水产养殖环境中抗生素抗性基因 (ARGs) 研究进展

李丹怡, 王许诺, 张广桔, 王增焕, 黄珂

李丹怡, 王许诺, 张广桔, 王增焕, 黄珂. 水产养殖环境中抗生素抗性基因 (ARGs) 研究进展[J]. 南方水产科学, 2022, 18(5): 166-176. DOI: 10.12131/20210207
引用本文: 李丹怡, 王许诺, 张广桔, 王增焕, 黄珂. 水产养殖环境中抗生素抗性基因 (ARGs) 研究进展[J]. 南方水产科学, 2022, 18(5): 166-176. DOI: 10.12131/20210207
LI Danyi, WANG Xunuo, ZHANG Guangju, WANG Zenghuan, HUANG Ke. Advances on antibiotic resistance genes (ARGs) in aquaculture environment[J]. South China Fisheries Science, 2022, 18(5): 166-176. DOI: 10.12131/20210207
Citation: LI Danyi, WANG Xunuo, ZHANG Guangju, WANG Zenghuan, HUANG Ke. Advances on antibiotic resistance genes (ARGs) in aquaculture environment[J]. South China Fisheries Science, 2022, 18(5): 166-176. DOI: 10.12131/20210207

水产养殖环境中抗生素抗性基因 (ARGs) 研究进展

基金项目: 海南省自然科学基金青年基金 (321QN0944);广东省渔业生态环境重点实验室开放基金(FEEL-2017-14)
详细信息
    作者简介:

    李丹怡  (1994—),女,研究实习员,硕士,从事渔业环境及水产品的监测与风险评估研究。E-mail: lidy27@mail2.sysu.edu.cn

    通讯作者:

    王许诺 (1983—),女,副研究员,硕士,从事渔业环境及水产品的监测与风险评估研究。E-mail: sanqianli-1983@163.com

  • 中图分类号: S 949

Advances on antibiotic resistance genes (ARGs) in aquaculture environment

  • 摘要: 抗生素对水产养殖业中水生生物疾病防治、生产线增产等发挥着重要作用,但长期滥用抗生素很可能会诱导水生生物体内产生携带抗生素抗性基因 (Antibiotic resistant genes, ARGs) 的耐药菌 (Antibiotic resistant bacteria, ARB)。ARGs在水产养殖环境中的持久性残留、迁移和传播,会埋下基因污染隐患,导致生态失衡并危害人类安全,如何遏制抗生素抗性的传播已引起全球重点关注。就水产养殖环境中ARGs的研究进展,系统总结了ARGs的污染现状及其在水产养殖环境中的来源、迁移传播和影响因素,并简述了ARGs与抗生素、微生物群落和环境因素之间的关联特性,以及抗生素、ARGs和ARB对生态环境与人类健康的影响。基于此,概述了ARGs的控制策略与去除技术,并提出了今后的研究方向,以期为水产养殖环境中ARGs污染机理的解析和抗生素抗性传播风险的控制提供科学参考。
    Abstract: Antibiotics play a significant role in the disease control of aquatic organisms and output increase of aquatic products. However, long-term abuse of antibiotics can result in the occurrence of antibiotic resistant bacteria (ARB) which harbor antibiotics resistance genes (ARGs) in aquatic organisms. The persistent existence, migration and spread of ARGs in aquaculture environment will potentially cause genetic pollution, destroy the ecological balance, and pose risks to human health. Therefore, how to constrain the spread of antibiotic resistance has attracted global attention. In terms of the research advancement of ARGs in aquaculture environment, this review systematically summarizes the status of ARGs pollution coupled with the source, migration and spread behavior of ARGs and their influencing factors, illustrates the correlations between ARGs and antibiotics, microbial communities and environmental factors, as well as discusses the effect of antibiotics, ARGs and ARB on ecological environment and human health. Thus, the paper reviews the management strategies and removal technologies of ARGs, and proposes the future research directions regarding ARGs, so as to provide references for revealing the pollution mechanism of ARGs and reducing the transmission risk of antibiotic resistance.
  • 由于鱼类染色体相较于其他脊椎动物具有较强的“可塑性”,所以鱼类最易进行杂交[1]。远缘杂交是一种应用广泛且效果较显著的育种方法,在杂交种的优质利用、诱导雌核发育以及抗逆性能的选育[2-4]等方面发挥着重要作用。虽然现在各种新育种手段不断应用于鱼类遗传育种,但是杂交育种仍是应用广泛且效果较为明显的一种育种方法。通过杂交育种可以使不同品种之间优良性状结合,研究显示很多杂交种均表现出了明显的杂种优势[5-12]。一般来说,分布地区距离越远、外部形态差异越大、基因型纯化程度越高的种间杂交,出现杂交优势的可能性越高。

    短须裂腹鱼(Schizothorax wangchiachii)属鲤形目、鲤科、裂腹鱼亚科、裂腹鱼属,为长江上游特有鱼类,是金沙江及其支流、雅砻江和乌江的主要经济鱼类之一[13],其肉质细嫩、味道鲜美、营养丰富、深受青睐。近十多年来,野生短须裂腹鱼因过度捕捞、环境污染、水电站开发等,资源量越来越少。刘跃天等[14]于2006年首次报道短须裂腹鱼人工繁殖成功,获鱼苗7 508尾。随后由于其经济效益尚且产卵率和孵化成功率较高[15-17],人工繁殖数量越来越多,但在养殖过程中发现其易受小瓜虫、水霉病等侵袭,从而带来严重的经济损失。鲈鲤(Percocypris pingipingi)属鲤形目、鲤科、鲃亚科、鲈鲤属,主要分布于黔、川、滇长江上游及其支流,以及广西右江、珠江水系上游[18],是我国特有的珍稀野生鱼类,也是四川省和重庆市的重点保护动物[13]。鲈鲤的抗病能力较强,但在人工繁殖过程中产卵率和孵化成功率较低。

    关于短须裂腹鱼与鲈鲤的胚胎及胚后发育均有报道[19-24],但目前尚未见有关短须裂腹鱼和鲈鲤杂交后代胚胎及仔稚鱼发育的研究报道。本研究利用隶属不同亚科的鲈鲤与短须裂腹鱼杂交,系统地观察了杂交F1代的胚胎及仔稚鱼发育,记录其发育特征及生长指数,旨在为短须裂腹鱼和鲈鲤的杂交育种以及今后优良性状养殖品种的选育提供基础资料。

    实验于2017年3月在凉山科华水生态工程有限公司进行,实验用短须裂腹鱼、鲈鲤亲鱼均为3~4龄,体质量为1 500~2 000 g,短须裂腹鱼(♀)×鲈鲤(♂) (DL)母本短须裂腹鱼的怀卵量约19 000粒,鲈鲤(♀)×短须裂腹鱼(♂) (LD)母本鲈鲤的怀卵量约12 000粒。

    实验鱼养殖于约25 m2的鱼塘中,水温(14.5±1.0) ℃,pH 8.10~8.52,分别对性成熟的短须裂腹鱼和鲈鲤雌雄个体注射人绒毛膜促性腺激素(HCG)和促黄体激素释放激素类似物(LHRH-A2)人工催产,48~72 h后取成熟亲鱼轻压腹部,顺产获得成熟卵和精子,采用干法授精进行杂交。

    分别将短须裂腹鱼卵和鲈鲤的精液,以及短须裂腹鱼的精液和鲈鲤的卵进行干法授精,待受精卵充分吸水膨胀后,在直径74 cm、高28 cm的孵化盒中流水孵化培育,密度为2 000~3 000粒·m–2,流量为60~70 mL·s–1,温度(14.5±1.0) ℃,pH 8.10~8.81,出膜后的仔鱼饲养于淡水鱼类资源与生殖发育教育部重点实验室室内循环系统,定期换水并排污。早期仔鱼以丰年虫为开口饵料,后混合投喂鱼苗专用微粒配合饲料S1,饵料和饲料分别购自山东爱家宠物水族用品有限公司和山东升索渔用饲料研究中心。

