol.2020.115425
[10] DA C, WANG R, XIA L, et al. Sediment records of polybrominated diphenyl ethers (PBDEs) in Yangtze River Delta of Yangtze River in China[J]. Mar Pollut Bull, 2021, 160: 111714.
[11] LIU B, SONG N, JIANG T, et al. Polybrominated diphenyl ethers in surface sediments from fishing ports along the coast of Bohai Sea, China[J]. Mar Pollut Bull, 2021, 164: 112037. doi: 10.1016/j.marpolbul.2021.112037
[12] YUAN J, SUN X, CHE S, et al. AhR-mediated CYP1A1 and ROS overexpression are involved in hepatotoxicity of decabromodiphenyl ether (BDE-209)[J]. Toxicol Lett, 2021, 352: 26-33. doi: 10.1016/j.toxlet.2021.09.008
[13] LI Y, MA F, LI Z, et al. Exposure to 4-bromodiphenyl ether during pregnancy blocks testis development in male rat fetuses[J]. Toxicol Lett, 2021, 342: 38-49. doi: 10.1016/j.toxlet.2021.02.004
[14] YAO Y, WANG B, HE Y, et al. Fate of 4-bromodiphenyl ether (BDE3) in soil and the effects of co-existed copper[J]. Environ Pollut, 2020, 261: 114214. doi: 10.1016/j.envpol.2020.114214
[15] 李嘉伟, 尹晓宇, 周旖旎, 等. 五溴联苯醚(BDE-99)和羟基五溴联苯醚(5-OH-BDE-99)经由THRβ影响斑马鱼胚胎眼部色素的沉着[J]. 生态毒理学报, 2020, 15(5): 181-188. [16] THORNTON L M, PATH E M, NYSTROM G S, et al. Embryo-larval BDE-47 exposure causes decreased pathogen resistance in adult male fathead minnows (Pimephales promelas)[J]. Fish Shellfish Immunol, 2018, 80: 80-87. doi: 10.1016/j.fsi.2018.05.059
[17] 王余江, 樊琳, 陈创奇, 等. 视黄酸和多溴联苯醚联合暴露对斑马鱼运动行为的影响[J]. 生态毒理学报, 2019, 14(2): 260-267. doi: 10.7524/AJE.1673-5897.20180206002 [18] YANG J, ZHAO H, CHAN K M. Toxic effects of polybrominated diphenyl ethers (BDE 47 and 99) and localization of BDE-99-induced cyp1a mRNA in zebrafish larvae[J]. Toxicol Rep, 2017, 4: 614-624. doi: 10.1016/j.toxrep.2017.11.003
[19] SØFTELAND L, PETERSEN K, STAVRUM A, et al. Hepatic in vitro toxicity assessment of PBDE congeners BDE47, BDE153 and BDE154 in Atlantic salmon (Salmo salar L. )[J]. Aquat Toxicol, 2011, 105(3/4): 246-263.
[20] BOON J P, ZANDEN J J, LEWIS W E, et al. The expression of CYP1A, vitellogenin and zona radiata proteins in Atlantic salmon (Salmo salar) after oral dosing with two commercial PBDE flame retardant mixtures: absence of short-term responses[J]. Mar Environ Res, 2002, 54(3-5): 719-724. doi: 10.1016/S0141-1136(02)00127-7
[21] MUYOT F B, MAGISTRADO M L, MUYOT M C, et al. Growth performance of the mangrove red snapper (Lutjanus argentimaculatus) in freshwater pond comparing two stocking densities and three feed types[J]. Philippine J Fish, 2021, 28(1): 1-7.
[22] CHEN H, ZHANG Z, ZHANG L, et al. Effects of di-n-butyl phthalate on gills- and liver-specific EROD activities and CYP1A levels in juvenile red snapper (Lutjanus argentimaculatus)[J]. Comp Biochem Physiol C, 2020, 232: 108757.
