Advances on antibiotic resistance genes (ARGs) in aquaculture environment
-
摘要: 抗生素对水产养殖业中水生生物疾病防治、生产线增产等发挥着重要作用,但长期滥用抗生素很可能会诱导水生生物体内产生携带抗生素抗性基因 (Antibiotic resistant genes, ARGs) 的耐药菌 (Antibiotic resistant bacteria, ARB)。ARGs在水产养殖环境中的持久性残留、迁移和传播,会埋下基因污染隐患,导致生态失衡并危害人类安全,如何遏制抗生素抗性的传播已引起全球重点关注。就水产养殖环境中ARGs的研究进展,系统总结了ARGs的污染现状及其在水产养殖环境中的来源、迁移传播和影响因素,并简述了ARGs与抗生素、微生物群落和环境因素之间的关联特性,以及抗生素、ARGs和ARB对生态环境与人类健康的影响。基于此,概述了ARGs的控制策略与去除技术,并提出了今后的研究方向,以期为水产养殖环境中ARGs污染机理的解析和抗生素抗性传播风险的控制提供科学参考。Abstract: Antibiotics play a significant role in the disease control of aquatic organisms and output increase of aquatic products. However, long-term abuse of antibiotics can result in the occurrence of antibiotic resistant bacteria (ARB) which harbor antibiotics resistance genes (ARGs) in aquatic organisms. The persistent existence, migration and spread of ARGs in aquaculture environment will potentially cause genetic pollution, destroy the ecological balance, and pose risks to human health. Therefore, how to constrain the spread of antibiotic resistance has attracted global attention. In terms of the research advancement of ARGs in aquaculture environment, this review systematically summarizes the status of ARGs pollution coupled with the source, migration and spread behavior of ARGs and their influencing factors, illustrates the correlations between ARGs and antibiotics, microbial communities and environmental factors, as well as discusses the effect of antibiotics, ARGs and ARB on ecological environment and human health. Thus, the paper reviews the management strategies and removal technologies of ARGs, and proposes the future research directions regarding ARGs, so as to provide references for revealing the pollution mechanism of ARGs and reducing the transmission risk of antibiotic resistance.
-
近年来,水产养殖过程中各种细菌、霉菌性流行病普遍发生,消毒剂也因此在水产养殖过程中被频繁使用[1-3]。消毒剂除了可杀灭和抑制病原外,还具有改良水质、为水生动物提供良好的生长和生活环境、提高经济效益的作用。高锰酸钾、聚维酮碘、二溴海因是养殖过程中的3种常见消毒剂。研究发现,聚维酮碘可以抑制养殖水体沉积物中氨氧化菌属的丰度[4],高锰酸钾可杀灭水体中的细菌[5],二溴海因和聚维酮碘对鱼类柱状黄杆菌 (Flavobacterium columnare) 有一定的抑菌效果[6],聚维酮碘对养殖水体中的细菌具有杀菌效果[7]。但用量超过药物安全浓度 (Safe concentration, SC) 会导致水生动物出现中毒甚至死亡,有研究显示在使用消毒剂对水体消毒时,会对褶皱臂尾轮虫 (Brachionus plicatilis)[8]、卤虫 (Artemia salina)[9]产生不利影响。
原生动物纤毛虫是海洋生态系统的重要组成部分,参与营养物质的转化并维持生态系统的稳定性,对生态系统的物质循环和能量流动发挥着至关重要的作用[10-13]。纤毛虫分布范围广、易培养,通常被应用于生态学研究中,如分类学、微生物生态学、生态毒理学等,是一种重要的模式生物[14-17]。盐蚕豆虫 (Fabrea salina) 隶属于纤毛虫门、多膜纲、异毛目、蚕豆虫属,其生长周期短、繁殖速度快,能够在短时间内大量培养,且适应性强,在多种生境下均可生长繁殖,可作为海水经济动物的开口饵料。盐蚕豆虫细胞内的蛋白质和脂肪含量丰富 (质量分数分别为56.66%和36.66%),且其体内含有油酸、亚油酸和亚麻酸等脂肪酸。研究发现,使用盐蚕豆虫投喂红鲷鱼 (Lutjanus campechanus) 能明显提高其成活率 (提高了2.11%)[18]。目前消毒药物对盐蚕豆虫毒性效应的研究尚少,因此,本研究以开口饵料盐蚕豆虫为受试生物,探究了高锰酸钾、二溴海因、聚维酮碘3种常见消毒药物对其产生的毒性效应和种群动力学影响,以及对盐蚕豆虫进行水体消毒时适宜的药物及剂量。