    利用体式显微镜(Nikon 6000)对DL和LD的胚胎及仔稚鱼发育过程进行观察拍照。参考国内外学者的研究[19-28],胚胎发育过程中每次随机取30~60粒胚胎,前12 h内每10 min取样1次,后每0.5~1 h取样1次,取样至出膜为止,胚胎发育的时间以60%以上的胚胎明显进入该发育阶段为准,观察期间水温为(14.5±1.0) ℃;仔稚鱼阶段每次随机取10尾,前20 d取样每天1次,之后间隔5 d取样1次,取样至鳞被覆盖完毕,用稀释的乙醇麻醉,同样采用体式显微镜进行观察、拍照并记录,然后测定其生长指数。

    以有效积温描述整个发育过程[29],各阶段积温的计算方法为:胚胎发育各阶段的积温(h·℃)=该阶段胚胎发育时间(h)×水温(℃)。

    使用Excel 2017对实验数据进行处理,利用Photoshop CS5对图像进行编辑。

    短须裂腹鱼的成熟卵为浅黄色、沉性、微黏性。在平均水温(14.5±1.0) ℃条件下,胚胎发育历时144.33 h,受精率为95.33%,孵化率为71.12%,参考短须裂腹鱼与鲈鲤的研究结果[19-24],将其胚胎发育过程分为6个阶段,共28个时期(表 1)。

    表  1  短须裂腹鱼与鲈鲤杂交F1 代胚胎发育时序表
    Table  1.  Embryonic development schedule of hybrid of S. wangchiachii and P. pingipingi
    胚胎发育时期
    embryonic developmental stage
    主要特征
    developmental characteristics
    短须裂腹鱼 (♀) ×鲈鲤 (♂)
    S. wangchiachii (♀) ×
    P. pingipingi (♂) (DL)
    鲈鲤 (♀) ×短须裂腹鱼 (♂)
    P. pingipingi (♀) ×
    S. wangchiachii (♂) (LD)
    时间
    time
    积温/h·℃
    accumulated temperature
    时间
    time
    积温/h·℃
    accumulated temperature
    受精卵阶段 
    fertilized egg period
    受精卵期 受精卵呈球形,卵间隙小 0 0 0 0
    吸水膨胀期 受精卵吸水膨胀,卵间隙增大,卵膜呈透明状 45 min 10.88 1 h 1 min 14.79
    胚盘隆起期 原生质向动物极集中并隆起形成胚盘 3 h 35 min 51.77 3 h 7 min 54.81
    卵裂阶段 
    cleavage period
    2细胞期 胚盘表面凹陷形成分裂沟,将胚盘分裂为大小相似的2个分裂球 4 h 50 min 69.89 4 h 11 min 60.76
    4细胞期 分裂球再次分裂,形成大小相似的4个细胞 5 h 44 min 83.09 4 h 47 min 69.31
    8细胞期 分裂球呈几何级数增加,形成大小相似的8个细胞 6 h 30 min 94.25 5 h 44 min 83.09
    16细胞期 继续分裂,形成16个细胞 7 h 53 min 114.41 6 h 39 min 96.43
    桑葚胚期 卵裂速度加快,分裂球越来越小,细胞界限开始模糊,形成多细胞胚体,呈桑葚状 16 h 50 min 244.18 9 h 51 min 142.83
    囊胚阶段 
    blastula period
    囊胚早期 细胞团高高隆起,形似帽状,细胞界限模糊不清 19 h 47 min 286.81 16 h 43 min 242.44
    囊胚中期 细胞层向下扩散,囊胚高度下降,呈小丘状,胚层边缘逐渐平滑 21 h 1 min 304.79 18 h 40 min 270.72
    囊胚晚期 囊胚继续下降,与卵黄囊形成一个近球形 26 h 23 min 382.51 20 h 9 min 292.18
    原肠胚阶段 
    gastrula period
    原肠早期 胚层下包卵黄囊约1/2 42 h 45 min 620.02 38 h 34 min 559.27
    原肠中期 胚盾出现,胚层下包卵黄囊约2/3 49 h 53 min 723.41 42 h 28 min 615.67
    原肠晚期 胚层下包卵黄囊约3/4 53 h 3 min 769.23 51 h 15 min 743.13
    器官形成阶段 
    organogenesis period
    神经胚期 胚体可见,神经板雏形出现 55 h 19 min 802.14
    肌节出现期 胚体前段微隆起,中部出现肌节,胚孔仍可见 58 h 50 min 853.04
    眼囊期 眼囊出现,呈长梭形 61 h 15 min 888.13
    耳囊期 胚体眼囊后两侧出现一对卵圆形耳囊 68 h 37 min 997.99
    胚孔封闭期 胚层将卵黄栓完全包裹,胚孔封闭,胚体明显且超过卵黄囊一半 72 h 15 min 1 047.63
    肌肉效应期 胚体开始扭动,作缓慢的颤动式收缩 75 h 23 min 1 093.16
    尾芽期 尾端略突出,游离于卵黄,尾芽出现 79 h 8 min 1 147.39
    晶体形成期 眼囊中出现圆形、透明晶体 96 h 4 min 1 393.02
    耳石期 耳囊增大,其内可见2个小点,为耳石 101 h 16 min 1 468.27
    围心腔期 头部与卵黄连接处出现围心腔 109 h 22 min 1 586.01
    心脏原基期 围心腔内可见呈短管状的心脏原基 116 h 16 min 1 685.05
    心跳期 心脏开始有节律地搏动,频率52~
    58 次·min–1
    121 h 22 min 1 614.72
    出膜阶段 
    incubation period
    出膜前期 胚体运动加剧,运动幅度加大 139 h 59 min 2 029.71
    出膜期 胚体尾部击破卵膜,尾部伸出膜外,胚体脱离卵膜 144 h 20 min 2 092.79
    下载: 导出CSV 
    | 显示表格

    1) 受精卵阶段。刚受精时,受精卵呈黄色球形,卵径约3.24 mm (图1-1);然后开始吸水膨胀,卵周隙增大,受精后45 min,受精卵吸水膨胀到最大,直径约为4.05 mm,卵膜呈透明状(图1-2)。受精后3 h 35 min,原生质不断向动物极集中并隆起形成类似盘状结构,即为胚盘,此时进入胚盘期(图1-3)。

    图  1  短须裂腹鱼 (♀) ×鲈鲤 (♂) 的F1 胚胎发育
    1. 受精卵期;2. 吸水膨胀;3. 胚盘隆起期;4. 2 细胞期;5. 4 细胞期;6. 8 细胞期;7. 16 细胞期;8. 桑葚胚期;9. 囊胚早期;10. 囊胚中期;11. 囊胚晚期;12. 原肠早期;13. 原肠中期;14. 原肠晚期;15. 神经胚期;16. 肌节出现期;17. 眼囊期;18. 耳囊期;19. 胚孔封闭期;20. 肌肉效应期;21. 尾芽期;22. 晶体形成期;23. 耳石期;24. 围心腔期;25. 心脏原基期;26. 心跳期;27. 出膜前期;28. 出膜期;标尺=1 mm
    Figure  1.  Embryonic development of hybrid S. wangchiachii (♀)×P. pingiping (♂)
    1. fertilized egg; 2. swelling stage; 3. blastoderm stage; 4. 2-cell stage; 5. 4-cell stage; 6. 8-cell stage; 7. 16-cell stage; 8. multi-cell stage; 9. early-blastula stage; 10. mid-blastula stage, 11. late-blastula stage; 12. early-gastrula stage; 13. mid-gastrula stage; 14. late-gastrula stage; 15. neurula stage; 16. muscle burl stage; 17. eye vesicle stage; 18. otocyst stage; 19. blastopore closing stage; 20. muscular contraction stage; 21. tailbud formed stage; 22. eye lens formed stage; 23. otolithes stage; 24. pericardiac coelom stage; 25. rudiment of heart stage; 26. heart-beating stage; 27. pre-hatching stage; 28. hatching stage; bar=1 mm

