水产养殖环境中抗生素抗性基因 (ARGs) 研究进展

李丹怡, 王许诺, 张广桔, 王增焕, 黄珂

李丹怡, 王许诺, 张广桔, 王增焕, 黄珂. 水产养殖环境中抗生素抗性基因 (ARGs) 研究进展[J]. 南方水产科学, 2022, 18(5): 166-176. DOI: 10.12131/20210207
引用本文: 李丹怡, 王许诺, 张广桔, 王增焕, 黄珂. 水产养殖环境中抗生素抗性基因 (ARGs) 研究进展[J]. 南方水产科学, 2022, 18(5): 166-176. DOI: 10.12131/20210207
LI Danyi, WANG Xunuo, ZHANG Guangju, WANG Zenghuan, HUANG Ke. Advances on antibiotic resistance genes (ARGs) in aquaculture environment[J]. South China Fisheries Science, 2022, 18(5): 166-176. DOI: 10.12131/20210207
Citation: LI Danyi, WANG Xunuo, ZHANG Guangju, WANG Zenghuan, HUANG Ke. Advances on antibiotic resistance genes (ARGs) in aquaculture environment[J]. South China Fisheries Science, 2022, 18(5): 166-176. DOI: 10.12131/20210207

水产养殖环境中抗生素抗性基因 (ARGs) 研究进展

基金项目: 海南省自然科学基金青年基金 (321QN0944);广东省渔业生态环境重点实验室开放基金(FEEL-2017-14)
详细信息
    作者简介:

    李丹怡  (1994—),女,研究实习员,硕士,从事渔业环境及水产品的监测与风险评估研究。E-mail: lidy27@mail2.sysu.edu.cn

    通讯作者:

    王许诺 (1983—),女,副研究员,硕士,从事渔业环境及水产品的监测与风险评估研究。E-mail: sanqianli-1983@163.com

  • 中图分类号: S 949

Advances on antibiotic resistance genes (ARGs) in aquaculture environment

  • 摘要: 抗生素对水产养殖业中水生生物疾病防治、生产线增产等发挥着重要作用,但长期滥用抗生素很可能会诱导水生生物体内产生携带抗生素抗性基因 (Antibiotic resistant genes, ARGs) 的耐药菌 (Antibiotic resistant bacteria, ARB)。ARGs在水产养殖环境中的持久性残留、迁移和传播,会埋下基因污染隐患,导致生态失衡并危害人类安全,如何遏制抗生素抗性的传播已引起全球重点关注。就水产养殖环境中ARGs的研究进展,系统总结了ARGs的污染现状及其在水产养殖环境中的来源、迁移传播和影响因素,并简述了ARGs与抗生素、微生物群落和环境因素之间的关联特性,以及抗生素、ARGs和ARB对生态环境与人类健康的影响。基于此,概述了ARGs的控制策略与去除技术,并提出了今后的研究方向,以期为水产养殖环境中ARGs污染机理的解析和抗生素抗性传播风险的控制提供科学参考。
    Abstract: Antibiotics play a significant role in the disease control of aquatic organisms and output increase of aquatic products. However, long-term abuse of antibiotics can result in the occurrence of antibiotic resistant bacteria (ARB) which harbor antibiotics resistance genes (ARGs) in aquatic organisms. The persistent existence, migration and spread of ARGs in aquaculture environment will potentially cause genetic pollution, destroy the ecological balance, and pose risks to human health. Therefore, how to constrain the spread of antibiotic resistance has attracted global attention. In terms of the research advancement of ARGs in aquaculture environment, this review systematically summarizes the status of ARGs pollution coupled with the source, migration and spread behavior of ARGs and their influencing factors, illustrates the correlations between ARGs and antibiotics, microbial communities and environmental factors, as well as discusses the effect of antibiotics, ARGs and ARB on ecological environment and human health. Thus, the paper reviews the management strategies and removal technologies of ARGs, and proposes the future research directions regarding ARGs, so as to provide references for revealing the pollution mechanism of ARGs and reducing the transmission risk of antibiotic resistance.
  • 密斑刺鲀 (Diodon hystrix),隶属鲀形目、二齿鲀科,主要分布于热带海域,栖息于潟湖和珊瑚礁,偏好捕食甲壳类等无脊椎动物[1-2]。尽管密斑刺鲀被认为含有河豚毒素[3],但其肉质鲜美,鱼皮富含胶原蛋白,在一些太平洋岛屿[4]以及中国海南南部地区常被食用。除此以外,密斑刺鲀也会被制成标本供私人和水族馆收集[4]。迄今密斑刺鲀仍未进入濒危动物红色名录[5],但其群体资源恢复力较低,并具有较高的灭绝风险,尽快开展对密斑刺鲀生物学及群体遗传学的研究,有利于该物种资源的保护和利用。

    简单重复序列 (Simple sequence repeat, SSR) 是真核生物基因组中1~6个任意核苷酸串联组成的高度重复序列[6],其长度分布存在一定的物种特征性[7]。在众多分子标记中,SSR具有无表型效应、不受环境限制和影响、在生物基因组内大量存在、分布均匀、稳定可靠,易于检测等优点,已经成为遗传多样性和亲缘关系研究的重要分子标记技术之一。但传统的SSR标记开发主要利用基因组文库杂交测序,耗时长、效率低,不适合在短时间内开发大量的标记用于遗传学研究。转录组测序 (Transcriptomic sequenceing,RNA-seq) 技术是分析基因型和表型之间关系的有力工具,转录组测序技术可用于快速比较基因表达水平、挖掘简单重复序列和单核苷酸多态性 (Single nucleotide polymorphisms, SNP) 位点等[8-9]

    目前,在鱼类中,已经有巨魾 (Bagarius yarrelli)[9]、黄姑鱼 (Nibea albiflora)[10]、黄颡鱼 (Pelteobagrus fulvidraco)[11]、翘嘴鳜 (Siniperca chuatsi) [12]、牙鲆 (Paralichthys olivaceus)[13]等完成了转录组测序及SSR位点开发工作,但是利用密斑刺鲀转录组数据开发SSR位点及信息分析的研究尚未见报道。本研究主要目的是揭示密斑刺鲀SSR位点在总RNA水平的分布规律和特性,并对SSR位点的多态性进行一定的预测和验证,以期为密斑刺鲀的遗传多样性和分子标记辅助育种研究提供基础数据。

    实验所用材料为南海特有物种密斑刺鲀,分别取脑、垂体、脾脏、肾脏、肝脏、肌肉、性腺 (精巢/卵巢) 组织,快速装入冻存管内,并投入液氮中速冻,防止RNA降解。不同组织RNA的提取方法参照Trizol法 (Invitrogen) 进行,提取的总RNA经1.0%的琼脂糖凝胶电泳快速检测RNA完整度,并采用Agilent 2100检测RNA浓度和片段长度,用qPCR检测文库的摩尔浓度,构建文库的插入长度为100~500 bp。

    转录组测序由深圳华大基因完成。测序使用HiSeqTM 2000测序平台对已构建的密斑刺鲀cDNA文库进行测序,过滤掉低质量的序列,共获得78.4 G的高质量数据,采用Trinity软件进行De novo混合组装后,进一步去冗余拼接和同源转录本聚类,最终获得221 762条Unigene序列,总长度为325 911 793 bp,N50值为2 240 nt,GC含量为46.20 %。

    利用MISA软件 (http://pgrc.ipk-gatersleben.de/misa/misa.html) 对221 762条Unigene进行SSR位点搜索,搜索程序为单碱基重复次数≥10,二碱基重复次数≥6,三、四、五、六碱基重复次数≥5,复合微卫星位点之间最大间隔碱基数为100 bp。用Primer 3 (Version 2.4.0) 软件[14]对SSR位点前后的序列进行引物设计,每个SSR位点生成3~5对引物作为备选。