1. 材料与方法
1.1 纤毛虫种群维持及培养
本研究选用的盐蚕豆虫来自天津农学院鱼类生理学实验室,试验前将盐蚕豆虫置于经0.22 μm孔径滤膜抽滤的盐度为55‰ 的人工海水中进行培养,在恒温光照培养箱中进行扩大培养,温度为28 ℃,光照强度为25 μmol·m−2·s−1,光暗周期为14 h∶10 h,使用杜氏盐藻 (Dunaliella salina) 进行投喂,当其密度达到4×104 个∙L−1时开展试验。
1.2 测定急性毒性试验方法
采用水生生物毒性试验方法[19]。根据预试验结果,按照等对数间距法设置6个处理组,包括空白对照组和5个药物浓度梯度组 (表1)。每个药物浓度组设置3个重复,药物均为现配现用,配置时使用超声波振荡10 min加速溶解。试验在6孔细胞培养板中进行,最终试验体积为3 mL,用毛细玻璃管吸取盐蚕豆虫加入配好药物的6孔细胞培养板中,接种密度为10 个∙mL−1,急性毒性试验期间不喂食,每隔 24 h在解剖镜下观察计数盐蚕豆虫的成活数目,每个浓度组3 次重复,计数重复 2 次,计数误差不超过15%。分析结果通过概率单位法[20]计算确定半数致死浓度 (Lethal concentration 50, LC50)。
表 1 3种消毒药物急性毒性试验质量浓度Table 1 Mass concentration of three disinfectant drugs in acute toxicity test药物名称
Drug name质量浓度
Mass concentration/(mg∙L−1)二溴海因
Dibromo hydantoin0 0.50 0.71 1.00 1.41 2.00 聚维酮碘
Povidone iodine0 14.45 16.60 19.05 21.90 25.00 高锰酸钾
Potassium permanganate0 0.52 0.63 0.76 0.90 1.10 1.3 测定种群动力学试验方法
在6孔培养板中研究盐蚕豆虫的种群生长动态,培养基和培养条件与 LC50 测定相同。根据急性毒性试验结果,每种药物的质量浓度设置见表2。每天定时投喂杜氏盐藻 (6×109 个∙L−1) 作为食物。每个试验组设 3 个平行,每隔 24 h测定盐蚕豆虫的种群密度1次,取盐蚕豆虫培养液0.1 mL用浮游动物计数框 (0.1 mL) 计数,使用 2% (w) 的戊二醛固定液对盐蚕豆虫进行固定,每孔重复计数2次,2次计数误差不得超过15%[21-22]。由于二溴海因和聚维酮碘易挥发,故试验过程中每 24 h 用管口细度小于虫子体积的吸管,从6孔板每孔吸出一半测试液[23-25],并重新配置二溴海因溶液与聚维酮碘溶液和海水加至原测试液量,以保证二溴海因和聚维酮碘的有效性。
表 2 3种消毒药物慢性毒性试验质量浓度Table 2 Mass concentration of three disinfectant drugs in chronic toxicity test药物名称
Drug name质量浓度
Mass concentration/(mg∙L−1)二溴海因
Dibromo
hydantoin0 0.015 0 0.018 7 0.024 9 0.037 4 0.074 8 聚维酮碘
Povidone iodine0 0.392 0 0.490 5 0.654 0 0.981 0 1.962 0 高锰酸钾
Potassium permanganate0 0.018 5 0.023 1 0.030 8 0.046 25 0.092 5 1.4 数据分析与处理
急性毒性试验的LC50采用概率单位法[20],通过作图后分析计数得出。药物对盐蚕豆虫的 SC [8] 、种群生长率(r)[26]、世代时间(G)与种群生长率之间的关系[27]计算公式为:
$$ \mathrm{S}\mathrm{C}{\mathrm{=}}L_{48}\times 0.3/{\left(\frac{L_{24}}{L_{48}}\right)}^{2} $$ (1) $$ r{\mathrm{=}}\frac{\mathrm{l}\mathrm{n}\left({C}_{t}\right){\text{−}}\mathrm{l}\mathrm{n}\left({C}_{0}\right)}{t} $$ (2) $$ G{\mathrm{=}}\frac{\mathrm{l}\mathrm{n}2}{r} $$ (3) 式中:L48和L24分别为48和24 h的LC50;C0和Ct (个∙L−1) 分别为初始和t (d) 时纤毛虫的丰度。
所有数据均使用Origin 2021 软件作图,使用SPSS 24.0软件进行单因素方差分析 (One-way ANOVA)。
2. 结果
2.1 3种药物对盐蚕豆虫的48 h LC50
聚维酮碘对盐蚕豆虫的急性毒性试验结果如图1-a所示。根据概率单位分析法求出聚维酮碘对盐蚕豆虫的死亡率概率单位与所加药物质量浓度对数的线性回归方程为y=5.147 3x−10.32 ($r^2 $=0.937 4)。根据方程计算得出聚维酮碘对盐蚕豆虫的48 h LC50为19.620 mg∙L−1。
高锰酸钾对盐蚕豆虫的急性毒性试验结果如图1-b所示。根据概率单位分析法求出高锰酸钾对盐蚕豆虫的死亡率概率单位与所加药物质量浓度对数的线性回归方程为y=2.608 1x−2.660 6 ($r^2 $=0.996)。根据方程计算得出高锰酸钾对盐蚕豆虫的48 h LC50为0.925 mg∙L−1。
二溴海因对盐蚕豆虫的急性毒性试验结果如图1-c所示。根据概率单位分析法求出二溴海因对盐蚕豆虫的死亡率概率单位与所加药物质量浓度对数的线性回归方程为y=1.620 7x−5.724 3 ($r^2 $=0.986 9)。根据方程计算得出二溴海因对盐蚕豆虫的48 h LC50为0.748 mg∙L−1。
2.2 二溴海因对盐蚕豆虫的种群生长的影响
2.2.1 二溴海因对盐蚕豆虫生长曲线和最大种群密度的影响