    2) 卵裂阶段。受精后4 h 50 min,胚盘向两边拉伸,其表面凹陷形成分裂沟,随着发育不断加深,分裂沟将胚盘一分为二,形成大小相似的2个细胞,即为2细胞期(图1-4);受精后5 h 44 min分裂球再次分裂,分裂沟与第一次分裂沟垂直,形成大小相似的4个细胞,进入4细胞期(图1-5);分裂球继续呈几何级数增加,受精后6 h 30 min形成大小相似的8个细胞,即为8细胞期(图1-6);受精后7 h 53 min分裂形成16个细胞,即为16细胞期(图1-7);随后分裂速度加快,依次形成32个细胞、64个细胞,随着细胞数目增多,细胞界限开始模糊,受精后16 h 50 min形成多细胞胚体,呈桑葚状,即为桑葚胚期(图1-8)。

    3) 囊胚阶段。细胞继续分裂,细胞层数和数量不断增加,受精后19 h 47 min细胞团高高隆起,形似帽状,细胞界限模糊不清,即为囊胚早期(图1-9);隆起的细胞层向下扩散,逐渐变低,并开始下包,囊胚高度下降,受精后21 h 1 min呈小丘状,胚层边缘逐渐平滑,即为囊胚中期(图1-10);囊胚继续下包,受精后26 h 23 min囊胚细胞紧贴卵黄,与卵黄一起近似球形,进入囊胚晚期(图1-11)。

    4) 原肠胚阶段。随着细胞的进一步分裂,动物极细胞数目越来越多并逐渐向植物极方向延伸,受精后42 h 45 min胚层下包卵黄囊约1/2,即为原肠胚早期(图1-12);受精后49 h 53 min胚盾出现,胚层下包卵黄囊约2/3,为原肠胚中期(图1-13);受精后53 h 3 min胚层下包卵黄囊3/4,进入原肠胚晚期(图1-14)。

    5) 器官形成阶段。受精后55 h 19 min胚层即将包完卵黄,胚体可见,神经板雏形出现,此时为神经胚期(图1-15);受精后58 h 50 min进入肌节形成期,胚体前段微微隆起,中部出现约8节肌节(图1-16),此时胚孔仍可见;受精后61 h 15 min头部两侧分化出2个眼囊,呈长梭形,即为眼囊期(图1-17);受精后68 h 37 min肌节进一步增多,约20节,胚体眼囊后两侧出现一对卵圆形耳囊,比眼囊小,进入耳囊期(图1-18);受精后72 h 15 min胚层将卵黄栓完全包裹,胚孔封闭,胚体长超过卵黄囊一半,此时为胚孔封闭期(图1-19),在胚孔封闭期观察到轻微的卵黄运动(图 2)。受精后75 h 23 min胚体开始扭动,频率和幅度都较小,约15次·min–1,作缓慢的颤动式收缩,进入肌肉效应期(图1-20);受精后79 h 8 min尾端略突出,游离于卵黄,尾芽出现,即为尾芽期(图1-21),此时胚体运动加剧,约40次·min–1;受精后96 h 4 min眼囊中出现圆形、透明晶体,进入晶体形成期(图1-22);受精后101 h 16 min耳囊增大,其内可见2个小点,为耳石,胚体发育至耳石期(图1-23);受精后109 h 22 min头部与卵黄连接处出现空的围心腔,即为围心腔期(图1-24);受精后116 h 16 min围心腔增大,其内可见呈短管状的心脏原基,即为心脏原基期(图1-25);受精后121 h 22 min心脏进入心跳期,开始有节律地搏动,频率为52~58次·min–1 (图1-26)。

    图  2  短须裂腹鱼 (♀) ×鲈鲤 (♂) 的F1 代卵黄运动过程
    Figure  2.  Yolk movement process of hybrid of S. wangchiachii (♀) and P. pingipingi (♂)

    6) 出膜阶段。受精后139 h 59 min胚体运动剧烈,运动幅度大,胚体即将出膜,此时为出膜前期(图1-27);受精后144 h 20 min胚体尾部将卵膜击破,尾部随即伸出卵膜外,伴随着不停摆动,胚体逐渐脱离卵膜,即为出膜期,初孵仔鱼长度约为(10.85±0.21) mm (图1-28)。

    1) 仔稚鱼发育特征。短须裂腹鱼(♀) ×鲈鲤(♂)杂交的F1代仔稚鱼发育良好(图3),参照国内外的划分方法将其发育时期划分为3个阶段:卵黄囊期仔鱼(刚出膜仔鱼至卵黄囊消失时),历时17 d;晚期仔鱼(从卵黄囊消失至鳍条发育完整),历时45 d;稚鱼期(从鳍条发育完成至鳞被覆盖完毕),历时105 d (表 2)。

    图  3  短须裂腹鱼 (♀) ×鲈鲤 (♂) 的F1 代仔稚鱼发育
    1. 1 d 仔鱼;2. 2 d 仔鱼;3. 3 d 仔鱼;4. 4 d 仔鱼;5. 5 d 仔鱼;6. 6 d 仔鱼;7. 7 d 仔鱼;8. 8 d 仔鱼;9. 9 d 仔鱼;10. 10 d 仔鱼;11. 11 d 仔鱼;12. 12 d 仔鱼;13. 13 d 仔鱼;14. 14 d 仔鱼;15. 15 d 仔鱼;16. 16 d 仔鱼;17. 17 d 仔鱼;18. 45 d 仔鱼;19. 105 d 稚鱼;标尺=1 mm
    Figure  3.  Larvae and juveniles development of hybrid S. wangchiachii (♀)×P. pingipingi (♂)
    1. 1 d larvae; 2. 2 d larvae; 3. 3 d larvae; 4. 4 d larvae; 5. 5 d larvae; 6. 6 d larvae; 7. 7 d larvae; 8. 8 d larvae; 9. 9 d larvae; 10. 10 d larvae; 11.11 d larvae; 12. 12 d larvae; 13. 13 d larvae; 14. 14 d larvae; 15. 15 d larvae; 16. 16 d larvae; 17. 17 d larvae; 18. 45 d larvae; 19. 105 d juveniles; bar=1 mm
    表  2  短须裂腹鱼 (♀) ×鲈鲤 (♂) 仔稚鱼发育特征表
    Table  2.  Larval and juvenile development schedule of hybrid of S. wangchiachii (♀) and P. pingipingi (♂)
    时间
    time
    特征
    characteristic
    全长/mm
    total length
    体长/mm
    body length
    图序
    No. of picture
    第1天 1st day 内源性营养,卵黄囊占鱼体比值较大,前段膨大呈球状,大小约1.96 mm×1.76 mm,头部与球状卵黄囊夹角约为30°,后端呈棒状,仔鱼活动较少,多卧于水底 11.36±0.26 8.47±0.31 图3-1
    第2天 2nd day 前卵黄囊与头部夹角约45°,心脏搏动微弱,心率约55 次·min–1,心脏附近可见红色血液流动,耳石明显 11.49±0.27 8.53±0.24 图3-2
    第3天 3rd day 前卵黄囊与头部夹角约为90°,眼球出现黑色素 12.71±0.13 9.02±0.12 图3-3
    第4天 4th day 眼球黑色素明显增多,卵黄囊体积进一步缩小 12.98±0.29 9.68±0.23 图3-4
    第5天 5th day 卵黄囊上出现一条明显的血管,胸鳍原基出现,上下颌开始张合,约8 次·min–1 13.37±0.57 9.78±0.48 图3-5
    第6天 6th day 鳃可见明显红色血液流动 14.12±0.42 10.11±0.37 图3-6
    第7天 7th day 背部出现少量呈星芒状的黑色素,全身血液颜色加深,心脏搏动有力,心率约75 次·min–1 14.41±0.36 10.28±0.44 图3-7
    第8天 8th day 胸鳍形成,背鳍原基出现,上下颌张合明显,约35 次·min–1 14.79±0.59 10.49±0.61 图3-8
    第9天 9th day 上下颌张合剧烈,约97 次·min–1,心率85 次·min–1 15.04±0.64 10.52±0.41 图3-9
    第10天 10th day 胸鳍充分伸展,可摆动,头顶和背部黑色素增多,卵黄囊上也出现黑斑,心跳更剧烈,约105 次·min–1 15.09±0.68 10.54±0.52 图3-10
    第11天 11th day 尾部出现少量黑色素,尾鳍下叶出现4~8个鳍条 15.18±0.32 10.58±0.31 图3-11
    第12天 12th day 尾部黑色素增多,游泳迅速,鳔充气 15.33±0.48 10.61±0.36 图3-12
    第13天 13th day 背鳍原基隆起呈三角形,卵黄囊吸收约1/2 15.45±0.66 10.66±0.57 图3-13
    第14天 14th day 尾鳍鳍条分支增多,约8~14个 15.85±0.61 10.82±0.48 图3-14
    第15天 15th day 卵黄囊吸收约2/3 15.95±0.72 11.07±0.57 图3-15
    第16天 16th day 背鳍出现2~4个鳍条 16.02±0.57 11.13±0.46 图3-16
    第17天 17th day 卵黄消耗完,尾鳍鳍膜边缘开始内凹,肠道有明显排遗,进入后期仔鱼 16.11±0.43 11.19±0.36 图3-17
    第45天 45th day 胸鳍、尾鳍、背鳍、臀鳍、腹鳍鳍条基本发育完整,躯干呈半透明状,进入稚鱼期 25.84±0.82 19.46±0.62 图3-18
    第105天 105th day 鳞被已覆盖完毕,背部呈青黑色,腹部灰白色,已基本具备成鱼的身体特征,进入幼鱼期 56.74±0.53 45.87±0.67 图3-19
    下载: 导出CSV 
    | 显示表格