    密斑刺鲀基因组DNA提取方法参考海洋动物组织基因组DNA提取试剂盒(天根生化科技有限公司, DP324-02)。PCR反应体系为20 μL,上下游引物 (10 μmol·L−1) 各0.5 μL,DNA模板1 μL,预混合taq酶及缓冲液10 μL,加 ddH2O补至20 μL。PCR扩增程序为 94 ℃预变性5 min;然后进行20个循环,每个循环包括94 ℃变性30 s、55~60 ℃退火30 s、72 ℃延伸30 s,循环结束后,72 ℃延伸1 min。PCR扩增产物使用8%~10%非变性聚丙烯酰胺凝胶电泳分离条带,简化银染后拍照并记录条带。

    使用GelAnalyzer软件 (Version 2010a) 对PAGE凝胶图进行条带读取,并采用人工校正的方式,对每个SSR位点扩增的等位基因条带,从小到大依次标记为A、B、C等,确定每个样品各位点的基因型,建立原始数据矩阵。用PopGene (Version 1.32) 软件统计SSR位点的等位基因数 (Na)、有效等位基因数 (Ne)、观察杂合度 (Ho)、期望杂合度 (He)、等位基因频率等,并根据每个SSR位点的等位基因频率计算多态信息含量 (PIC) [15]

    利用MISA软件对密斑刺鲀转录组中221 762条Unigene序列进行搜索,共在62 451条Unigene中找到106 221个符合条件的SSR位点,发生频率 (含有SSR的Unigene数目/总Unigene数目) 为28.16%,其中有10 791个SSR位点为复合型,占总SSR位点的10.16%。SSR位点的覆盖度 (SSR位点数/总Unigene数目) 为47.89%,其中38 808条Unigene序列仅包含单个SSR位点,占比为62.14%,此外有23 643条Unigene序列包含超过1个SSR位点,占比为37.86%。

    搜索到的全部SSR位点共有403种类型的碱基组合,其中四碱基重复单元的种类最多 (161种),其次为五碱基重复单元 (109种),再次为三碱基和六碱基重复单元 (分别为60和57种)。6种重复单元类型的SSR位点数量存在明显的差异,单碱基重复单元的SSR位点数量最多 (54 792个),占所有SSR位点数量的51.58%,分布在39 584条Unigene上,发生频率为48.99%,而六碱基重复单元的SSR位点数最少 (仅99个),占比为0.09%,分布在97条Unigene上,发生频率为0.12%。不同类型重复单元的平均距离存在差异,其中单碱基和三碱基重复单元的平均距离差异最大 (分别为2 297和3 029 bp,表1)。

    表  1  不同重复单元类型在密斑刺鲀转录组中出现的频率
    Table  1.  Occurrence frequency of different types of repeat units of SSR in transcriptomic sequenceing of D. hystrix
    重复单元类型
    Repeat unit type
    种类
    Species
    位点数量
    Amount of SSR loci
    比例
    Proportion/%
    对应Unigene条数
    Number of mapped Unigene
    发生频率
    Occurrence frequency/%
    总长度
    Total length/bp
    平均距离
    Mean distance/bp
    单碱基 Mono- 4 54 792 51.58 39 584 48.99 125 847 288 2 297
    双碱基 Di- 12 34 265 32.26 26 311 32.57 79 627 971 2 324
    三碱基 Tri- 60 14 021 13.20 11 891 14.72 42 469 753 3 029
    四碱基 Tetra- 161 2 770 2.61 2 643 3.27 7 675 362 2 771
    五碱基 Penta- 109 274 0.26 268 0.33 793 062 2 894
    六碱基 Hexa- 57 99 0.09 97 0.12 243 311 2 458
    合计 Total 403 106 221 100.00 256 656 747
    下载: 导出CSV 
    | 显示表格

    SSR位点重复次数差异是导致SSR位点长度变化的主要原因,也是产生SSR多态性的重要因素。密斑刺鲀SSR位点重复次数分布不均匀,按照分布趋势大致可分为3个区间 (图1),5次重复单独分为第一区间,主要由三和四碱基重复为主,共有8 680个SSR位点,占总位点数的8.17%;6~9次重复为第二区间,主要由二、三和四碱基重复为主,共有28 157个SSR位点,占比为26.51%;第三区间为10次及以上重复,主要由单和二碱基重复为主,其中单碱基重复占主导,共有69 384个SSR位点,占比为65.32%。

    图  1  重复次数与简单重复序列位点数量的关系
    Figure  1.  Relationship between number of repetitions and amount of SSR

    在密斑刺鲀SSR序列的403种重复单元中,单碱基重复单元以(A/T)n为主,其SSR位点数为49 085,占总SSR位点数的46.21%;二碱基重复单元以 (AC/GT)n为主,其SSR位点数为23 267,占总SSR位点数的21.90%,在二碱基重复单元中占比为67.90%;三碱基重复单元以 (AGG/CCT)n、(AAT/ATT)n和(AGC/CTG)n为主,分别占三碱基SSR总数的20.46%、17.81%和16.43%;四、五和六碱基重复单元分别以(ATCC/ATGG)n、(AAGAT/ATCTT)n和 (AACCCT/AGGGTT)n为主,其SSR位点数及其在相应重复单元类型中的占比分别为955 (34.48%)、46 (16.79%)和22 (22.22%,图2)。

    图  2  重复单元与简单重复序列位点数的关系
    Figure  2.  Relationship between repeat units and amount of SSRs

    统计密斑刺鲀全部SSR位点的序列长度发现,SSR序列长度分布介于10~180 bp,且分布是不连续的,有97 216个SSR位点的序列长度集中在10~24 bp,占全部SSR位点的91.52%,其中序列长度为17和19的SSR位点数量相对较低,分别为1 306和696个 (图3)。序列长度大于等于20 bp的SSR被认为是具有高度多态性的Ⅰ型SSR (Class Ⅰ),Ⅱ型SSR (Class II) 变异性相对较小,序列长度介于12~20 bp[16]。在密斑刺鲀SSR序列长度分布中可以看到 (图3),Ⅰ型SSR的位点有24 373个,占全部SSR位点的22.95%,包含6种类型的重复单元,其中二碱基重复单元的SSR位点为13 510个,占Ⅰ型SSR位点总数的55.43%,其次为单碱基和三碱基重复单元,SSR位点分别为3 893 (15.97%) 和3827 (15.70%),四碱基重复单元的SSR位点为2 770个,占比为11.37%;Ⅱ型SSR的位点数量为36 354个,占全部SSR位点的34.22%,重复单元类型相对简单,仅包含单、二和三碱基重复单元类型,其SSR位点数分别为15 199 (41.81%)、10 961 (30.15%) 和10 194 (28.04%)。

    图  3  简单重复序列长度分布
    A. 简单重复序列长度与位点数量关系图;B. ClassⅠ型重复单元的组成;C. ClassⅡ型重复单元的组成
    Figure  3.  Distribution of sequence length of SSR
    A. Relationship between SSR length and amount of SSR loci; B. Composition of repeat unit in Class I; C. Composition of repeat unit in Class II

    当SSR长度在20 bp及以上时,该位点在不同品种间表现出较高的多态性[17]。选取SSR长度大于等于20 bp的位点,利用Primer 3软件获得17 563个SSR位点的引物,随机挑选了160个位点的引物进行PCR验证,筛选到95对有效扩增引物 (占比59.38%),利用30条密斑刺鲀对这95对引物进行多态性验证,筛选到30个SSR位点的引物表现出稳定、可重复的多态性 (图4),占有效扩增引物的32.63%。具有多态性的30个SSR位点的重复单元长度介于20~50 bp,平均长度为30.63 bp,其中有21个SSR位点是二碱基重复单元 (占比70%),基本都是(AC/GT)n (表2)。