不同二溴海因质量浓度组的盐蚕豆虫在经过24 h的停滞期后,均进入指数生长期,各处理组在第120小时达到最大种群密度 (图2)。随着二溴海因浓度升高,盐蚕豆虫的最大种群密度逐渐降低。One-way ANOVA检验结果表明 (图3),0.015 mg∙L−1组与对照组的最大种群密度差异不显著(p>0.05),其余处理组的最大种群生长率与对照组相比均存在极显著性差异 (p<0.01)。说明二溴海因对盐蚕豆虫种群生长起到了明显的抑制作用,并且随着浓度升高抑制作用越明显,其中0.074 8 mg∙L−1组的抑制作用最明显,最大种群密度为 (1.69±0.077)×105 个∙L−1,与对照组 [(2.19±0.056)×105 个∙L−1] 相比降低了23%。
2.2.2 二溴海因对盐蚕豆虫种群生长率和世代时间的影响
如图4所示,随着二溴海因质量浓度升高,种群生长率呈下降趋势。One-way ANOVA检验结果表明,0.015 0 mg∙L−1组与对照组的种群生长率差异不显著 (p>0.05),其余处理组的种群生长率与对照组相比均存在显著性差异 (p<0.05)。其中0.074 8 mg∙L−1组下降最明显,种群生长率为 (0.57±0.009) d−1,比对照组下降了8%。
图 4 二溴海因对盐蚕豆虫的种群生长率和世代时间的影响注:相同字母为组间无显著性差异 (p>0.05),不同字母为组间有显著性差异 (p<0.05),生长率用小写字母表示,世代时间用大写字母表示。Fig. 4 Effect of dibromo hydantoin on population growth rate and generation time of F. salinaNote: The same letters represent insignificant differences among the groups (p>0.05), while different letters represent significant differences among the groups (p<0.05). Growth rates are represented by lowercase letters, while generation time are represented by uppercase letters.随着二溴海因质量浓度的升高,世代时间逐渐变长,One-way ANOVA检验结果表明,0.015 0 mg∙L−1组与对照组的世代时间差异不显著 (p>0.05),其余处理组的世代时间与对照组相比均存在显著性差异 (p<0.05)。其中0.074 8 mg∙L−1处理组的世代时间延长最为明显,世代时间为 (1.23±0.2) d,比对照组 [(1.11±0.024) d] 延长了11%。
2.3 聚维酮碘对盐蚕豆虫的种群生长的影响
2.3.1 聚维酮碘对盐蚕豆虫生长曲线和最大种群密度的影响
不同聚维酮碘质量浓度试验组的盐蚕豆虫,在经过24 h的停滞期后,均进入指数生长期。对照组、0.392 mg∙L−1、0.490 5 mg∙L−1和0.654 mg∙L−1组的种群密度在第120小时达到峰值,0.981 mg∙L−1和1.962 mg∙L−1组在第144 小时达到峰值。与对照组相比,聚维酮碘质量浓度为0.392 mg∙L−1试验组促进了纤毛虫的生长,最大种群密度增加,聚维酮碘质量浓度为0.981 mg∙L−1和1.962 mg∙L−1组,聚维酮碘对盐蚕豆虫的生长曲线产生了明显的抑制作用、指数生长期变长 (图5),其中1.962 mg∙L−1组抑制作用最明显,与对照组相比下降了25%。
One-way ANOVA检验结果表明 (图6),聚维酮碘质量浓度为0.654 mg∙L−1、0.981 mg∙L−1和1.962 mg∙L−1试验组与对照组盐蚕豆虫的最大种群密度均存在极显著性差异 (p<0.01),聚维酮碘质量浓度为0.392 mg∙L−1和0.490 5 mg∙L−1试验组与对照组盐蚕豆虫的最大种群密度均差异不显著 (p>0.05)。
2.3.2 聚维酮碘对盐蚕豆虫种群生长率和世代时间的影响
由图7可见,聚维酮碘对盐蚕豆虫种群生长率呈低浓度促进,高浓度抑制作用。One-way ANOVA检验结果表明,聚维酮碘质量浓度高于0.654 mg∙L−1的试验组 (0.654、0.981和1.962 mg∙L−1) 和对照组盐蚕豆虫的种群生长率存在显著性差异 (p<0.05)。质量浓度低于0.654 mg∙L−1的试验组(0、0.392 0、0.490 5 mg∙L−1) 与对照组盐蚕豆虫的种群生长率差异均不显著 (p>0.05)。其中1.962 mg∙L−1组下降最明显,种群生长率为 (0.57±0.005) d−1,比对照组下降了9%。
图 7 聚维酮碘对盐蚕豆虫的种群生长率和世代时间的影响注:相同字母为组间无显著性差异 (p>0.05),不同字母为组间有显著性差异 (p<0.05),生长率用小写字母表示,世代时间用大写字母表示。Fig. 7 Effect of povidone iodine on population growth rate and generation time of F. salinaNote: The same letters represent insignificant differences among the groups (p>0.05), while different letters represent significant differences among the groups (p<0.05). Growth rates are represented by lowercase letters, while generation time are represented by uppercase letters.盐蚕豆虫世代时间随浓度变化先缩短后变长,聚维酮碘质量浓度高于0.654 mg∙L−1的试验组 (0.654、0.981和1.962 mg∙L−1) 和对照组盐蚕豆虫的世代时间存在显著性差异 (p<0.05)。其中1.962 mg∙L−1组的世代时间为 (1.22±0.011) d,延长最为明显,比对照组 [(1.10±0.003) d] 延长了10%。
2.4 高锰酸钾对盐蚕豆虫的种群生长的影响
2.4.1 高锰酸钾对盐蚕豆虫生长曲线和最大种群密度的影响