    2) 仔稚鱼生长情况。初孵仔鱼全长为(10.85±0.21) mm,体长为(8.23±0.18) mm,出膜第17天仔鱼全长为(16.11±0.43) mm,体长为(11.19±0.36) mm,出膜第105天幼鱼全长为(56.74±0.53 mm),体长为(45.87±0.67) mm,总体呈明显增长趋势(图 4)。

    图  4  短须裂腹鱼 (♀) ×鲈鲤 (♂) 仔稚鱼生长指数图
    Figure  4.  Growth index of larvae and juveniles of hybrid of S. wangchiachii (♀) and P. pingipingi (♂)

    鲈鲤的成熟卵为金黄色、沉性、微黏性。在平均水温(14.5±1.0) ℃条件下,前期发育较正常,发育至原肠期所需时间为51 h 15 min,所需积温为743.13 h·℃ (表 1)。

    刚受精时,受精卵呈球形,卵径约为2.32 mm,然后开始吸水膨胀,受精后1 h 1 min,受精卵吸水膨胀到最大,直径约为3.26 mm,此后发育过程除时间长短外均与正交一致。

    囊胚期开始死亡个体增多,原肠期末有85.83%的胚胎死亡,原因多为下包过程中卵黄膜破裂,卵黄物质溢出导致胚胎死亡,另外在囊胚期和原肠期卵黄内出现异常团块(图 5)。经过原肠期的胚胎,个体之间发育时间相差较大,最后仅12尾出膜,且出膜后的仔鱼均畸形,多为围心腔肿大、体轴弯曲和棒状卵黄囊细短或无(图 5),出膜3 d后畸形个体全部死亡。

    图  5  鲈鲤 (♀) ×短须裂腹鱼 (♂) F1 代死亡胚胎和仔鱼
    a. 卵黄外出现不明团块;b. 卵黄膜破裂,卵黄物质溢出;c. 围心腔肿大仔鱼;d. 棒状卵黄囊细短仔鱼;e. 体轴弯曲仔鱼;标尺=1 mm
    Figure  5.  Dead embryos and larvae of hybrid of P. pingipingi (♀) and S. wangchiachii (♂)
    a. an unidentified mass appears outside the yolk; b. membrane of yolk rupture; yolk is leaking; c. pericardial swelling in the larvae; d. the clavicularyolk is short; e. the body axis of fish bends; bar=1 mm

    温度是鱼类胚胎发育过程中的重要因素。左鹏翔等[22]在(19±1) ℃条件下观察的鲈鲤胚胎发育时间为101 h 40 min,赖见生等[23]在(18.0±0.5) ℃时观察的鲈鲤胚胎发育时间为126 h 28 min,王永明等[24]在(15.0±0.7) ℃时观察鲈鲤胚胎发育时间为164 h;左鹏翔等[20]在(14±1) ℃条件下观察的短须裂腹鱼的胚胎发育时间为254 h 40 min,刘阳等[19]在12.7~14.0 ℃时观察到短须裂腹鱼胚胎发育时间为192 h。由此可见,适当的温度范围内,两亲本胚胎发育时间受发育温度的影响,且温度越高,发育时间越短。本研究在水温(14.5±1.0) ℃条件下,短须裂腹鱼(♀) ×鲈鲤(♂)的F1代胚胎发育时间为144.33 h。发育温度相近时,杂交F1代的胚胎发育速度快于短须裂腹鱼与鲈鲤。推测是由于杂种优势导致其胚胎发育速度增快,或不同地区水质不同以及孵化条件的差异等导致胚胎发育时间的不同。

    在黄河裸裂尻鱼(Schizopygopsis pylzovi)[30]、胡子鲇(Clarias fuscus)[31]的胚胎发育过程中均有强烈的卵黄运动,短须裂腹鱼(♀) ×鲈鲤(♂)的F1代在胚孔封闭期观察到轻微的卵黄运动。在短须裂腹鱼[19-21]和鲈鲤[22-24]的胚胎发育及裂腹鱼亚科其他鱼类,如尖裸鲤(Oxygymnocypris stewartii)[32]、小裂腹鱼(S. parvus)[33]、细鳞裂腹鱼(S. chongi)[34]等中均未见有卵黄运动的报道。刘文生等[31]认为卵黄运动有助于细胞在卵黄囊上排列以及对以后细胞分化的调整,推测杂交F1代胚胎发育速度快于亲本可能与卵黄运动有关,但卵黄运动具体形成原因及其对胚胎发育的影响机制有待进一步研究。

    短须裂腹鱼(♀) ×鲈鲤(♂)的F1代胚胎发育过程与亲本基本一致,但也有其自身特点,尤其是器官发育阶段,鲈鲤和短须裂腹鱼均是在胚孔封闭后开始出现肌节、眼囊和耳囊,而其杂交F1代是出现肌节和眼囊、耳囊后胚孔才封闭,可能由于不同鱼类的胚胎发育具有其独特性[35],所以具体发育过程不尽相同。

    短须裂腹鱼(♀) ×鲈鲤(♂)的F1代卵黄期仔鱼前期主要由卵黄囊提供营养物质,后期以丰年虫投喂,生长加快,其外形与双亲基本一致。仔鱼从孵化到卵黄囊吸收完毕历时17 d,其发育情况与生长指数均接近短须裂腹鱼[19-21]。目前未见短须裂腹鱼稚鱼发育的相关报道,杂交F1代仔稚鱼历时105 d发育完成,生长优势不明显,发育速度与生长速度均慢于鲈鲤[23]。推测杂交F1代后期仔鱼和稚鱼的生长速度更接近短须裂腹鱼,相较于亲本,短须裂腹鱼(♀) ×鲈鲤(♂)的F1代仔稚鱼生长发育的差异还有待进一步的实验验证。

    短须裂腹鱼和鲈鲤属于不同亚科之间的远缘杂交,具有一定的遗传多样性。目前,对短须裂腹鱼和鲈鲤杂交育种的研究有限,杂交F1代在对环境因子的耐受性、抗病力等方面是否优于亲本,还有待实验验证。本实验的研究结果将为以后的进一步研究提供理论基础。