    图  4  部分简单重复序列位点的验证结果及分析
    Marker. DL 1000 (TaKaRa, 3591A);1—30. 30条密斑刺鲀;A、B、C、……. 字母标记的条带;▪▪. 该样本无法读取条带
    Figure  4.  Validation and analysis of some SSR loci
    1–30. 30 D. hystrix samples; A, B, C,.... Alphabetic markers of these bands; ▪▪. The band of sample could not be read.
    表  2  密斑刺鲀30个简单重复序列位点的引物信息
    Table  2.  Primer information of 30 SSR loci in D. hystrix
    位点编号
    Locus No.
    前向引物 (5'−3')
    Forward primer
    反向引物 (5'−3')
    Reverse primer
    重复单元
    Repeat unit
    重复单元长度
    Size of repeat motif/bp
    44 GCCTCTGTATAGGGAAGGAGATT CAAAAACAGAACAGCTGAGAACA (T)20 20
    53 TCAAAACCAATTTTTAAACCCTT AAGCAAGTCTCACACTACAGGAGTT (TG)20 40
    63 CTGCGTAGGTAAACAAAGAAATGA CTTGAAAAATGTTTGGGCTGTTA (GA)25 50
    104 CCTTGCTCAAGAATACCGTTTTA CAGATTCCCTTTTCAAAATGTGT (A)27 27
    112 GAGTTAGTAATGTGGTAAACGAGTGA GCCAACTAACGGACTAACTCATC (AGTT)11 44
    138 TACCCAGAAAGCTGGTTTCATAA GGACTGTTAAAACTGCGTGAAAC (GT)22 44
    141 AAGGAAATCAGTACCCAGAAAGC GGACTGTTAAAACTGCGTGAAAC (GT)13 26
    176 GTCCCAAAGCTTTTCACTAATCA GATAGGTTGTGTCATTGAGGCTT (TG)14 28
    206 TTCAGATGACACTTCTGCTTCAA TAGGATCACATATCAATCGCACA (GT)12 24
    207 ACAAACACAAAAACACAACCTGC AAGCAGGAAATCAATCAGAAACA (CA)10 20
    216 ACAGATGTCTGCAGTTGAGGTTC TTCAAAGATCAGCAGTGACCTG (TG)17 34
    239 TCTGATGGTTCAGGTTAGGGTAA TATGTGCACCTGCTAGAACTGAA (GT)11 22
    425 CTACTGGTACTGATCACCGCAAT TTACATATCTGACCGCTTCAACC (TG)21 42
    522 CGGCTTTCTTGTTGTTGTTTTT GCTGTGAATTGTTTGGAATTGTT (AC)13 26
    524 ACTGCAGTCCTACTGCCAAATAC GTCTCTCTCTGTTTCCCACACTC (GT)16 32
    526 CAAATTAGTTGGTGAAAAAGAGCA TTTGATCACTTCCTTGACATTCAT (TTA)10 30
    528 AGTCGCTTCCACTCTGAGCTAC TTTTCCTGCTCAATTCAGTTTGT (GTG)7 21
    533 TATTTGGGTTCAAGTGATTCTGG TCAGCATGAAGGAATAAAAGGAA (CA)12 24
    586 TCAGGGAGATAAATGACCTGTGT AAGCAGGAGGTATTGTCAAAAGA (CA)13 26
    622 CTTATGTCAGCCTCCAGTGTCTT CCTGGACTCTCTCACTCTCACTC (CAGA)6 24
    646 TTCCAAAGTAAGATGGGTCAAGA AGCAGACTCTTCTGCAAAACAAC (AC)12 24
    674 CAGTACCTGACTTTGGACTTGCT GGAGTGTTGATAATCCAGTCAGC (TC)10 20
    703 GTGAGCAGTTATCAGGTCCAGTC GAGTCACAGATTGACATGTTGGA (GT)10 20
    717 GTTCCATTGCTCCTCTCAGATTA TGAGACAGTACATTAAAAGCCCC (ATT)13 39
    727 TTCACAGCACATCTGCAAAATAG GATTCTAATGTCACTGTGGAGGC (GT)12 24
    A4 TTCCTTCACCACCTCACACA CGTGAACAGTGTTGGCTGAT (CA)21 42
    A6 TTTTGGCCTTTCATTAACGC GTGGACTCAGATTCCTCCCA (GT)21 42
    A9 CAGCAACAACTACGCCAAAA TTTCCTCAAATGGTTCCTGC (TAT)14 42
    S20 GAGCTGGAGGACTTGTCTGG TGAGGGATGCTCTCCATACC (GATG)5 20
    S42 ACGGTGTACTAGGCACGGAG GACCTGTGGGATAATGGTGG (AC)21 42
    下载: 导出CSV 
    | 显示表格

    30对引物共检测到119个等位基因,平均每对引物能检测到约4个等位基因,等位基因频率变化介于0.016 6~0.866 7;观察杂合度介于0.200~0.900,平均值为0.479;期望杂合度介于0.235~0.788,平均值为0.555;香农多样性指数介于0.393~1.664,平均值为0.994,该群体生物多样性较高;多态信息含量介于0.204~0.742,平均值为0.489,包含15个高多态位点 (PIC>0.5),14个中度多态位点 (0.25<PIC<0.5) 和1个低多态位点 (PIC<0.25) [16],这进一步说明该群体属于中度多态性 (表3)。此外,30个SSR位点中有8个位点 (104、206、522、528、646、703、717和S42) 偏离哈迪-温伯格平衡 (卡方检验概率均小于0.05),其中有3个位点 (104、206和S42) 属于高多态性位点 (PIC>0.5,表3)。

    表  3  30对简单重复序列引物在密斑刺鲀群体中的遗传多样性参数
    Table  3.  Genetic diversity parameters of 30 SSR primers in D. hystrix population
    位点编号
    Locus No.
    卡方检验HW平衡概率
    Probability of chi-square test for Hardy-Weinberg equilibrium
    等位基因数
    Number of alleles
    有效等位
    基因数 (Ne)
    Number of effective alleles
    观察杂合度 (Ho)
    Obsered heterozygosity
    期望杂合度 (He)
    Expected heterozygosity
    Shannon指数 (I)
    Shannon's information index
    多态信息指数 (PIC)
    Polymorphic information index
    44 0.386 2 1.301 0.200 0.235 0.393 0.204
    53 0.099 3 2.264 0.379 0.568 0.921 0.480
    63 0.971 6 3.641 0.759 0.738 1.481 0.681
    104 0.000** 5 2.748 0.433 0.647 1.168 0.571
    112 0.608 4 3.190 0.630 0.700 1.212 0.622
    138 0.401 6 3.696 0.600 0.742 1.439 0.682
    141 0.631 6 2.889 0.633 0.665 1.330 0.616
    176 0.961 4 1.826 0.414 0.460 0.826 0.404
    206 0.013* 4 2.490 0.533 0.609 1.019 0.515
    207 0.454 3 2.711 0.567 0.642 1.044 0.556
    216 0.098 3 1.824 0.300 0.459 0.731 0.376
    239 0.570 4 3.204 0.690 0.700 1.255 0.633
    425 0.368 6 3.350 0.571 0.714 1.431 0.662
    522 0.006** 4 1.657 0.310 0.404 0.768 0.364
    524 0.262 5 3.811 0.640 0.753 1.448 0.694
    526 0.915 4 1.536 0.310 0.355 0.680 0.321
    528 0.016* 3 1.744 0.400 0.434 0.765 0.388
    533 0.725 2 1.514 0.367 0.345 0.523 0.282
    586 0.413 2 1.998 0.433 0.508 0.693 0.375
    622 0.280 5 3.093 0.667 0.688 1.298 0.619
    646 0.033* 3 1.612 0.250 0.386 0.685 0.343
    674 0.951 7 4.434 0.900 0.788 1.664 0.742
    703 0.004** 4 1.761 0.286 0.443 0.861 0.406
    717 0.041* 3 1.597 0.207 0.381 0.615 0.316
    727 0.126 4 3.010 0.567 0.679 1.150 0.598
    A4 0.257 2 1.622 0.310 0.390 0.572 0.310
    A6 0.159 3 1.852 0.367 0.468 0.802 0.410
    A9 0.786 4 2.789 0.724 0.653 1.105 0.568
    S20 0.917 3 1.822 0.448 0.459 0.700 0.364
    S42 0.001** 5 2.679 0.467 0.637 1.232 0.582
    平均 avg. 3.967 2.456 0.479 0.555 0.994 0.489
    注:**. 哈迪-温伯格平衡卡方检验P<0.01;*. 哈迪-温伯格平衡卡方检验P<0.05;下表同此 Note: **. Chi-square test for Hardy-Weinberg equilibrium (P<0.01); *. Chi-square test for Hardy-Weinberg equilibrium (P<0.05); the same case in the following table
    下载: 导出CSV 
    | 显示表格