不同高锰酸钾浓度下盐蚕豆虫经过24 h的停滞期后,均进入指数生长期。各处理组在第120 小时均达到最大种群密度,其中
0.02310 mg∙L−1组的抑制作用最明显,最大种群密度为 (1.13±0.22)×105 个∙L−1,与对照组相比下降了47.8%。对照组稳定期持续4 d,其他试验组均在第120 小时达到最大种群密度后就开始进入衰退期 (图8)。One-way ANOVA检验结果表明,对照组与其他试验组盐蚕豆虫的最大种群密度均存在极显著性差异 (p<0.01,图9)。2.4.2 高锰酸钾对盐蚕豆虫种群生长率和世代时间的影响
如图10所示,随着高锰酸钾质量浓度的增加种群生长率呈先降后升的趋势,其中对种群生长率抑制作用最明显的是0.023 1 mg∙L−1组,种群生长率为 (0.47±0.007) d−1,比对照组降低了23%。One-way ANOVA检验结果表明,对照组与其他试验组的种群生长率均存在显著性差异 (p<0.05)。
图 10 高锰酸钾对盐蚕豆虫的种群生长率和世代时间的影响注:相同字母为组间无显著性差异 (p>0.05),不同字母为组间有显著性差异 (p<0.05),生长率用小写字母表示,世代时间用大写字母表示。Fig. 10 Effect of potassium permanganate on population growth rate and generation time of F. salinaNote: The same letters represent insignificant differences among the groups (p>0.05), while different letters represent significant differences among the groups (p<0.05). Growth rates are represented by lowercase letters, while generation time are represented by uppercase letters.浓度从低到高各试验组的世代时间呈先增后降的趋势,处理组的世代时间与对照组相比均存在显著性差异 (p<0.05)。其中0.023 1 mg∙L−1组的世代时间 [(1.30±0.078) d]延长最明显,比对照组延长了30%。
3. 讨论
3.1 3种消毒药物对盐蚕豆虫的LC50
高锰酸钾、二溴海因和聚维酮碘对盐蚕豆虫的24 h LC50分别为1.182、1.067和18.451 mg∙L−1,48 h LC50分别为0.925、0.748和19.620 mg∙L−1;SC分别为0.170、0.110 和6.655 mg∙L−1。盐蚕豆虫对3种消毒药物的敏感性依次为二溴海因>高锰酸钾>聚维酮碘,可能是因为二溴海因能水解成次溴酸,次溴酸可对盐蚕豆虫细胞内部结构产生不可逆的氧化和分解[28],使盐蚕豆虫对二溴海因的敏感性更高。二溴海因在生产上的常规施药剂量为0.3~0.4 mg∙L−1,在多种水产动物中的SC均高于其常规用量,如二溴海因对草鱼 (Ctenopharyngodon idellus) 的SC为14.1 mg∙L−1[29],对日本黄姑鱼 (Nibea japonica) 幼鱼的SC为0.79 mg∙L−1[30],对体长为3.5~5.0 cm太湖秀丽白虾 (Palaemon modestus) 的SC为21 mg∙L−1[31],本研究得出的二溴海因对盐蚕豆虫的 48 h LC50 (0.748 mg∙L−1) 也高于二溴海因的常规施药剂量,但其SC (0.110 mg∙L−1) 低于常规施药剂量,因此在研究二溴海因对盐蚕豆虫水体进行消毒时,可参考二溴海因SC不超过0.110 mg∙L−1的标准对水体进行消杀。
高锰酸钾通常用于鱼类及其附属设施、设备的消毒,日常养殖过程中的一般使用剂量为2~5 mg∙L−1。本研究得出的高锰酸钾对盐蚕豆虫的24 h LC50为1.182 mg∙L−1,48 h LC50为0.925 mg∙L−1,SC为0.170 mg∙L−1,均低于日常养殖过程中的一般使用剂量。已有研究表明高锰酸钾对黄姑鱼 (Nibea albiflora Richardson) 幼鱼的24 h LC50为3.69 mg∙L−1,48 h LC50为3.23 mg∙L−1[32],对岩虫 (Marphysa sanguinea) 的24 h LC50为14.10 mg∙L−1,48 h LC50为9.59 mg∙L−1[33],对卤虫 (A. salina) 无节幼体的24 h LC50为21.333 mg∙L−1,48 h LC50为9.003 mg∙L−1[9],大于高锰酸钾对盐蚕豆虫的24 h和48 h LC50,说明盐蚕豆虫对高锰酸钾的敏感性略高于其他水生动物,因此在研究高锰酸钾对盐蚕豆虫水体进行消毒时,要在安全浓度范围内谨慎使用。
聚维酮碘是聚乙烯吡咯烷酮与碘的络合物,对大部分细菌、真菌、霉菌孢子及部分病毒均有一定杀灭作用[34]。对水生生物来说,生命周期的不同阶段,种间甚至种内对聚维酮碘的耐受性存在差异。研究表明聚维酮碘对宽体金线蛭 (Whitmania pigra) 幼苗的24 h LC50为78.17 mg∙L−1,48 h LC50为70 mg∙L−1[35],聚维酮碘对暗纹东方鲀 (Takifugu obscurus) 稚鱼的24 h LC50为269.80 mg∙L−1,48 h LC50为200.00 mg∙L−1[36],本研究中聚维酮碘对盐蚕豆虫的24 h LC50为18.451 mg∙L−1,48 h LC50为19.620 mg∙L−1。由此可见,聚维酮碘对盐蚕豆虫的毒性远大于宽体金线蛭和暗纹东方鲀。刘青等[8]的研究表明聚维酮碘对褶皱臂尾轮虫 (B. plicatilis) 幼体的24 h LC50为2.25 mg∙L−1,48 h LC50为1.99 mg∙L−1,低于本研究中聚维酮碘对盐蚕豆虫的24 h和48 h LC50,表明盐蚕豆虫对聚维酮碘的耐受性比褶皱臂尾轮虫幼体高,本研究得出聚维酮碘SC为6.655 mg∙L−1,因此在盐蚕豆虫养殖水体中需要根据实际情况综合考虑水温、水质、虫体情况等各因素的影响来确定用量。