  • 图  1   水产环境中ARGs的来源、迁移与传播

    Figure  1.   Source, migration and spread behavior of ARGs in aquaculture environment

    图  2   水产养殖环境中ARGs与抗生素、微生物群落和环境因素之间的关联特性

    Figure  2.   Correlations between ARGs and antibiotics, microbial communities and environmental factors in aquaculture environment

    表  1   现有技术对ARGs的去除效果

    Table  1   Reduction efficiency of ARGs by existing technologies

    去除技术
    Removal technology
    去除原理
    Removal principle
    去除效果
    Reduction efficiency
    参考文献
    Reference
    添加大孔吸附树脂
    Adding macroporous adsorption resin (MAR)
    MAR是一种多孔交联聚合物,能够降低ARGs和微生物群落的丰度,并且通过吸附重金属以降低其对ARGs的协同效应和选择压力。 ARGs (14.14%~99.44%)和MGEs (47.83%~99.48%)的丰度显著降低。 [101]
    UV/氯消毒
    UV/chlorine
    UV/氯协同作用可以有效灭活ARB、打破ARGs结构并抑制其水平转移。 UV (320 mJ·cm−2)/氯(2 mg·L−1)协同作用下,ARGs的去除率增强了1~1.5 log。 [102]
    臭氧后处理
    Ozone post-treatment
    臭氧具有高氧化电位 (2.07 V),可以有效去除ARGs和ARB。 胞内ARGs (iARGs)的去除率达到89%。 [103]
    高铁酸盐
    Ferrate
    高铁酸盐作为一种高价铁基氧化剂,其强氧化电位能够直接去除ARGs,且具备较强的杀菌效能,能够灭活携带ARGs的细菌,从而抑制其垂直转移。 高铁酸盐的剂量为10 mg-Fe·L−1时,ARGs的去除率达到1.10~4.37 log。 [104]
    生物过滤
    Biofiltration
    水体中的微生物会附着在过滤介质 (石英砂、颗粒活性炭和无烟煤等) 表面并形成生物膜。 ARGs平均丰度降低了0.97 log。 [105]
    污泥处理湿地
    Sludge treatment wetlands (STWs)
    STWs法是传统沙干化床和垂直流人工湿地的联合技术,剩余污泥进入湿地后会形成不同污泥层,而植物在其中生长,有利于稳定污泥、减少污泥体积并去除ARGs等污染物。 磺胺类ARGs的丰度降低了21%。 [106]
    下载: 导出CSV
  • [1]

    FANG H, HUANG K L, YU J N, et al. Metagenomic analysis of bacterial communities and antibiotic resistance genes in the Eriocheir sinensis freshwater aquaculture environment[J]. Chemosphere, 2019, 224: 202-211. doi: 10.1016/j.chemosphere.2019.02.068

    [2]

    QIAN Z Z, LUO D L, LUO F F, et al. Determination of peptide antibiotics residues in sediment from aquaculture environment by high performance liquid chromatography-tandem mass spectrometry[J]. Chin J Anal Chem, 2016, 6: 870-875.

    [3]

    BRUNTON L A, DESBOIS A P, GARZA M, et al. Identifying hotspots for antibiotic resistance emergence and selection, and elucidating pathways to human exposure: application of a systems-thinking approach to aquaculture systems[J]. Sci Total Environ, 2019, 687: 1344-1356. doi: 10.1016/j.scitotenv.2019.06.134

    [4] 罗义, 周启星. 抗生素抗性基因(ARGs)——一种新型环境污染物[J]. 环境科学学报, 2008, 28(8): 1499-1505. doi: 10.3321/j.issn:0253-2468.2008.08.002
    [5]

    KUMAR M, RAM B, HONDA R, et al. Concurrence of antibiotic resistant bacteria (ARB), viruses, pharmaceuticals and personal care products (PPCPs) in ambient waters of Guwahati, India: urban vulnerability and resilience perspective[J]. Sci Total Environ, 2019, 693: 133640. doi: 10.1016/j.scitotenv.2019.133640

    [6]

    EBELE A J, ABOU-ELWAFA ABDALLAH M, HARRAD S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment[J]. Emerg Contam, 2017, 3(1): 1-16. doi: 10.1016/j.emcon.2016.12.004

    [7]

    MO W Y, CHEN Z T, LEUNG H M, et al. Application of veterinary antibiotics in China's aquaculture industry and their potential human health risks[J]. Environ Sci Pollut Res, 2017, 24: 8978-8989. doi: 10.1007/s11356-015-5607-z

    [8]

    YANG J F, YING G G, ZHAO J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China[J]. J Environ Sci Health B, 2011, 46(3): 272-280. doi: 10.1080/03601234.2011.540540

    [9]

    SUN Q, LI Y, LI M Y, et al. PPCPs in Jiulong River estuary (China): spatiotemporal distributions, fate, and their use as chemical markers of wastewater[J]. Chemosphere, 2016, 150: 596-604. doi: 10.1016/j.chemosphere.2016.02.036

    [10] 武旭跃, 邹华, 朱荣, 等. 太湖贡湖湾水域抗生素污染特征分析与生态风险评价[J]. 环境科学, 2016, 37(12): 4596-4604.
    [11]

    ZHANG M, CAI Z X, ZHANG G F, et al. Effectively reducing antibiotic contamination and resistance in fishery by efficient gastrointestine-blood delivering dietary millispheres[J]. J Hazard Mater, 2021, 409: 125012. doi: 10.1016/j.jhazmat.2020.125012

    [12]

    ZHAO H, ZHOU J L, ZHANG J. Tidal impact on the dynamic behavior of dissolved pharmaceuticals in the Yangtze Estuary, China[J]. Sci Total Environ, 2015, 536: 946-954. doi: 10.1016/j.scitotenv.2015.06.055

    [13]

    YANG Y, QIU W Q, LI Y X, et al. Antibiotic residues in poultry food in Fujian Province of China[J]. Food Addit Contam B, 2020, 13(3): 177-184. doi: 10.1080/19393210.2020.1751309

    [14]

    XU T W. Contemporary global health security and China's strategy[J]. J Int Stud, 2017, 38(3): 9-37.

    [15]

    PRUDEN A, PEI R, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants:   studies in Northern Colorado[J]. Environ Sci Technol, 2006, 40(23): 7445-7450. doi: 10.1021/es060413l

    [16]

    MIRANDA C D, GODOY F A, LEE M R. Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms[J]. Front Microbiol, 2018, 9: 1284. doi: 10.3389/fmicb.2018.01284

    [17]

    GAO P P, MAO D Q, LUO Y, et al. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment[J]. Water Res, 2012, 46(7): 2355-2364. doi: 10.1016/j.watres.2012.02.004

    [18]

    PEREIRA A M P T, SILVA L J G, MEISEL L M, et al. Fluoroquinolones and tetracycline antibiotics in a Portuguese aquaculture system and aquatic surroundings: occurrence and environmental impact[J]. J Toxicol Env Heal A, 2015, 78(15): 959-975. doi: 10.1080/15287394.2015.1036185

    [19]

    CESARE A D, LUNA G M, VIGNAROLI C, et al. Aquaculture can promote the presence and spread of antibiotic-resistant Enterococci in marine sediments[J]. PLOS ONE, 2013, 8(4): e62838. doi: 10.1371/journal.pone.0062838

    [20]

    SU H C, HU X J, WANG L L, et al. Contamination of antibiotic resistance genes (ARGs) in a typical marine aquaculture farm: source tracking of ARGs in reared aquatic organisms[J]. J Environ Sci Heal B, 2020, 55(3): 220-229. doi: 10.1080/03601234.2019.1684747

    [21]

    LIU X, WANG H, ZHAO H M. Propagation of antibiotic resistance genes in an industrial recirculating aquaculture system located at northern China[J]. Environ Pollut, 2020, 261: 114155. doi: 10.1016/j.envpol.2020.114155