    高通量RNA-seq测序技术能够提供大量的基于细胞水平应答的功能基因数据[17],这为分析差异基因表达、突变剪接、SSR、SNP以及遗传功能等提供了可能的途径[18]。基于转录组的SSR分子标记广泛应用于无参考基因组的非模式生物中[19],既可避免基因组测序周期长、成本高的缺点,也能够弥补EST-SSR的低数据量问题;同时,基于转录组的SSR分子标记还具有基因内SSR (Genic-SSR) 的优点[20]。随着高通量测序技术的发展,从转录组数据中筛选SSR和SNP多态性位点已经成为开发分子标记的高效手段之一。目前还没有密斑刺鲀及其相近种的基因组序列,Genbank数据库中对该物种的EST序列收录也极为稀少。通过对密斑刺鲀转录组测序数据的分析,共获得106 221个SSR位点,发生频率为28.16%,SSR位点丰度适中,与牙鲆 (27.12%)、翘嘴鳜 (27.51%) 和黄姑鱼 (27.39%) 的发生频率较为接近[10, 12-13],但高于双须骨舌鱼 (6.32%) [21],远低于曼氏无针乌贼 (39.68%) [22]和罗氏沼虾 (38.65%) [23]。由此可见,基于不同物种转录组的SSR位点的发生频率不同,这可能主要与物种差异、SSR位点挖掘工具及搜索条件相关。

    在鱼类SSR的二碱基重复单元中,(AC/GT)n型重复单元往往占多数,而(CG/CG)n型重复单元的位点却很少[21, 24-25]。研究中共筛选到19 906个SSR序列长度大于等于20 bp的Ⅰ型SSR位点 (不包含复合型SSR),占全部SSR位点的18.74%,其中二碱基重复单元型SSR位点为10 545个 (52.97%),单和三碱基重复单元型SSR位点分别为3 424 (17.20%) 和3 207个 (16.11%)。在二碱基重复单元中,(AC/GT)n所占比例最高,为筛选到的Ⅰ型SSR位点的43.2%,而(GC/CG)n型重复单元几乎为零,这与东方红鳍鲀[24]、双须骨舌鱼[21]、翘嘴鳜[12]、牙鲆[13]、草鱼[26-27]等发现的结果较为一致。值得注意的是,本研究验证实验中筛选到的30个具有多态性的SSR位点中,有16个是(AC/GT) n型重复单元 (表3),这提示从(AC/GT) n型重复单元中筛选具有多态性SSR位点的概率更高。

    研究表明在群体中有效等位基因数越接近测得的等位基因数,就表明该群体的等位基因分布越均匀[28]。但是在实际检验过程中,往往将检测到的条带全部作为主效等位基因进行分析,无效等位基因过剩导致等位基因分布不均[29]。对研究中获得的30个SSR多态性位点进行分析,发现仅有7个位点 (53、112、207、239、533、586、A4) 的等位基因数和有效等位基因数较为接近,其他位点均相差较大,这说明所检测到的SSR多态性位点绝大多数表现为等位基因分布不均匀,这可能和读取银染条带的精准度有关,但也有可能是样本容量不够,导致主效等位基因的缺失。

    然而,不同的遗传参数在评估群体遗传多样性时所需的样本容量是不同的。有研究表明用期望杂合度 (He)、Shannon多样性指数 (I)、多态信息含量 (PIC) 等来衡量群体多样性时,样本容量达到27就可以使被评估的样本多样性接近群体总体遗传多样性水平的95%;如果用等位基因数来衡量时,只有当样本容量达到52时,该样本的遗传多样性水平才能接近群体总体水平的95%[30]。用于筛选多态性SSR位点的密斑刺鲀群体的样本容量为30,选用HeI和PIC等遗传参数可能能更好的评估所筛选的SSR位点的多态性。30对引物所表现的平均观察杂合度 (0.479)、平均期望杂合度 (0.555)、平均香农多样性指数 (0.994) 和平均多态信息含量 (0.489) 均说明该群体属于中度多态性 (表3)。PIC是度量等位基因多态性的一个理想指标,该值越接近1,就表明该群体杂合个体的比例越大,多态性越高[15]。研究中筛选到的30个多态性SSR位点,至少有15个位点为高多态性位点 (PIC>0.5),其中有8个位点 (63、104、138、425、524、622、674和S42) 表现出较高的PIC (>0.5) 和较多的等位基因数 (≥5),说明这些位点的遗传变异高,有较大的选择余地,可以利用该位点进行与生产性状相关的标记辅助选择。

    哈迪-温伯格平衡 (Hardy-Weinberg equilibrium, HWE) 检验可以反映出群体在随机交配过程中亲本和子代基因频率及基因型频率是否保持平衡[31]。群体容量不够、杂合子过剩或缺失、基因突变或选择、外源基因导入等均有可能引起这种偏离现象,而来自同一个随机交配群体的样本只能以很小的概率偏离HWE[32]。30个多态性SSR位点中有8个位点 (104、206、522、528、646、703、717和S42) 是显著偏离哈迪-温伯格平衡的 (P<0.05),其中有3个位点 (104、206和S42) 属于高多态性位点 (PIC>0.5)。由于所开发的SSR位点来自于雌雄转录组数据,因此,将30条密斑刺鲀按照雌雄分为两组,雄性组和雌性组的个体分别为13和17个,通过重新进行卡方检验哈迪-温伯格平衡,发现除了646号位点外,104和S42号位点在雄性群体中很好的服从了哈迪-温伯格平衡 (P>0.05),而206、522、528、703和717号在雌性群体中服从哈迪-温伯格平衡 (P>0.05),该结果暗示8个偏离哈迪-温伯格平衡的SSR位点可能与性别相关 (表4)。需要说明的是,实验中所选择的雌雄群体的样本容量相对较小,导致实验结果可能存在一定的偏差,为了检验该结果,需要在今后的实验中扩大样本容量。

    表  4  8个简单重复序列位点在雌雄群体中的哈迪-温伯格平衡卡方检验概率及Uniprot数据库注释结果
    Table  4.  Probability of chi-square test for hardy-weinberg equilibrium for eight SSR loci in male and female populations and annotations by uniprot database
    位点编号
    Locus No.
    卡方检验HW平衡概率
    Probability of chi-square test for Hardy-Weinberg equilibrium
    Uniprot数据库注释
    Annotation by Uniprot database
    来源
    Organism source
    E值
    E-value
    雄 Male (n=13)雌 Female (n=17)
    104 0.429 0.000** Lysosome-associated membrane glycoprotein 2 Gallus gallus 1.60E-62
    206 0.000** 0.064 Sodium-coupled neutral amino acid transporter 4 Pongo abelii 2.10E-174
    522 0.000** 0.088 NA NA NA
    528 0.000** 0.812 SRSF protein kinase 3 Mus musculus 4.20E-102
    646 0.381 0.069 Voltage-dependent L-type calcium channel subunit alpha-1D Mus musculus 1.80E-84
    703 0.024* 0.984 Protein Mpv17 Danio rerio 8.80E-86
    717 0.023* 0.252 Small ubiquitin-related modifier 3-like Danio rerio 9.80E-47
    S42 0.568 0.008** Wilms tumor protein Sminthopsis macroura 5.80E-93
    注:NA. 无注释结果 Note: NA. Unannotated result
    下载: 导出CSV 
    | 显示表格