3.2 3种消毒药物对盐蚕豆虫种群动力学的影响
纤毛虫种群生长均符合逻辑斯蒂增长曲线,即细胞在进行分裂前都有一段停滞期,随后进入指数生长期、稳定期及衰退期[37]。本研究显示,盐蚕豆虫在3种不同浓度消毒剂中的种群增长符合逻辑斯蒂增长曲线,对盐蚕豆虫种群生长的抑制作用随3种消毒剂浓度的增加越明显。对照组的盐蚕豆虫种群24 h后进入指数生长期,指数生长期持续96 h,在第120 小时达到最大种群密度,随后进入衰退期。本研究中,随着二溴海因浓度的增加,盐蚕豆虫的种群生长受到明显抑制,推测可能是由于过量的二溴海因会引起盐蚕豆虫的急性死亡,从而导致其种群密度下降。王兴强等[38]的研究也证实了随二溴海因浓度的升高,凡纳滨对虾 (Litopenaeus vannamei) 的特定生长率、摄食量、饲料转换效率和吸收效率均呈下降趋势。
高锰酸钾是水产养殖中传统的杀菌药剂,具有很强的氧化能力,可以快速氧化蛋白质等有机物,起到杀菌消毒的作用。本研究中,试验组高锰酸钾胁迫盐蚕豆虫的最大种群密度和生长率显著低于对照组,对盐蚕豆虫的种群生长产生了抑制作用。推测可能由于高锰酸钾通过与机体接触,快速氧化酶蛋白及其活性基团,高锰酸钾强的氧化能力损伤了虫体的抗氧化系统[9],导致其种群密度与对照组产生明显差异。谢钦铭和赵伟伟[39]研究发现使用高锰酸钾对褶皱臂尾轮虫的种群生长也会产生抑制作用,与本研究结果一致。本研究中投喂的杜氏盐藻中含有丰富的有机物[40],高锰酸钾的抗菌效力极易被有机物减弱[41],因此高浓度的高锰酸钾对盐蚕豆种群的生长率和世代时间未表现出明显的浓度依赖性。
本研究中,盐蚕豆虫种群生长受到的抑制作用随着聚维酮碘浓度的增加而越发明显。盐蚕豆虫在质量浓度为0.392和0.490 5 mg·L−1 聚维酮碘中的种群生长率与对照组相比差异不显著,而高浓度组 (0.654、0.981、1.962 mg∙L−1) 生长率与对照组相比差异显著,推测可能是盐蚕豆虫对低浓度的聚维酮碘有一定的耐受性,高浓度的聚维酮碘破坏了盐蚕豆虫的细胞结构,抑制了盐蚕豆虫的生长,导致其种群密度下降。刘青等[8]研究褶皱臂尾轮虫的种群动态时发现,质量浓度为0.2 mg∙L−1 以上的聚维酮碘对褶皱臂尾轮虫的寿命、繁殖和种群增长有显著影响,高浓度的聚维碘酮抑制了褶皱臂尾轮虫的生长;张恺[42]的研究也发现高浓度的聚维酮碘对小球藻 (Chlorella pyrenidosa) 的生长会产生明显抑制作用,与本研究结果一致。
4. 结论
本研究探究了二溴海因、高锰酸钾及聚维碘酮3种常见消毒药物对盐蚕豆虫的毒性效应,得出盐蚕豆虫对其的敏感性依次为二溴海因>高锰酸钾>聚维酮碘。这3种消毒药物在高浓度下对盐蚕豆虫的种群生长均起到了明显抑制作用,且盐蚕豆虫对这3种消毒药物的敏感性存在差异。目前,二溴海因、高锰酸钾及聚维碘酮对单细胞真核生物的作用机制报道尚少,后续研究应聚焦于3种消毒药物对盐蚕豆虫细胞发生机制的影响。
-
表 1 现有技术对ARGs的去除效果
Table 1 Reduction efficiency of ARGs by existing technologies
去除技术
Removal technology去除原理
Removal principle去除效果
Reduction efficiency参考文献
Reference添加大孔吸附树脂
Adding macroporous adsorption resin (MAR)MAR是一种多孔交联聚合物,能够降低ARGs和微生物群落的丰度,并且通过吸附重金属以降低其对ARGs的协同效应和选择压力。 ARGs (14.14%~99.44%)和MGEs (47.83%~99.48%)的丰度显著降低。 [101] UV/氯消毒
UV/chlorineUV/氯协同作用可以有效灭活ARB、打破ARGs结构并抑制其水平转移。 UV (320 mJ·cm−2)/氯(2 mg·L−1)协同作用下,ARGs的去除率增强了1~1.5 log。 [102] 臭氧后处理
Ozone post-treatment臭氧具有高氧化电位 (2.07 V),可以有效去除ARGs和ARB。 胞内ARGs (iARGs)的去除率达到89%。 [103] 高铁酸盐
Ferrate高铁酸盐作为一种高价铁基氧化剂,其强氧化电位能够直接去除ARGs,且具备较强的杀菌效能,能够灭活携带ARGs的细菌,从而抑制其垂直转移。 高铁酸盐的剂量为10 mg-Fe·L−1时,ARGs的去除率达到1.10~4.37 log。 [104] 生物过滤
Biofiltration水体中的微生物会附着在过滤介质 (石英砂、颗粒活性炭和无烟煤等) 表面并形成生物膜。 ARGs平均丰度降低了0.97 log。 [105] 污泥处理湿地
Sludge treatment wetlands (STWs)STWs法是传统沙干化床和垂直流人工湿地的联合技术,剩余污泥进入湿地后会形成不同污泥层,而植物在其中生长,有利于稳定污泥、减少污泥体积并去除ARGs等污染物。 磺胺类ARGs的丰度降低了21%。 [106] -
[1] FANG H, HUANG K L, YU J N, et al. Metagenomic analysis of bacterial communities and antibiotic resistance genes in the Eriocheir sinensis freshwater aquaculture environment[J]. Chemosphere, 2019, 224: 202-211. doi: 10.1016/j.chemosphere.2019.02.068
[2] QIAN Z Z, LUO D L, LUO F F, et al. Determination of peptide antibiotics residues in sediment from aquaculture environment by high performance liquid chromatography-tandem mass spectrometry[J]. Chin J Anal Chem, 2016, 6: 870-875.