    [22]

    SU H C, LIU S, HU X J, et al. Occurrence and temporal variation of antibiotic resistance genes (ARGs) in shrimp aquaculture: ARGs dissemination from farming source to reared organisms[J]. Sci Total Environ, 2017, 607-608: 357-366. doi: 10.1016/j.scitotenv.2017.07.040

    [23]

    D'COSTA V M, KING C E, KALAN L, et al. Antibiotic resistance is ancient.[J]. Nature, 2011, 477: 457-461. doi: 10.1038/nature10388

    [24] 苏建强, 黄福义, 朱永官. 环境抗生素抗性基因研究进展[J]. 生物多样性, 2013, 21(4): 481-487.
    [25] 张骞月, 赵婉婉, 吴伟. 水产养殖环境中抗生素抗性基因污染及其研究进展[J]. 中国农业科技导报, 2015, 17(6): 125-134.
    [26]

    SUCHLAND R J, SANDOZ K M, JEFFREY B M, et al. Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro[J]. Antimicrob Agents Chem, 2009, 53(11): 4604-4611. doi: 10.1128/AAC.00477-09

    [27]

    TONG J, TANG A P, WANG H Y, et al. Microbial community evolution and fate of antibiotic resistance genes along six different full-scale municipal wastewater treatment processes[J]. Bioresour Technol, 2019, 272: 489-500. doi: 10.1016/j.biortech.2018.10.079

    [28]

    HE Y, YUAN Q B, MATHIEU J, et al. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment[J]. NPJ Clean Water, 2020, 3: 4. doi: 10.1038/s41545-020-0051-0

    [29]

    SINGER A C, HELEN S, VICKI R, et al. Review of antimicrobial resistance in the environment and its relevance to environmental regulators[J]. Front Microbiol, 2016, 7: 1728.

    [30]

    CHEN H, LIU S, XU X R, et al. Tissue distribution, bioaccumulation characteristics and health risk of antibiotics in cultured fish from a typical aquaculture area[J]. J Mater Sci, 2018, 343: 140-148.

    [31]

    PETCHIAPPAN A, CHATTERJI D. Antibiotic resistance: current perspectives[J]. ACS Omega, 2017, 2(10): 7400-7409. doi: 10.1021/acsomega.7b01368

    [32]

    NOMAN E, AL-GHEETHI A, RADIN MOHAMED R M S, et al. Quantitative microbiological risk assessment of complex microbial community in prawn farm wastewater and applicability of nanoparticles and probiotics for eliminating of antibiotic-resistant bacteria[J]. J Hazard Mater, 2021, 419: 126418. doi: 10.1016/j.jhazmat.2021.126418

    [33]

    PRUDEN A. Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance[J]. Environ Sci Technol, 2014, 48(1): 5-14. doi: 10.1021/es403883p

    [34]

    GAO P, MUNIR M, XAGORARAKI I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant[J]. Sci Total Environ, 2012, 421/422: 173-183. doi: 10.1016/j.scitotenv.2012.01.061

    [35]

    TELLO A, TELFER A T C. Selective pressure of antibiotic pollution on bacteria of importance to public health[J]. Environ Health Perspect, 2012, 120(8): 1100-1106. doi: 10.1289/ehp.1104650

    [36]

    GILLINGS M R, GAZE W H, PRUDEN A, et al. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution[J]. ISME J, 2015, 9(6): 1269-1279. doi: 10.1038/ismej.2014.226

    [37]

    HARNISZ M, KORZENIEWSKA E, GOLAS I. The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water[J]. Chemosphere, 2015, 128: 134-141. doi: 10.1016/j.chemosphere.2015.01.035

    [38]

    ZAINAB S M, JUNAID M, XU N, et al. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: a global review on dissemination, sources, interactions, environmental and human health risks[J]. Water Res, 2020, 187: 116455. doi: 10.1016/j.watres.2020.116455

    [39]

    AKINBOWALE O L, PENG H, BARTON M D. Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia[J]. J Appl Microbiol, 2010, 103(5): 2016-2025.

    [40]

    LIANG X M, GUAN F L, CHEN B W, et al. Spatial and seasonal variations of antibiotic resistance genes and antibiotics in the surface waters of Poyang Lake in China[J]. Ecotox Environ Safe, 2020, 196: 110543. doi: 10.1016/j.ecoenv.2020.110543

    [41]

    HE L Y, LIU Y S, SU H C, et al. Dissemination of antibiotic resistance genes in representative broiler feedlots environments: identification of indicator ARGs and correlations with environmental variables[J]. Environ Sci Technol, 2014, 48: 13120-13129. doi: 10.1021/es5041267

    [42]

    FANG H S, ZHANG Q, NIE X P, et al. Occurrence and elimination of antibiotic resistance genes in a long-term operation integrated surface flow constructed wetland[J]. Chemosphere, 2017, 173: 99-106. doi: 10.1016/j.chemosphere.2017.01.027

    [43]

    WU J J, SU Y L, DENG Y Q, et al. Prevalence and distribution of antibiotic resistance in marine fish farming areas in Hainan, China[J]. Sci Total Environ, 2019, 653: 605-611. doi: 10.1016/j.scitotenv.2018.10.251

    [44]

    SU H C, HU X J, XU Y, et al. Persistence and spatial variation of antibiotic resistance genes and bacterial populations change in reared shrimp in South China[J]. Environ Int, 2018, 119: 327-333. doi: 10.1016/j.envint.2018.07.007

    [45]

    JIA S Y, ZHANG X X, MIAO Y, et al. Fate of antibiotic resistance genes and their associations with bacterial community in livestock breeding wastewater and its receiving river water[J]. Water Res, 2017, 124: 259-268. doi: 10.1016/j.watres.2017.07.061

    [46]

    ZHOU M, XU Y B, OU Y, et al. Evolution and distribution of resistance genes and bacterial community in water and biofilm of a simulated fish-duck integrated pond with stress[J]. Chemosphere, 2020, 245: 125549. doi: 10.1016/j.chemosphere.2019.125549

    [47]

    HE X L, XU Y B, CHEN J L, et al. Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals[J]. Water Res, 2017, 124: 39-48. doi: 10.1016/j.watres.2017.07.048

    [48]

    WANG Q, LIU L, HOU Z L, et al. Heavy metal copper accelerates the conjugative transfer of antibiotic resistance genes in freshwater microcosms[J]. Sci Total Environ, 2020, 717: 137055. doi: 10.1016/j.scitotenv.2020.137055

    [49]

    SEILER C, BERENDONK T. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture[J]. Front Microbiol, 2012, 3: 399.

    [50]

    MAXIMILIANO N, MARINA S P, SOLEDAD R M, et al. Class 1 integrons in environments with different degrees of urbanization[J]. PLOS One, 2012, 7(6): e39223. doi: 10.1371/journal.pone.0039223

    [51]

    ZHAO Y, YANG Q E, ZHOU X, et al. Antibiotic resistome in the livestock and aquaculture industries: status and solutions[J]. Crit Rev Environ Sci Technol, 2021, 51(19): 2159-2196. doi: 10.1080/10643389.2020.1777815

    [52]

    GREENFIELD B K, SHAKED S, MARRS C F, et al. Modeling the emergence of antibiotic resistance in the environment: an analytical solution for the minimum selection concentration[J]. Antimicrob Agents Chemother, 2018, 62(3): e1617-e1686.