    本研究首次通过密斑刺鲀转录组数据获得大量的SSR位点,并且对密斑刺鲀SSR的分布规律和特性进行了分析归纳,同时还利用密斑刺鲀群体随机筛选出30对稳定的多态性SSR位点,其中有15个位点表现出较高的多态性,这些结果为密斑刺鲀的基因克隆、遗传结构分析、超高密度遗传连锁图谱构建、QTL定位及其他遗传学研究奠定了一定的基础。

  • 图  1   水产环境中ARGs的来源、迁移与传播

    Figure  1.   Source, migration and spread behavior of ARGs in aquaculture environment

    图  2   水产养殖环境中ARGs与抗生素、微生物群落和环境因素之间的关联特性

    Figure  2.   Correlations between ARGs and antibiotics, microbial communities and environmental factors in aquaculture environment

    表  1   现有技术对ARGs的去除效果

    Table  1   Reduction efficiency of ARGs by existing technologies

    去除技术
    Removal technology
    去除原理
    Removal principle
    去除效果
    Reduction efficiency
    参考文献
    Reference
    添加大孔吸附树脂
    Adding macroporous adsorption resin (MAR)
    MAR是一种多孔交联聚合物,能够降低ARGs和微生物群落的丰度,并且通过吸附重金属以降低其对ARGs的协同效应和选择压力。 ARGs (14.14%~99.44%)和MGEs (47.83%~99.48%)的丰度显著降低。 [101]
    UV/氯消毒
    UV/chlorine
    UV/氯协同作用可以有效灭活ARB、打破ARGs结构并抑制其水平转移。 UV (320 mJ·cm−2)/氯(2 mg·L−1)协同作用下,ARGs的去除率增强了1~1.5 log。 [102]
    臭氧后处理
    Ozone post-treatment
    臭氧具有高氧化电位 (2.07 V),可以有效去除ARGs和ARB。 胞内ARGs (iARGs)的去除率达到89%。 [103]
    高铁酸盐
    Ferrate
    高铁酸盐作为一种高价铁基氧化剂,其强氧化电位能够直接去除ARGs,且具备较强的杀菌效能,能够灭活携带ARGs的细菌,从而抑制其垂直转移。 高铁酸盐的剂量为10 mg-Fe·L−1时,ARGs的去除率达到1.10~4.37 log。 [104]
    生物过滤
    Biofiltration
    水体中的微生物会附着在过滤介质 (石英砂、颗粒活性炭和无烟煤等) 表面并形成生物膜。 ARGs平均丰度降低了0.97 log。 [105]
    污泥处理湿地
    Sludge treatment wetlands (STWs)
    STWs法是传统沙干化床和垂直流人工湿地的联合技术,剩余污泥进入湿地后会形成不同污泥层,而植物在其中生长,有利于稳定污泥、减少污泥体积并去除ARGs等污染物。 磺胺类ARGs的丰度降低了21%。 [106]
    下载: 导出CSV
  • [1]

    FANG H, HUANG K L, YU J N, et al. Metagenomic analysis of bacterial communities and antibiotic resistance genes in the Eriocheir sinensis freshwater aquaculture environment[J]. Chemosphere, 2019, 224: 202-211. doi: 10.1016/j.chemosphere.2019.02.068

    [2]

    QIAN Z Z, LUO D L, LUO F F, et al. Determination of peptide antibiotics residues in sediment from aquaculture environment by high performance liquid chromatography-tandem mass spectrometry[J]. Chin J Anal Chem, 2016, 6: 870-875.

    [3]

    BRUNTON L A, DESBOIS A P, GARZA M, et al. Identifying hotspots for antibiotic resistance emergence and selection, and elucidating pathways to human exposure: application of a systems-thinking approach to aquaculture systems[J]. Sci Total Environ, 2019, 687: 1344-1356. doi: 10.1016/j.scitotenv.2019.06.134

    [4] 罗义, 周启星. 抗生素抗性基因(ARGs)——一种新型环境污染物[J]. 环境科学学报, 2008, 28(8): 1499-1505. doi: 10.3321/j.issn:0253-2468.2008.08.002
    [5]

    KUMAR M, RAM B, HONDA R, et al. Concurrence of antibiotic resistant bacteria (ARB), viruses, pharmaceuticals and personal care products (PPCPs) in ambient waters of Guwahati, India: urban vulnerability and resilience perspective[J]. Sci Total Environ, 2019, 693: 133640. doi: 10.1016/j.scitotenv.2019.133640

    [6]

    EBELE A J, ABOU-ELWAFA ABDALLAH M, HARRAD S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment[J]. Emerg Contam, 2017, 3(1): 1-16. doi: 10.1016/j.emcon.2016.12.004

    [7]

    MO W Y, CHEN Z T, LEUNG H M, et al. Application of veterinary antibiotics in China's aquaculture industry and their potential human health risks[J]. Environ Sci Pollut Res, 2017, 24: 8978-8989. doi: 10.1007/s11356-015-5607-z

    [8]

    YANG J F, YING G G, ZHAO J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China[J]. J Environ Sci Health B, 2011, 46(3): 272-280. doi: 10.1080/03601234.2011.540540

    [9]

    SUN Q, LI Y, LI M Y, et al. PPCPs in Jiulong River estuary (China): spatiotemporal distributions, fate, and their use as chemical markers of wastewater[J]. Chemosphere, 2016, 150: 596-604. doi: 10.1016/j.chemosphere.2016.02.036

    [10] 武旭跃, 邹华, 朱荣, 等. 太湖贡湖湾水域抗生素污染特征分析与生态风险评价[J]. 环境科学, 2016, 37(12): 4596-4604.
    [11]

    ZHANG M, CAI Z X, ZHANG G F, et al. Effectively reducing antibiotic contamination and resistance in fishery by efficient gastrointestine-blood delivering dietary millispheres[J]. J Hazard Mater, 2021, 409: 125012. doi: 10.1016/j.jhazmat.2020.125012

    [12]

    ZHAO H, ZHOU J L, ZHANG J. Tidal impact on the dynamic behavior of dissolved pharmaceuticals in the Yangtze Estuary, China[J]. Sci Total Environ, 2015, 536: 946-954. doi: 10.1016/j.scitotenv.2015.06.055

    [13]

    YANG Y, QIU W Q, LI Y X, et al. Antibiotic residues in poultry food in Fujian Province of China[J]. Food Addit Contam B, 2020, 13(3): 177-184. doi: 10.1080/19393210.2020.1751309

    [14]

    XU T W. Contemporary global health security and China's strategy[J]. J Int Stud, 2017, 38(3): 9-37.

    [15]

    PRUDEN A, PEI R, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants:   studies in Northern Colorado[J]. Environ Sci Technol, 2006, 40(23): 7445-7450. doi: 10.1021/es060413l

    [16]

    MIRANDA C D, GODOY F A, LEE M R. Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms[J]. Front Microbiol, 2018, 9: 1284. doi: 10.3389/fmicb.2018.01284

    [17]

    GAO P P, MAO D Q, LUO Y, et al. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment[J]. Water Res, 2012, 46(7): 2355-2364. doi: 10.1016/j.watres.2012.02.004

    [18]

    PEREIRA A M P T, SILVA L J G, MEISEL L M, et al. Fluoroquinolones and tetracycline antibiotics in a Portuguese aquaculture system and aquatic surroundings: occurrence and environmental impact[J]. J Toxicol Env Heal A, 2015, 78(15): 959-975. doi: 10.1080/15287394.2015.1036185

    [19]

    CESARE A D, LUNA G M, VIGNAROLI C, et al. Aquaculture can promote the presence and spread of antibiotic-resistant Enterococci in marine sediments[J]. PLOS ONE, 2013, 8(4): e62838. doi: 10.1371/journal.pone.0062838

    [20]

    SU H C, HU X J, WANG L L, et al. Contamination of antibiotic resistance genes (ARGs) in a typical marine aquaculture farm: source tracking of ARGs in reared aquatic organisms[J]. J Environ Sci Heal B, 2020, 55(3): 220-229. doi: 10.1080/03601234.2019.1684747

    [21]