[3] BRUNTON L A, DESBOIS A P, GARZA M, et al. Identifying hotspots for antibiotic resistance emergence and selection, and elucidating pathways to human exposure: application of a systems-thinking approach to aquaculture systems[J]. Sci Total Environ, 2019, 687: 1344-1356. doi: 10.1016/j.scitotenv.2019.06.134
[4] 罗义, 周启星. 抗生素抗性基因(ARGs)——一种新型环境污染物[J]. 环境科学学报, 2008, 28(8): 1499-1505. doi: 10.3321/j.issn:0253-2468.2008.08.002 [5] KUMAR M, RAM B, HONDA R, et al. Concurrence of antibiotic resistant bacteria (ARB), viruses, pharmaceuticals and personal care products (PPCPs) in ambient waters of Guwahati, India: urban vulnerability and resilience perspective[J]. Sci Total Environ, 2019, 693: 133640. doi: 10.1016/j.scitotenv.2019.133640
[6] EBELE A J, ABOU-ELWAFA ABDALLAH M, HARRAD S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment[J]. Emerg Contam, 2017, 3(1): 1-16. doi: 10.1016/j.emcon.2016.12.004
[7] MO W Y, CHEN Z T, LEUNG H M, et al. Application of veterinary antibiotics in China's aquaculture industry and their potential human health risks[J]. Environ Sci Pollut Res, 2017, 24: 8978-8989. doi: 10.1007/s11356-015-5607-z
[8] YANG J F, YING G G, ZHAO J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China[J]. J Environ Sci Health B, 2011, 46(3): 272-280. doi: 10.1080/03601234.2011.540540
[9] SUN Q, LI Y, LI M Y, et al. PPCPs in Jiulong River estuary (China): spatiotemporal distributions, fate, and their use as chemical markers of wastewater[J]. Chemosphere, 2016, 150: 596-604. doi: 10.1016/j.chemosphere.2016.02.036
[10] 武旭跃, 邹华, 朱荣, 等. 太湖贡湖湾水域抗生素污染特征分析与生态风险评价[J]. 环境科学, 2016, 37(12): 4596-4604. [11] ZHANG M, CAI Z X, ZHANG G F, et al. Effectively reducing antibiotic contamination and resistance in fishery by efficient gastrointestine-blood delivering dietary millispheres[J]. J Hazard Mater, 2021, 409: 125012. doi: 10.1016/j.jhazmat.2020.125012
[12] ZHAO H, ZHOU J L, ZHANG J. Tidal impact on the dynamic behavior of dissolved pharmaceuticals in the Yangtze Estuary, China[J]. Sci Total Environ, 2015, 536: 946-954. doi: 10.1016/j.scitotenv.2015.06.055
[13] YANG Y, QIU W Q, LI Y X, et al. Antibiotic residues in poultry food in Fujian Province of China[J]. Food Addit Contam B, 2020, 13(3): 177-184. doi: 10.1080/19393210.2020.1751309
[14] XU T W. Contemporary global health security and China's strategy[J]. J Int Stud, 2017, 38(3): 9-37.
[15] PRUDEN A, PEI R, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants: studies in Northern Colorado[J]. Environ Sci Technol, 2006, 40(23): 7445-7450. doi: 10.1021/es060413l
[16] MIRANDA C D, GODOY F A, LEE M R. Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms[J]. Front Microbiol, 2018, 9: 1284. doi: 10.3389/fmicb.2018.01284
[17] GAO P P, MAO D Q, LUO Y, et al. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment[J]. Water Res, 2012, 46(7): 2355-2364. doi: 10.1016/j.watres.2012.02.004
[18] PEREIRA A M P T, SILVA L J G, MEISEL L M, et al. Fluoroquinolones and tetracycline antibiotics in a Portuguese aquaculture system and aquatic surroundings: occurrence and environmental impact[J]. J Toxicol Env Heal A, 2015, 78(15): 959-975. doi: 10.1080/15287394.2015.1036185
[19] CESARE A D, LUNA G M, VIGNAROLI C, et al. Aquaculture can promote the presence and spread of antibiotic-resistant Enterococci in marine sediments[J]. PLOS ONE, 2013, 8(4): e62838. doi: 10.1371/journal.pone.0062838
[20] SU H C, HU X J, WANG L L, et al. Contamination of antibiotic resistance genes (ARGs) in a typical marine aquaculture farm: source tracking of ARGs in reared aquatic organisms[J]. J Environ Sci Heal B, 2020, 55(3): 220-229. doi: 10.1080/03601234.2019.1684747
[21] LIU X, WANG H, ZHAO H M. Propagation of antibiotic resistance genes in an industrial recirculating aquaculture system located at northern China[J]. Environ Pollut, 2020, 261: 114155. doi: 10.1016/j.envpol.2020.114155
[22] SU H C, LIU S, HU X J, et al. Occurrence and temporal variation of antibiotic resistance genes (ARGs) in shrimp aquaculture: ARGs dissemination from farming source to reared organisms[J]. Sci Total Environ, 2017, 607-608: 357-366. doi: 10.1016/j.scitotenv.2017.07.040
[23] D'COSTA V M, KING C E, KALAN L, et al. Antibiotic resistance is ancient.[J]. Nature, 2011, 477: 457-461. doi: 10.1038/nature10388
[24] 苏建强, 黄福义, 朱永官. 环境抗生素抗性基因研究进展[J]. 生物多样性, 2013, 21(4): 481-487. [25] 张骞月, 赵婉婉, 吴伟. 水产养殖环境中抗生素抗性基因污染及其研究进展[J]. 中国农业科技导报, 2015, 17(6): 125-134. [26] SUCHLAND R J, SANDOZ K M, JEFFREY B M, et al. Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro[J]. Antimicrob Agents Chem, 2009, 53(11): 4604-4611. doi: 10.1128/AAC.00477-09
[27] TONG J, TANG A P, WANG H Y, et al. Microbial community evolution and fate of antibiotic resistance genes along six different full-scale municipal wastewater treatment processes[J]. Bioresour Technol, 2019, 272: 489-500. doi: 10.1016/j.biortech.2018.10.079
[28] HE Y, YUAN Q B, MATHIEU J, et al. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment[J]. NPJ Clean Water, 2020, 3: 4. doi: 10.1038/s41545-020-0051-0
[29] SINGER A C, HELEN S, VICKI R, et al. Review of antimicrobial resistance in the environment and its relevance to environmental regulators[J]. Front Microbiol, 2016, 7: 1728.
[30] CHEN H, LIU S, XU X R, et al. Tissue distribution, bioaccumulation characteristics and health risk of antibiotics in cultured fish from a typical aquaculture area[J]. J Mater Sci, 2018, 343: 140-148.