[23] KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7): 1870-1874. doi: 10.1093/molbev/msw054
[24] 余铭恩, 郑榕辉, 张玉生. 3种海洋鱼类肝微粒体EROD活性的测定[J]. 生态学报, 2014, 34(19): 5416-5424. [25] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
[26] CHAUBE R, RAWAT A, INBARAJ R M, et al. Cloning and characterization of estrogen hydroxylase (cyp1a1 and cyp1b1) genes in the stinging catfish Heteropneustes fossilis and induction of mRNA expression during final oocyte maturation[J]. Comp Biochem Physiol A, 2021, 253: 110863. doi: 10.1016/j.cbpa.2020.110863
[27] ARUKWE A. Complementary DNA cloning, sequence analysis and differential organ expression of β-naphthoflavone-inducible cytochrome P4501A in Atlantic salmon (Salmo salar)[J]. Comp Biochem Physiol C, 2002, 133(4): 613-624.
[28] WOO S J, CHUNG J K. Cytochrome P450 1 enzymes in black rockfish, Sebastes schlegelii: molecular characterization and expression patterns after exposure to benzo[a]pyrene[J]. Aquat Toxicol, 2020, 226: 105566. doi: 10.1016/j.aquatox.2020.105566
[29] COCCI P, MOSCONI G, PALERMO F A. Effects of 4-nonylphenol on hepatic gene expression of peroxisome proliferator-activated receptors and cytochrome P450 isoforms (CYP1A1 and CYP3A4) in juvenile sole (Solea solea)[J]. Chemosphere, 2013, 93(6): 1176-1181. doi: 10.1016/j.chemosphere.2013.06.058
[30] 梁秋芳, 董小燕, 冯平. CYP2D 亚家族基因及其进化机制研究进展[J]. 广西师范大学学报 (自然科学版), 2021, 39(5): 58-63. [31] BURKIAN V, ZAMARATSKAIA G, SAKALLI S, et al. Tissue-specific expression and activity of cytochrome P450 1A and 3A in rainbow trout (Oncorhynchus mykiss)[J]. Toxicol Lett, 2021, 341: 1-10. doi: 10.1016/j.toxlet.2021.01.011
[32] RUSNI S, SASSA M, TAKEHANA Y, et al. Correlation between cytochrome P450 1A (cyp1a) mRNA expression and ambient phenanthrene and pyrene concentration in Javanese medaka Oryzias javanicus[J]. Fish Sci, 2020, 86: 605-613. doi: 10.1007/s12562-020-01428-y
[33] KIM R, KIM B, HWANG D, et al. Evaluation of biomarker potential of cytochrome P450 1A (CYP1A) gene in the marine medaka, Oryzias melastigma exposed to water-accommodated fractions (WAFs) of Iranian crude oil[J]. Comp Biochem Physiol C, 2013, 157(2): 172-182.
[34] PETRULIS J R, CHEN G, BENN S, et al. Application of the ethoxyresorufin-O-deethylase (EROD) assay to mixtures of halogenated aromatic compounds[J]. Environ Toxicol, 2001, 16(2): 177-184. doi: 10.1002/tox.1022
[35] ROY M A, SANT K E, VENEZIA O L, et al. The emerging contaminant 3, 3'-dichlorobiphenyl (PCB-11) impedes Ahr activation and Cyp1a activity to modify embryotoxicity of Ahr ligands in the zebrafish embryo model (Danio rerio)[J]. Environ Pollut, 2019, 254: 113027. doi: 10.1016/j.envpol.2019.113027
[36] SMITH E M, IFTIKAR F I, HIGGINS S, et al. In vitro inhibition of cytochrome P450-mediated reactions by gemfibrozil, erythromycin, ciprofloxacin and fluoxetine in fish liver microsomes[J]. Aquat Toxicol, 2012, 109: 259-266. doi: 10.1016/j.aquatox.2011.08.022
[37] DAR S A, GORA A H, BHAT I A, et al. Studies of anthelminthic benzimidazole derivatives on cytochrome P450 1A (CYP1A) dependent detoxification mechanism in Labeo rohita[J]. Aquaculture, 2017, 481: 79-84. doi: 10.1016/j.aquaculture.2017.08.015