    LIU X, WANG H, ZHAO H M. Propagation of antibiotic resistance genes in an industrial recirculating aquaculture system located at northern China[J]. Environ Pollut, 2020, 261: 114155. doi: 10.1016/j.envpol.2020.114155

    [22]

    SU H C, LIU S, HU X J, et al. Occurrence and temporal variation of antibiotic resistance genes (ARGs) in shrimp aquaculture: ARGs dissemination from farming source to reared organisms[J]. Sci Total Environ, 2017, 607-608: 357-366. doi: 10.1016/j.scitotenv.2017.07.040

    [23]

    D'COSTA V M, KING C E, KALAN L, et al. Antibiotic resistance is ancient.[J]. Nature, 2011, 477: 457-461. doi: 10.1038/nature10388

    [24] 苏建强, 黄福义, 朱永官. 环境抗生素抗性基因研究进展[J]. 生物多样性, 2013, 21(4): 481-487.
    [25] 张骞月, 赵婉婉, 吴伟. 水产养殖环境中抗生素抗性基因污染及其研究进展[J]. 中国农业科技导报, 2015, 17(6): 125-134.
    [26]

    SUCHLAND R J, SANDOZ K M, JEFFREY B M, et al. Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro[J]. Antimicrob Agents Chem, 2009, 53(11): 4604-4611. doi: 10.1128/AAC.00477-09

    [27]

    TONG J, TANG A P, WANG H Y, et al. Microbial community evolution and fate of antibiotic resistance genes along six different full-scale municipal wastewater treatment processes[J]. Bioresour Technol, 2019, 272: 489-500. doi: 10.1016/j.biortech.2018.10.079

    [28]

    HE Y, YUAN Q B, MATHIEU J, et al. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment[J]. NPJ Clean Water, 2020, 3: 4. doi: 10.1038/s41545-020-0051-0

    [29]

    SINGER A C, HELEN S, VICKI R, et al. Review of antimicrobial resistance in the environment and its relevance to environmental regulators[J]. Front Microbiol, 2016, 7: 1728.

    [30]

    CHEN H, LIU S, XU X R, et al. Tissue distribution, bioaccumulation characteristics and health risk of antibiotics in cultured fish from a typical aquaculture area[J]. J Mater Sci, 2018, 343: 140-148.

    [31]

    PETCHIAPPAN A, CHATTERJI D. Antibiotic resistance: current perspectives[J]. ACS Omega, 2017, 2(10): 7400-7409. doi: 10.1021/acsomega.7b01368

    [32]

    NOMAN E, AL-GHEETHI A, RADIN MOHAMED R M S, et al. Quantitative microbiological risk assessment of complex microbial community in prawn farm wastewater and applicability of nanoparticles and probiotics for eliminating of antibiotic-resistant bacteria[J]. J Hazard Mater, 2021, 419: 126418. doi: 10.1016/j.jhazmat.2021.126418

    [33]

    PRUDEN A. Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance[J]. Environ Sci Technol, 2014, 48(1): 5-14. doi: 10.1021/es403883p

    [34]

    GAO P, MUNIR M, XAGORARAKI I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant[J]. Sci Total Environ, 2012, 421/422: 173-183. doi: 10.1016/j.scitotenv.2012.01.061

    [35]

    TELLO A, TELFER A T C. Selective pressure of antibiotic pollution on bacteria of importance to public health[J]. Environ Health Perspect, 2012, 120(8): 1100-1106. doi: 10.1289/ehp.1104650

    [36]

    GILLINGS M R, GAZE W H, PRUDEN A, et al. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution[J]. ISME J, 2015, 9(6): 1269-1279. doi: 10.1038/ismej.2014.226

    [37]

    HARNISZ M, KORZENIEWSKA E, GOLAS I. The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water[J]. Chemosphere, 2015, 128: 134-141. doi: 10.1016/j.chemosphere.2015.01.035

    [38]

    ZAINAB S M, JUNAID M, XU N, et al. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: a global review on dissemination, sources, interactions, environmental and human health risks[J]. Water Res, 2020, 187: 116455. doi: 10.1016/j.watres.2020.116455

    [39]

    AKINBOWALE O L, PENG H, BARTON M D. Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia[J]. J Appl Microbiol, 2010, 103(5): 2016-2025.

    [40]

    LIANG X M, GUAN F L, CHEN B W, et al. Spatial and seasonal variations of antibiotic resistance genes and antibiotics in the surface waters of Poyang Lake in China[J]. Ecotox Environ Safe, 2020, 196: 110543. doi: 10.1016/j.ecoenv.2020.110543

    [41]

    HE L Y, LIU Y S, SU H C, et al. Dissemination of antibiotic resistance genes in representative broiler feedlots environments: identification of indicator ARGs and correlations with environmental variables[J]. Environ Sci Technol, 2014, 48: 13120-13129. doi: 10.1021/es5041267

    [42]

    FANG H S, ZHANG Q, NIE X P, et al. Occurrence and elimination of antibiotic resistance genes in a long-term operation integrated surface flow constructed wetland[J]. Chemosphere, 2017, 173: 99-106. doi: 10.1016/j.chemosphere.2017.01.027

    [43]

    WU J J, SU Y L, DENG Y Q, et al. Prevalence and distribution of antibiotic resistance in marine fish farming areas in Hainan, China[J]. Sci Total Environ, 2019, 653: 605-611. doi: 10.1016/j.scitotenv.2018.10.251

    [44]

    SU H C, HU X J, XU Y, et al. Persistence and spatial variation of antibiotic resistance genes and bacterial populations change in reared shrimp in South China[J]. Environ Int, 2018, 119: 327-333. doi: 10.1016/j.envint.2018.07.007

    [45]

    JIA S Y, ZHANG X X, MIAO Y, et al. Fate of antibiotic resistance genes and their associations with bacterial community in livestock breeding wastewater and its receiving river water[J]. Water Res, 2017, 124: 259-268. doi: 10.1016/j.watres.2017.07.061

    [46]

    ZHOU M, XU Y B, OU Y, et al. Evolution and distribution of resistance genes and bacterial community in water and biofilm of a simulated fish-duck integrated pond with stress[J]. Chemosphere, 2020, 245: 125549. doi: 10.1016/j.chemosphere.2019.125549

    [47]

    HE X L, XU Y B, CHEN J L, et al. Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals[J]. Water Res, 2017, 124: 39-48. doi: 10.1016/j.watres.2017.07.048

    [48]

    WANG Q, LIU L, HOU Z L, et al. Heavy metal copper accelerates the conjugative transfer of antibiotic resistance genes in freshwater microcosms[J]. Sci Total Environ, 2020, 717: 137055. doi: 10.1016/j.scitotenv.2020.137055

    [49]

    SEILER C, BERENDONK T. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture[J]. Front Microbiol, 2012, 3: 399.

    [50]

    MAXIMILIANO N, MARINA S P, SOLEDAD R M, et al. Class 1 integrons in environments with different degrees of urbanization[J]. PLOS One, 2012, 7(6): e39223. doi: 10.1371/journal.pone.0039223

    [51]

    ZHAO Y, YANG Q E, ZHOU X, et al. Antibiotic resistome in the livestock and aquaculture industries: status and solutions[J]. Crit Rev Environ Sci Technol, 2021, 51(19): 2159-2196. doi: 10.1080/10643389.2020.1777815

    [52]

    GREENFIELD B K, SHAKED S, MARRS C F, et al. Modeling the emergence of antibiotic resistance in the environment: an analytical solution for the minimum selection concentration[J]. Antimicrob Agents Chemother, 2018, 62(3): e1617-e1686.