[31] PETCHIAPPAN A, CHATTERJI D. Antibiotic resistance: current perspectives[J]. ACS Omega, 2017, 2(10): 7400-7409. doi: 10.1021/acsomega.7b01368
[32] NOMAN E, AL-GHEETHI A, RADIN MOHAMED R M S, et al. Quantitative microbiological risk assessment of complex microbial community in prawn farm wastewater and applicability of nanoparticles and probiotics for eliminating of antibiotic-resistant bacteria[J]. J Hazard Mater, 2021, 419: 126418. doi: 10.1016/j.jhazmat.2021.126418
[33] PRUDEN A. Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance[J]. Environ Sci Technol, 2014, 48(1): 5-14. doi: 10.1021/es403883p
[34] GAO P, MUNIR M, XAGORARAKI I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant[J]. Sci Total Environ, 2012, 421/422: 173-183. doi: 10.1016/j.scitotenv.2012.01.061
[35] TELLO A, TELFER A T C. Selective pressure of antibiotic pollution on bacteria of importance to public health[J]. Environ Health Perspect, 2012, 120(8): 1100-1106. doi: 10.1289/ehp.1104650
[36] GILLINGS M R, GAZE W H, PRUDEN A, et al. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution[J]. ISME J, 2015, 9(6): 1269-1279. doi: 10.1038/ismej.2014.226
[37] HARNISZ M, KORZENIEWSKA E, GOLAS I. The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water[J]. Chemosphere, 2015, 128: 134-141. doi: 10.1016/j.chemosphere.2015.01.035
[38] ZAINAB S M, JUNAID M, XU N, et al. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: a global review on dissemination, sources, interactions, environmental and human health risks[J]. Water Res, 2020, 187: 116455. doi: 10.1016/j.watres.2020.116455
[39] AKINBOWALE O L, PENG H, BARTON M D. Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia[J]. J Appl Microbiol, 2010, 103(5): 2016-2025.
[40] LIANG X M, GUAN F L, CHEN B W, et al. Spatial and seasonal variations of antibiotic resistance genes and antibiotics in the surface waters of Poyang Lake in China[J]. Ecotox Environ Safe, 2020, 196: 110543. doi: 10.1016/j.ecoenv.2020.110543
[41] HE L Y, LIU Y S, SU H C, et al. Dissemination of antibiotic resistance genes in representative broiler feedlots environments: identification of indicator ARGs and correlations with environmental variables[J]. Environ Sci Technol, 2014, 48: 13120-13129. doi: 10.1021/es5041267
[42] FANG H S, ZHANG Q, NIE X P, et al. Occurrence and elimination of antibiotic resistance genes in a long-term operation integrated surface flow constructed wetland[J]. Chemosphere, 2017, 173: 99-106. doi: 10.1016/j.chemosphere.2017.01.027
[43] WU J J, SU Y L, DENG Y Q, et al. Prevalence and distribution of antibiotic resistance in marine fish farming areas in Hainan, China[J]. Sci Total Environ, 2019, 653: 605-611. doi: 10.1016/j.scitotenv.2018.10.251
[44] SU H C, HU X J, XU Y, et al. Persistence and spatial variation of antibiotic resistance genes and bacterial populations change in reared shrimp in South China[J]. Environ Int, 2018, 119: 327-333. doi: 10.1016/j.envint.2018.07.007
[45] JIA S Y, ZHANG X X, MIAO Y, et al. Fate of antibiotic resistance genes and their associations with bacterial community in livestock breeding wastewater and its receiving river water[J]. Water Res, 2017, 124: 259-268. doi: 10.1016/j.watres.2017.07.061
[46] ZHOU M, XU Y B, OU Y, et al. Evolution and distribution of resistance genes and bacterial community in water and biofilm of a simulated fish-duck integrated pond with stress[J]. Chemosphere, 2020, 245: 125549. doi: 10.1016/j.chemosphere.2019.125549
[47] HE X L, XU Y B, CHEN J L, et al. Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals[J]. Water Res, 2017, 124: 39-48. doi: 10.1016/j.watres.2017.07.048
[48] WANG Q, LIU L, HOU Z L, et al. Heavy metal copper accelerates the conjugative transfer of antibiotic resistance genes in freshwater microcosms[J]. Sci Total Environ, 2020, 717: 137055. doi: 10.1016/j.scitotenv.2020.137055
[49] SEILER C, BERENDONK T. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture[J]. Front Microbiol, 2012, 3: 399.
[50] MAXIMILIANO N, MARINA S P, SOLEDAD R M, et al. Class 1 integrons in environments with different degrees of urbanization[J]. PLOS One, 2012, 7(6): e39223. doi: 10.1371/journal.pone.0039223
[51] ZHAO Y, YANG Q E, ZHOU X, et al. Antibiotic resistome in the livestock and aquaculture industries: status and solutions[J]. Crit Rev Environ Sci Technol, 2021, 51(19): 2159-2196. doi: 10.1080/10643389.2020.1777815
[52] GREENFIELD B K, SHAKED S, MARRS C F, et al. Modeling the emergence of antibiotic resistance in the environment: an analytical solution for the minimum selection concentration[J]. Antimicrob Agents Chemother, 2018, 62(3): e1617-e1686.