    [53]

    DU J, ZHAO H X, WANG Y, et al. Presence and environmental risk assessment of selected antibiotics in coastal water adjacent to mariculture areas in the Bohai Sea[J]. Ecotox Environ Safe, 2019, 177: 117-123. doi: 10.1016/j.ecoenv.2019.03.075

    [54]

    ZHAO B, XU J M, ZHANG G D, et al. Occurrence of antibiotics and antibiotic resistance genes in the Fuxian Lake and antibiotic source analysis based on principal component analysis-multiple linear regression model[J]. Chemosphere, 2021, 262: 127741. doi: 10.1016/j.chemosphere.2020.127741

    [55]

    ZHANG G D, LU S Y, WANG Y Q, et al. Occurrence of antibiotics and antibiotic resistance genes and their correlations in lower Yangtze River, China[J]. Environ Pollut, 2020, 257: 113365. doi: 10.1016/j.envpol.2019.113365

    [56]

    SHEN X X, JIN G Q, ZHAO Y J, et al. Prevalence and distribution analysis of antibiotic resistance genes in a large-scale aquaculture environment[J]. Sci Total Environ, 2020, 711: 134626. doi: 10.1016/j.scitotenv.2019.134626

    [57]

    ZHENG J, ZHOU Z C, WEI Y Y, et al. High-throughput profiling of seasonal variations of antibiotic resistance gene transport in a peri-urban river[J]. Environ Int, 2018, 114: 87-94. doi: 10.1016/j.envint.2018.02.039

    [58]

    MARTI E, HUERTA B, RODRÍGUEZ-MOZAZA S, et al. Abundance of antibiotic resistance genes and bacterial community composition in wild freshwater fish species[J]. Chemosphere, 2018, 196: 115-119. doi: 10.1016/j.chemosphere.2017.12.108

    [59]

    SU H C, LIU Y S, PAN C G, et al. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water[J]. Sci Total Environ, 2017, 616-617: 453-461.

    [60]

    THOMPSON J R, PACOCHA S, PHARINO C, et al. Genotypic diversity within a natural coastal bacterioplankton population[J]. Science, 2005, 307(5713): 1311-1313. doi: 10.1126/science.1106028

    [61]

    LU Z H, NA G S, GAO H, et al. Fate of sulfonamide resistance genes in estuary environment and effect of anthropogenic activities[J]. Sci Total Environ, 2015, 527-528: 429-438. doi: 10.1016/j.scitotenv.2015.04.101

    [62]

    SU H C, PAN C G, YING G G, et al. Contamination profiles of antibiotic resistance genes in the sediments at a catchment scale[J]. Sci Total Environ, 2014, 490: 708-714. doi: 10.1016/j.scitotenv.2014.05.060

    [63]

    JECHALKE S, BROSZAT M, LANG F, et al. Effects of 100 years wastewater irrigation on resistance genes, Class 1 integrons and IncP-1 plasmids in Mexican soil[J]. Front Microbiol, 2015, 6: 163.

    [64] 苏志国, 张衍, 代天娇, 等. 环境中抗生素抗性基因与Ⅰ型整合子的研究进展[J]. 微生物学通报, 2018, 45(10): 2217-2233.
    [65]

    QIU W H, SUN J, FANG M J, et al. Occurrence of antibiotics in the main rivers of Shenzhen, China: association with antibiotic resistance genes and microbial community[J]. Sci Total Environ, 2019, 635: 334-341.

    [66]

    JIANG X S, LIU L Q, CHEN J F, et al. Antibiotic resistance genes and mobile genetic elements in a rural river in Southeast China: occurrence, seasonal variation and association with the antibiotics[J]. Sci Total Environ, 2021, 778: 146131. doi: 10.1016/j.scitotenv.2021.146131

    [67]

    WANG Z, HAN M Z, LI E H, et al. Distribution of antibiotic resistance genes in an agriculturally disturbed lake in China: their links with microbial communities, antibiotics, and water quality[J]. J Hazard Mater, 2020, 393: 122426. doi: 10.1016/j.jhazmat.2020.122426

    [68]

    XIANG S Z, WANG X S, MA W, et al. Response of microbial communities of karst river water to antibiotics and microbial source tracking for antibiotics[J]. Sci Total Environ, 2020, 706: 135730. doi: 10.1016/j.scitotenv.2019.135730

    [69]

    CROFTS T S, GASPARRINI A J, DANTAS G. Next-generation approaches to understand and combat the antibiotic resistome[J]. Nat Rev Microbiol, 2017, 15: 422-434. doi: 10.1038/nrmicro.2017.28

    [70]

    SONG C, ZHANG C, FAN L M, et al. Occurrence of antibiotics and their impacts to primary productivity in fishponds around Tai Lake, China[J]. Chemosphere, 2016, 161: 127-135. doi: 10.1016/j.chemosphere.2016.07.009

    [71]

    LI N, ZHANG X B, WU W, et al. Occurrence, seasonal variation and risk assessment of antibiotics in the reservoirs in North China[J]. Chemosphere, 2014, 111: 327-335. doi: 10.1016/j.chemosphere.2014.03.129

    [72]

    XU L Y, ZHANG H, XIONG P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: a review[J]. Sci Total Environ, 2020, 753: 141975.

    [73]

    HE S X, ZHOU Z G, LIU Y C, et al. Do dietary betaine and the antibiotic florfenicol influence the intestinal autochthonous bacterial community in hybrid tilapia (Oreochromis niloticus ♀ × O. aureus ♂)?[J]. World J Microb Biot, 2012, 28(3): 785-791. doi: 10.1007/s11274-011-0871-7

    [74]

    BINH V N, DANG N, ANH N T K, et al. Antibiotics in the aquatic environment of Vietnam: Sources, concentrations, risk and control strategy[J]. Chemosphere, 2018, 197: 438-450. doi: 10.1016/j.chemosphere.2018.01.061

    [75]

    LIU X, STEELE J C, MENG X Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: a review[J]. Environ Pollut, 2017, 223: 161-169. doi: 10.1016/j.envpol.2017.01.003

    [76]

    CHEN Y H, SU J Q, ZHANG J Y, et al. High-throughput profiling of antibiotic resistance gene dynamic in a drinking water river-reservoir system[J]. Water Res, 2019, 149: 179-189. doi: 10.1016/j.watres.2018.11.007

    [77]

    XU Y, GUO C S, LUO Y, et al. Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing, China[J]. Environ Pollut, 2016, 213: 833-840. doi: 10.1016/j.envpol.2016.03.054

    [78]

    NIU Z G, ZHANG K, ZHANG Y. Occurrence and distribution of antibiotic resistance genes in the coastal area of the Bohai Bay, China[J]. Mar Pollut Bull, 2016, 107: 245-250. doi: 10.1016/j.marpolbul.2016.03.064

    [79]

    ZHANG S Q, ABBAS M, REHMAN M U, et al. Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: a risk to human health[J]. Environ Pollut, 2020, 266: 115260. doi: 10.1016/j.envpol.2020.115260

    [80]

    ZHAO W X, WANG B, YU G. Antibiotic resistance genes in China: occurrence, risk, and correlation among different parameters[J]. Environ Sci Pollut R, 2018, 25: 21467-21482. doi: 10.1007/s11356-018-2507-z

    [81]

    Antimicrobial resistance: global report on surveillance[R]. Geneva, Switzerland: WHO, 2014: 35-55.

    [82]

    ALEXANDRA T, LARISA I, ALEJANDRO H B, et al. Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture[J]. Env Microbbiol Rep, 2015, 7(5): 803-809. doi: 10.1111/1758-2229.12327

    [83]

    SYROVA E, KOHOUTOVA L, DOLEJSKA M, et al. Antibiotic resistance and virulence factors in mesophilic Aeromonas spp. from Czech carp fisheries[J]. J Appl Microbiol, 2018, 125(6): 1702-1713. doi: 10.1111/jam.14075

    [84]

    LEE K, KIM D, LEE D, et al. Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance[J]. Microbiome, 2020, 8: 2. doi: 10.1186/s40168-019-0774-7

    [85]

    NNADOZIE C F, ODUME O N. Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes[J]. Environ Pollut, 2019, 254: 113067. doi: 10.1016/j.envpol.2019.113067

    [86]

    ALEXANDER J, BOLLMANN A, SEITZ W, et al. Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria[J]. Sci Total Environ, 2015, 512-513: 316-325. doi: 10.1016/j.scitotenv.2015.01.046

    [87]

    AARTS H, MARGOLLES A. Antibiotic resistance genes in food and gut (non-pathogenic) bacteria. Bad genes in good bugs[J]. Front Microbiol, 2015, 5: 754.