[38] 迟潇, 陈碧娟, 孙雪梅, 等. 基于IBR模型研究BDE-47和BDE-153对半滑舌鳎的毒性效应[J]. 生态毒理学报, 2020, 15(4): 192-202. [39] VEN L T M V, KUIL T, LEONARDS P E G, et al. A 28-day oral dose toxicity study in Wistar rats enhanced to detect endocrine effects of decabromodiphenyl ether (decaBDE)[J]. Toxicol Lett, 2008, 179(1): 6-14. doi: 10.1016/j.toxlet.2008.03.003
[40] WANG B, WANG H, XIAO D, et al. In vitro effects of brominated flame retardants, selected metals and their mixtures on ethoxyresorufin-O-deethylase activity in Mossambica tilapia liver[J]. Ecotoxicol Environ Saf, 2018, 161: 350-355. doi: 10.1016/j.ecoenv.2018.05.084
[41] 黄志斐, 马胜伟, 张喆, 等. BDE3胁迫对翡翠贻贝 (Perna viridis) SOD、MDA和GSH的影响[J]. 南方水产科学, 2012, 8(5): 25-30. doi: 10.3969/j.issn.2095-0780.2012.05.004 [42] XIE Z, LU G, QI P. Effects of BDE-209 and its mixtures with BDE-47 and BDE-99 on multiple biomarkers in Carassius auratus[J]. Environ Toxicol Pharmacol, 2014, 38(2): 554-561. doi: 10.1016/j.etap.2014.08.008
[43] YANG J, ZHU J, CHAN K M. BDE-99, but not BDE-47, is a transient aryl hydrocarbon receptor agonist in zebrafish liver cells[J]. Toxicol Appl Pharmacol, 2016, 305: 203-215. doi: 10.1016/j.taap.2016.06.023
[44] SHARIFIAN S, HOMAEI A, KAMRANI E, et al. New insights on the marine cytochrome P450 enzymes and their biotechnological importance[J]. Int Biol Macromol, 2020, 142: 811-821. doi: 10.1016/j.ijbiomac.2019.10.022
[45] SÁNCHEZ-OCAMPO E M, AZUELA G E, SALAS M S, et al. Alterations in viability and CYP1A1 expression in SH SY5Y cell line by pollutants present in Madín Dam, Mexico[J]. Sci Total Environ, 2020, 719: 137500. doi: 10.1016/j.scitotenv.2020.137500
[46] LI Z, ZHONG L, MU W, et al. Effects of chronic exposure to tributyltin on tissue specific cytochrome P450 1 regulation in juvenile common carp[J]. Xenobiotica, 2016, 46(6): 511-515. doi: 10.3109/00498254.2015.1092618
[47] CAPPELLETTI N, SPERANZA E, TATONE L, et al. Bioaccumulation of dioxin-like PCBs and PBDEs by detritus-feeding fish in the Rio de la Plata estuary, Argentina[J]. Environ Sci Pollut Res Int, 2015, 22(9): 7093-7100. doi: 10.1007/s11356-014-3935-z
[48] KUIPER R V, BERGMAN Å, VOS J G, et al. Some polybrominated diphenyl ether (PBDE) flame retardants with wide environmental distribution inhibit TCDD-induced EROD activity in primary cultured carp (Cyprinus carpio) hepatocytes[J]. Aquat Toxicol, 2004, 68(2): 129-139. doi: 10.1016/j.aquatox.2004.03.005
[49] WHAL M, LAHNI B, GUENTHER R, et al. A technical mixture of 2, 2', 4, 4'-tetrabromo diphenyl ether (BDE47) and brominated furans triggers aryl hydrocarbon receptor (AhR) mediated gene expression and toxicity[J]. Chemosphere, 2008, 73: 209-215. doi: 10.1016/j.chemosphere.2008.05.025
[50] MERSON R R, KARCHNER S I, HAHN M E. Interaction of fish aryl hydrocarbon receptor paralogs (AHR1 and AHR2) with the retinoblastoma protein[J]. Aquat Toxicol, 2009, 94(1): 47-55. doi: 10.1016/j.aquatox.2009.05.015
[51] ROY N K, CANDELMO A, DELLATORRE M, et al. Characterization of AHR2 and CYP1A expression in Atlantic sturgeon and shortnose sturgeon treated with coplanar PCBs and TCDD[J]. Aquat Toxicol, 2018, 197: 19-31. doi: 10.1016/j.aquatox.2018.01.017
-
期刊类型引用(1)
1. 张明轩,付保强,黎金浩,王康,姜岩,陈涛. 环境新污染物毒效应中芳香烃受体的作用. 环境与职业医学. 2024(12): 1349-1353+1360 . 百度学术
其他类型引用(2)