    [53]

    DU J, ZHAO H X, WANG Y, et al. Presence and environmental risk assessment of selected antibiotics in coastal water adjacent to mariculture areas in the Bohai Sea[J]. Ecotox Environ Safe, 2019, 177: 117-123. doi: 10.1016/j.ecoenv.2019.03.075

    [54]

    ZHAO B, XU J M, ZHANG G D, et al. Occurrence of antibiotics and antibiotic resistance genes in the Fuxian Lake and antibiotic source analysis based on principal component analysis-multiple linear regression model[J]. Chemosphere, 2021, 262: 127741. doi: 10.1016/j.chemosphere.2020.127741

    [55]

    ZHANG G D, LU S Y, WANG Y Q, et al. Occurrence of antibiotics and antibiotic resistance genes and their correlations in lower Yangtze River, China[J]. Environ Pollut, 2020, 257: 113365. doi: 10.1016/j.envpol.2019.113365

    [56]

    SHEN X X, JIN G Q, ZHAO Y J, et al. Prevalence and distribution analysis of antibiotic resistance genes in a large-scale aquaculture environment[J]. Sci Total Environ, 2020, 711: 134626. doi: 10.1016/j.scitotenv.2019.134626

    [57]

    ZHENG J, ZHOU Z C, WEI Y Y, et al. High-throughput profiling of seasonal variations of antibiotic resistance gene transport in a peri-urban river[J]. Environ Int, 2018, 114: 87-94. doi: 10.1016/j.envint.2018.02.039

    [58]

    MARTI E, HUERTA B, RODRÍGUEZ-MOZAZA S, et al. Abundance of antibiotic resistance genes and bacterial community composition in wild freshwater fish species[J]. Chemosphere, 2018, 196: 115-119. doi: 10.1016/j.chemosphere.2017.12.108

    [59]

    SU H C, LIU Y S, PAN C G, et al. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water[J]. Sci Total Environ, 2017, 616-617: 453-461.

    [60]

    THOMPSON J R, PACOCHA S, PHARINO C, et al. Genotypic diversity within a natural coastal bacterioplankton population[J]. Science, 2005, 307(5713): 1311-1313. doi: 10.1126/science.1106028

    [61]

    LU Z H, NA G S, GAO H, et al. Fate of sulfonamide resistance genes in estuary environment and effect of anthropogenic activities[J]. Sci Total Environ, 2015, 527-528: 429-438. doi: 10.1016/j.scitotenv.2015.04.101

    [62]

    SU H C, PAN C G, YING G G, et al. Contamination profiles of antibiotic resistance genes in the sediments at a catchment scale[J]. Sci Total Environ, 2014, 490: 708-714. doi: 10.1016/j.scitotenv.2014.05.060

    [63]

    JECHALKE S, BROSZAT M, LANG F, et al. Effects of 100 years wastewater irrigation on resistance genes, Class 1 integrons and IncP-1 plasmids in Mexican soil[J]. Front Microbiol, 2015, 6: 163.

    [64] 苏志国, 张衍, 代天娇, 等. 环境中抗生素抗性基因与Ⅰ型整合子的研究进展[J]. 微生物学通报, 2018, 45(10): 2217-2233.
    [65]

    QIU W H, SUN J, FANG M J, et al. Occurrence of antibiotics in the main rivers of Shenzhen, China: association with antibiotic resistance genes and microbial community[J]. Sci Total Environ, 2019, 635: 334-341.

    [66]

    JIANG X S, LIU L Q, CHEN J F, et al. Antibiotic resistance genes and mobile genetic elements in a rural river in Southeast China: occurrence, seasonal variation and association with the antibiotics[J]. Sci Total Environ, 2021, 778: 146131. doi: 10.1016/j.scitotenv.2021.146131

    [67]

    WANG Z, HAN M Z, LI E H, et al. Distribution of antibiotic resistance genes in an agriculturally disturbed lake in China: their links with microbial communities, antibiotics, and water quality[J]. J Hazard Mater, 2020, 393: 122426. doi: 10.1016/j.jhazmat.2020.122426

    [68]

    XIANG S Z, WANG X S, MA W, et al. Response of microbial communities of karst river water to antibiotics and microbial source tracking for antibiotics[J]. Sci Total Environ, 2020, 706: 135730. doi: 10.1016/j.scitotenv.2019.135730

    [69]

    CROFTS T S, GASPARRINI A J, DANTAS G. Next-generation approaches to understand and combat the antibiotic resistome[J]. Nat Rev Microbiol, 2017, 15: 422-434. doi: 10.1038/nrmicro.2017.28

    [70]

    SONG C, ZHANG C, FAN L M, et al. Occurrence of antibiotics and their impacts to primary productivity in fishponds around Tai Lake, China[J]. Chemosphere, 2016, 161: 127-135. doi: 10.1016/j.chemosphere.2016.07.009

    [71]

    LI N, ZHANG X B, WU W, et al. Occurrence, seasonal variation and risk assessment of antibiotics in the reservoirs in North China[J]. Chemosphere, 2014, 111: 327-335. doi: 10.1016/j.chemosphere.2014.03.129

    [72]

    XU L Y, ZHANG H, XIONG P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: a review[J]. Sci Total Environ, 2020, 753: 141975.

    [73]

    HE S X, ZHOU Z G, LIU Y C, et al. Do dietary betaine and the antibiotic florfenicol influence the intestinal autochthonous bacterial community in hybrid tilapia (Oreochromis niloticus ♀ × O. aureus ♂)?[J]. World J Microb Biot, 2012, 28(3): 785-791. doi: 10.1007/s11274-011-0871-7

    [74]

    BINH V N, DANG N, ANH N T K, et al. Antibiotics in the aquatic environment of Vietnam: Sources, concentrations, risk and control strategy[J]. Chemosphere, 2018, 197: 438-450. doi: 10.1016/j.chemosphere.2018.01.061

    [75]

    LIU X, STEELE J C, MENG X Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: a review[J]. Environ Pollut, 2017, 223: 161-169. doi: 10.1016/j.envpol.2017.01.003

    [76]

    CHEN Y H, SU J Q, ZHANG J Y, et al. High-throughput profiling of antibiotic resistance gene dynamic in a drinking water river-reservoir system[J]. Water Res, 2019, 149: 179-189. doi: 10.1016/j.watres.2018.11.007

    [77]

    XU Y, GUO C S, LUO Y, et al. Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing, China[J]. Environ Pollut, 2016, 213: 833-840. doi: 10.1016/j.envpol.2016.03.054

    [78]

    NIU Z G, ZHANG K, ZHANG Y. Occurrence and distribution of antibiotic resistance genes in the coastal area of the Bohai Bay, China[J]. Mar Pollut Bull, 2016, 107: 245-250. doi: 10.1016/j.marpolbul.2016.03.064

    [79]

    ZHANG S Q, ABBAS M, REHMAN M U, et al. Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: a risk to human health[J]. Environ Pollut, 2020, 266: 115260. doi: 10.1016/j.envpol.2020.115260

    [80]

    ZHAO W X, WANG B, YU G. Antibiotic resistance genes in China: occurrence, risk, and correlation among different parameters[J]. Environ Sci Pollut R, 2018, 25: 21467-21482. doi: 10.1007/s11356-018-2507-z

    [81]

    Antimicrobial resistance: global report on surveillance[R]. Geneva, Switzerland: WHO, 2014: 35-55.

    [82]

    ALEXANDRA T, LARISA I, ALEJANDRO H B, et al. Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture[J]. Env Microbbiol Rep, 2015, 7(5): 803-809. doi: 10.1111/1758-2229.12327

    [83]

    SYROVA E, KOHOUTOVA L, DOLEJSKA M, et al. Antibiotic resistance and virulence factors in mesophilic Aeromonas spp. from Czech carp fisheries[J]. J Appl Microbiol, 2018, 125(6): 1702-1713. doi: 10.1111/jam.14075

    [84]

    LEE K, KIM D, LEE D, et al. Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance[J]. Microbiome, 2020, 8: 2. doi: 10.1186/s40168-019-0774-7

    [85]

    NNADOZIE C F, ODUME O N. Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes[J]. Environ Pollut, 2019, 254: 113067. doi: 10.1016/j.envpol.2019.113067

    [86]

    ALEXANDER J, BOLLMANN A, SEITZ W, et al. Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria[J]. Sci Total Environ, 2015, 512-513: 316-325. doi: 10.1016/j.scitotenv.2015.01.046

    [87]

    AARTS H, MARGOLLES A. Antibiotic resistance genes in food and gut (non-pathogenic) bacteria. Bad genes in good bugs[J]. Front Microbiol, 2015, 5: 754.