    [88]

    SU H C, YING G G, TAO R, et al. Occurrence of antibiotic resistance and characterization of resistance genes and integrons in Enterobacteriaceae isolated from integrated fish farms in South China[J]. J Environ Monit, 2011, 13(11): 3229-3236. doi: 10.1039/c1em10634a

    [89]

    TRANG D T, HIEN B T T, MØLBAK K, et al. Epidemiology and aetiology of diarrhoeal diseases in adults engaged in wastewater-fed agriculture and aquaculture in Hanoi, Vietnam[J]. Trop Med Int Health, 2007, 2: 23-33.

    [90]

    AMARASIRI M, SANO D, SUZUKI S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: current knowledge and questions to be answered[J]. Crit Rev Environ Sci Technol, 2020, 50(19): 2016-2059. doi: 10.1080/10643389.2019.1692611

    [91]

    KLASE G, LEE S, LIANG S, et al. The microbiome and antibiotic resistance in integrated fishfarm water: implications of environmental public health[J]. Sci Total Environ, 2019, 649: 1491-1501. doi: 10.1016/j.scitotenv.2018.08.288

    [92]

    SHARON L. Reduced antibiotic use in livestock: how Denmark tackled resistance[J]. Environ Health Perspect, 2014, 122(6): 160-165.

    [93]

    ANDERSSON D I, HUGHES D. Antibiotic resistance and its cost: is it possible to reverse resistance?[J]. Nat Rev Microbiol, 2010, 8: 260-271. doi: 10.1038/nrmicro2319

    [94]

    GAGGÌA F, MATTARELLI P, BIAVATI B. Probiotics and prebiotics in animal feeding for safe food production[J]. Int J Food Microbiol, 2010, 141: S15-S28. doi: 10.1016/j.ijfoodmicro.2010.02.031

    [95]

    LI Z, HU Y H, YANG Y Y, et al. Antimicrobial resistance in livestock: antimicrobial peptides provide a new solution for a growing challenge[J]. Anim Front, 2018, 8(2): 21-29. doi: 10.1093/af/vfy005

    [96]

    GUO M T, YUAN Q B, YANG J. Ultraviolet reduction of erythromycin and tetracycline resistant heterotrophic bacteria and their resistance genes in municipal wastewater[J]. Chemosphere, 2013, 93(11): 2864-2868. doi: 10.1016/j.chemosphere.2013.08.068

    [97]

    WANG B I, SHI H H, HABTESELASSIE M Y, et al. Simultaneous removal of multidrug-resistant Salmonella enterica serotype typhimurium, antibiotics and antibiotic resistance genes from water by electrooxidation on a Magnéli phase Ti4O7 anode[J]. Chem Eng J, 2020, 407: 127134.

    [98]

    HOU J, CHEN Z Y, GAO J, et al. Simultaneous removal of antibiotics and antibiotic resistance genes from pharmaceutical wastewater using the combinations of up-flow anaerobic sludge bed, anoxic-oxic tank, and advanced oxidation technologies[J]. Water Res, 2019, 159: 511-520. doi: 10.1016/j.watres.2019.05.034

    [99]

    KAEWMANEE A, CHIEMCHAISRI W, CHIEMCHAISRI C. Influence of high doses of antibiotics on anoxic-aerobic membrane bioreactor in treating solid waste leachate[J]. Int Biodeterior Biodegradation, 2019, 138: 15-22. doi: 10.1016/j.ibiod.2018.12.011

    [100]

    RODRÍGUEZ-CHUECA J, VARELLA DELLA GIUSTINA S, ROCHA J, et al. Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs: removal or persistence of antibiotics and antibiotic resistance genes?[J]. Sci Total Environ, 2019, 652: 1051-1061. doi: 10.1016/j.scitotenv.2018.10.223

    [101]

    BAO J F, WANG X J, GU J, et al. Effects of macroporous adsorption resin on antibiotic resistance genes and the bacterial community during composting[J]. Bioresour Technol, 2020, 295: 121997. doi: 10.1016/j.biortech.2019.121997

    [102]

    WANG H C, WANG J, LI S M, et al. Synergistic effect of UV/chlorine in bacterial inactivation, resistance gene removal, and gene conjugative transfer blocking[J]. Water Res, 2020, 185: 116290. doi: 10.1016/j.watres.2020.116290

    [103]

    WU Y Q, CHEN Z Q, WEN Q X, et al. Mechanism concerning the occurrence and removal of antibiotic resistance genes in composting product with ozone post-treatment[J]. Bioresour Technol, 2021, 321: 124433. doi: 10.1016/j.biortech.2020.124433

    [104]

    NI B J, YAN X F, DAI X H, et al. Ferrate effectively removes antibiotic resistance genes from wastewater through combined effect of microbial DNA damage and coagulation[J]. Water Res, 2020, 185: 116273. doi: 10.1016/j.watres.2020.116273

    [105]

    XU L K, CAMPOS L C, CANALES M, et al. Drinking water biofiltration: behaviour of antibiotic resistance genes and the association with bacterial community[J]. Water Res, 2020, 182: 115954. doi: 10.1016/j.watres.2020.115954

    [106]

    MA J W, CUI Y B, LI A M, et al. Evaluation of the fate of nutrients, antibiotics, and antibiotic resistance genes in sludge treatment wetlands[J]. Sci Total Environ, 2020, 712: 136370. doi: 10.1016/j.scitotenv.2019.136370

    [107]

    SHAO Y T, WANG Y P, YUAN Y W, et al. A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China[J]. Sci Total Environ, 2021, 798: 149205. doi: 10.1016/j.scitotenv.2021.149205

  • 期刊类型引用(8)

    1. 韦小凯,周康奇,邹欣汐,林勇,叶华,罗辉,覃俊奇,陈忠,黄姻,杜雪松,张彩群,潘贤辉. 基于全长转录组数据的中国圆田螺微卫星特征分析与标记筛选. 水生态学杂志. 2025(02): 235-242 . 百度学术
    2. 陈欣雨,朱守玟,江转转. 李属植物线粒体基因组特征与系统发育分析. 福建农林大学学报(自然科学版). 2024(04): 491-500 . 百度学术
    3. 杨尉,司圆圆,许瑞雯,陈兴汉. 基于基因组survey数据的疣吻沙蚕微卫星特征分析及多态标记开发. 南方水产科学. 2023(05): 123-133 . 本站查看
    4. 徐慧敏,巨丹丹,龚兵,肖明松. 基于Illumina HiSeq平台的翘嘴红鲌转录组测序分析. 安徽科技学院学报. 2023(06): 49-56 . 百度学术
    5. 杨尉,司圆圆,许瑞雯,陈兴汉. 疣吻沙蚕转录组SSR位点鉴定及特征分析. 南方农业学报. 2023(09): 2593-2603 . 百度学术
    6. 陈丽梅,李莉,石栩蔚,秦艺铭,刘利华,郭永军. 基于转录组数据的毛蚶SSR分子标记开发与评价. 渔业科学进展. 2022(03): 129-137 . 百度学术
    7. 陈华谱,黄春仁,何睿祺,戴明姝,张明真,李智渊,黄海,李广丽. 密斑刺鲀(Diodon hystrix)gnrh基因的克隆及表达分析. 海洋与湖沼. 2021(04): 994-1006 . 百度学术
    8. 刘倩倩,谭宇尘,姚宝辉,康宇坤,苏军虎. 基于转录组测序的高原鼢鼠多态性微卫星标记筛选. 草业科学. 2021(12): 2481-2489 . 百度学术

    其他类型引用(2)

图(2)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 10
出版历程
  • 收稿日期:  2021-07-23
  • 修回日期:  2021-12-23
  • 录用日期:  2022-01-20
  • 网络出版日期:  2022-02-15
  • 刊出日期:  2022-10-04

目录

/

返回文章
返回