    [88]

    SU H C, YING G G, TAO R, et al. Occurrence of antibiotic resistance and characterization of resistance genes and integrons in Enterobacteriaceae isolated from integrated fish farms in South China[J]. J Environ Monit, 2011, 13(11): 3229-3236. doi: 10.1039/c1em10634a

    [89]

    TRANG D T, HIEN B T T, MØLBAK K, et al. Epidemiology and aetiology of diarrhoeal diseases in adults engaged in wastewater-fed agriculture and aquaculture in Hanoi, Vietnam[J]. Trop Med Int Health, 2007, 2: 23-33.

    [90]

    AMARASIRI M, SANO D, SUZUKI S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: current knowledge and questions to be answered[J]. Crit Rev Environ Sci Technol, 2020, 50(19): 2016-2059. doi: 10.1080/10643389.2019.1692611

    [91]

    KLASE G, LEE S, LIANG S, et al. The microbiome and antibiotic resistance in integrated fishfarm water: implications of environmental public health[J]. Sci Total Environ, 2019, 649: 1491-1501. doi: 10.1016/j.scitotenv.2018.08.288

    [92]

    SHARON L. Reduced antibiotic use in livestock: how Denmark tackled resistance[J]. Environ Health Perspect, 2014, 122(6): 160-165.

    [93]

    ANDERSSON D I, HUGHES D. Antibiotic resistance and its cost: is it possible to reverse resistance?[J]. Nat Rev Microbiol, 2010, 8: 260-271. doi: 10.1038/nrmicro2319

    [94]

    GAGGÌA F, MATTARELLI P, BIAVATI B. Probiotics and prebiotics in animal feeding for safe food production[J]. Int J Food Microbiol, 2010, 141: S15-S28. doi: 10.1016/j.ijfoodmicro.2010.02.031

    [95]

    LI Z, HU Y H, YANG Y Y, et al. Antimicrobial resistance in livestock: antimicrobial peptides provide a new solution for a growing challenge[J]. Anim Front, 2018, 8(2): 21-29. doi: 10.1093/af/vfy005

    [96]

    GUO M T, YUAN Q B, YANG J. Ultraviolet reduction of erythromycin and tetracycline resistant heterotrophic bacteria and their resistance genes in municipal wastewater[J]. Chemosphere, 2013, 93(11): 2864-2868. doi: 10.1016/j.chemosphere.2013.08.068

    [97]

    WANG B I, SHI H H, HABTESELASSIE M Y, et al. Simultaneous removal of multidrug-resistant Salmonella enterica serotype typhimurium, antibiotics and antibiotic resistance genes from water by electrooxidation on a Magnéli phase Ti4O7 anode[J]. Chem Eng J, 2020, 407: 127134.

    [98]

    HOU J, CHEN Z Y, GAO J, et al. Simultaneous removal of antibiotics and antibiotic resistance genes from pharmaceutical wastewater using the combinations of up-flow anaerobic sludge bed, anoxic-oxic tank, and advanced oxidation technologies[J]. Water Res, 2019, 159: 511-520. doi: 10.1016/j.watres.2019.05.034

    [99]

    KAEWMANEE A, CHIEMCHAISRI W, CHIEMCHAISRI C. Influence of high doses of antibiotics on anoxic-aerobic membrane bioreactor in treating solid waste leachate[J]. Int Biodeterior Biodegradation, 2019, 138: 15-22. doi: 10.1016/j.ibiod.2018.12.011

    [100]

    RODRÍGUEZ-CHUECA J, VARELLA DELLA GIUSTINA S, ROCHA J, et al. Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs: removal or persistence of antibiotics and antibiotic resistance genes?[J]. Sci Total Environ, 2019, 652: 1051-1061. doi: 10.1016/j.scitotenv.2018.10.223

    [101]

    BAO J F, WANG X J, GU J, et al. Effects of macroporous adsorption resin on antibiotic resistance genes and the bacterial community during composting[J]. Bioresour Technol, 2020, 295: 121997. doi: 10.1016/j.biortech.2019.121997

    [102]

    WANG H C, WANG J, LI S M, et al. Synergistic effect of UV/chlorine in bacterial inactivation, resistance gene removal, and gene conjugative transfer blocking[J]. Water Res, 2020, 185: 116290. doi: 10.1016/j.watres.2020.116290

    [103]

    WU Y Q, CHEN Z Q, WEN Q X, et al. Mechanism concerning the occurrence and removal of antibiotic resistance genes in composting product with ozone post-treatment[J]. Bioresour Technol, 2021, 321: 124433. doi: 10.1016/j.biortech.2020.124433

    [104]

    NI B J, YAN X F, DAI X H, et al. Ferrate effectively removes antibiotic resistance genes from wastewater through combined effect of microbial DNA damage and coagulation[J]. Water Res, 2020, 185: 116273. doi: 10.1016/j.watres.2020.116273

    [105]

    XU L K, CAMPOS L C, CANALES M, et al. Drinking water biofiltration: behaviour of antibiotic resistance genes and the association with bacterial community[J]. Water Res, 2020, 182: 115954. doi: 10.1016/j.watres.2020.115954

    [106]

    MA J W, CUI Y B, LI A M, et al. Evaluation of the fate of nutrients, antibiotics, and antibiotic resistance genes in sludge treatment wetlands[J]. Sci Total Environ, 2020, 712: 136370. doi: 10.1016/j.scitotenv.2019.136370

    [107]

    SHAO Y T, WANG Y P, YUAN Y W, et al. A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China[J]. Sci Total Environ, 2021, 798: 149205. doi: 10.1016/j.scitotenv.2021.149205

  • 期刊类型引用(8)

    1. 韦小凯,周康奇,邹欣汐,林勇,叶华,罗辉,覃俊奇,陈忠,黄姻,杜雪松,张彩群,潘贤辉. 基于全长转录组数据的中国圆田螺微卫星特征分析与标记筛选. 水生态学杂志. 2025(02): 235-242 . 百度学术
    2. 陈欣雨,朱守玟,江转转. 李属植物线粒体基因组特征与系统发育分析. 福建农林大学学报(自然科学版). 2024(04): 491-500 . 百度学术
    3. 杨尉,司圆圆,许瑞雯,陈兴汉. 基于基因组survey数据的疣吻沙蚕微卫星特征分析及多态标记开发. 南方水产科学. 2023(05): 123-133 . 本站查看
    4. 徐慧敏,巨丹丹,龚兵,肖明松. 基于Illumina HiSeq平台的翘嘴红鲌转录组测序分析. 安徽科技学院学报. 2023(06): 49-56 . 百度学术
    5. 杨尉,司圆圆,许瑞雯,陈兴汉. 疣吻沙蚕转录组SSR位点鉴定及特征分析. 南方农业学报. 2023(09): 2593-2603 . 百度学术
    6. 陈丽梅,李莉,石栩蔚,秦艺铭,刘利华,郭永军. 基于转录组数据的毛蚶SSR分子标记开发与评价. 渔业科学进展. 2022(03): 129-137 . 百度学术
    7. 陈华谱,黄春仁,何睿祺,戴明姝,张明真,李智渊,黄海,李广丽. 密斑刺鲀(Diodon hystrix)gnrh基因的克隆及表达分析. 海洋与湖沼. 2021(04): 994-1006 . 百度学术
    8. 刘倩倩,谭宇尘,姚宝辉,康宇坤,苏军虎. 基于转录组测序的高原鼢鼠多态性微卫星标记筛选. 草业科学. 2021(12): 2481-2489 . 百度学术

    其他类型引用(2)

图(2)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 10
出版历程
  • 收稿日期:  2021-07-23
  • 修回日期:  2021-12-23
  • 录用日期:  2022-01-20
  • 网络出版日期:  2022-02-15
  • 刊出日期:  2022-10-04

目录

/

返回文章
返回