[53] DU J, ZHAO H X, WANG Y, et al. Presence and environmental risk assessment of selected antibiotics in coastal water adjacent to mariculture areas in the Bohai Sea[J]. Ecotox Environ Safe, 2019, 177: 117-123. doi: 10.1016/j.ecoenv.2019.03.075
[54] ZHAO B, XU J M, ZHANG G D, et al. Occurrence of antibiotics and antibiotic resistance genes in the Fuxian Lake and antibiotic source analysis based on principal component analysis-multiple linear regression model[J]. Chemosphere, 2021, 262: 127741. doi: 10.1016/j.chemosphere.2020.127741
[55] ZHANG G D, LU S Y, WANG Y Q, et al. Occurrence of antibiotics and antibiotic resistance genes and their correlations in lower Yangtze River, China[J]. Environ Pollut, 2020, 257: 113365. doi: 10.1016/j.envpol.2019.113365
[56] SHEN X X, JIN G Q, ZHAO Y J, et al. Prevalence and distribution analysis of antibiotic resistance genes in a large-scale aquaculture environment[J]. Sci Total Environ, 2020, 711: 134626. doi: 10.1016/j.scitotenv.2019.134626
[57] ZHENG J, ZHOU Z C, WEI Y Y, et al. High-throughput profiling of seasonal variations of antibiotic resistance gene transport in a peri-urban river[J]. Environ Int, 2018, 114: 87-94. doi: 10.1016/j.envint.2018.02.039
[58] MARTI E, HUERTA B, RODRÍGUEZ-MOZAZA S, et al. Abundance of antibiotic resistance genes and bacterial community composition in wild freshwater fish species[J]. Chemosphere, 2018, 196: 115-119. doi: 10.1016/j.chemosphere.2017.12.108
[59] SU H C, LIU Y S, PAN C G, et al. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water[J]. Sci Total Environ, 2017, 616-617: 453-461.
[60] THOMPSON J R, PACOCHA S, PHARINO C, et al. Genotypic diversity within a natural coastal bacterioplankton population[J]. Science, 2005, 307(5713): 1311-1313. doi: 10.1126/science.1106028
[61] LU Z H, NA G S, GAO H, et al. Fate of sulfonamide resistance genes in estuary environment and effect of anthropogenic activities[J]. Sci Total Environ, 2015, 527-528: 429-438. doi: 10.1016/j.scitotenv.2015.04.101
[62] SU H C, PAN C G, YING G G, et al. Contamination profiles of antibiotic resistance genes in the sediments at a catchment scale[J]. Sci Total Environ, 2014, 490: 708-714. doi: 10.1016/j.scitotenv.2014.05.060
[63] JECHALKE S, BROSZAT M, LANG F, et al. Effects of 100 years wastewater irrigation on resistance genes, Class 1 integrons and IncP-1 plasmids in Mexican soil[J]. Front Microbiol, 2015, 6: 163.
[64] 苏志国, 张衍, 代天娇, 等. 环境中抗生素抗性基因与Ⅰ型整合子的研究进展[J]. 微生物学通报, 2018, 45(10): 2217-2233. [65] QIU W H, SUN J, FANG M J, et al. Occurrence of antibiotics in the main rivers of Shenzhen, China: association with antibiotic resistance genes and microbial community[J]. Sci Total Environ, 2019, 635: 334-341.
[66] JIANG X S, LIU L Q, CHEN J F, et al. Antibiotic resistance genes and mobile genetic elements in a rural river in Southeast China: occurrence, seasonal variation and association with the antibiotics[J]. Sci Total Environ, 2021, 778: 146131. doi: 10.1016/j.scitotenv.2021.146131
[67] WANG Z, HAN M Z, LI E H, et al. Distribution of antibiotic resistance genes in an agriculturally disturbed lake in China: their links with microbial communities, antibiotics, and water quality[J]. J Hazard Mater, 2020, 393: 122426. doi: 10.1016/j.jhazmat.2020.122426
[68] XIANG S Z, WANG X S, MA W, et al. Response of microbial communities of karst river water to antibiotics and microbial source tracking for antibiotics[J]. Sci Total Environ, 2020, 706: 135730. doi: 10.1016/j.scitotenv.2019.135730
[69] CROFTS T S, GASPARRINI A J, DANTAS G. Next-generation approaches to understand and combat the antibiotic resistome[J]. Nat Rev Microbiol, 2017, 15: 422-434. doi: 10.1038/nrmicro.2017.28
[70] SONG C, ZHANG C, FAN L M, et al. Occurrence of antibiotics and their impacts to primary productivity in fishponds around Tai Lake, China[J]. Chemosphere, 2016, 161: 127-135. doi: 10.1016/j.chemosphere.2016.07.009
[71] LI N, ZHANG X B, WU W, et al. Occurrence, seasonal variation and risk assessment of antibiotics in the reservoirs in North China[J]. Chemosphere, 2014, 111: 327-335. doi: 10.1016/j.chemosphere.2014.03.129
[72] XU L Y, ZHANG H, XIONG P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: a review[J]. Sci Total Environ, 2020, 753: 141975.
[73] HE S X, ZHOU Z G, LIU Y C, et al. Do dietary betaine and the antibiotic florfenicol influence the intestinal autochthonous bacterial community in hybrid tilapia (Oreochromis niloticus ♀ × O. aureus ♂)?[J]. World J Microb Biot, 2012, 28(3): 785-791. doi: 10.1007/s11274-011-0871-7
[74] BINH V N, DANG N, ANH N T K, et al. Antibiotics in the aquatic environment of Vietnam: Sources, concentrations, risk and control strategy[J]. Chemosphere, 2018, 197: 438-450. doi: 10.1016/j.chemosphere.2018.01.061
[75] LIU X, STEELE J C, MENG X Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: a review[J]. Environ Pollut, 2017, 223: 161-169. doi: 10.1016/j.envpol.2017.01.003
[76] CHEN Y H, SU J Q, ZHANG J Y, et al. High-throughput profiling of antibiotic resistance gene dynamic in a drinking water river-reservoir system[J]. Water Res, 2019, 149: 179-189. doi: 10.1016/j.watres.2018.11.007
[77] XU Y, GUO C S, LUO Y, et al. Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing, China[J]. Environ Pollut, 2016, 213: 833-840. doi: 10.1016/j.envpol.2016.03.054
[78] NIU Z G, ZHANG K, ZHANG Y. Occurrence and distribution of antibiotic resistance genes in the coastal area of the Bohai Bay, China[J]. Mar Pollut Bull, 2016, 107: 245-250. doi: 10.1016/j.marpolbul.2016.03.064
[79] ZHANG S Q, ABBAS M, REHMAN M U, et al. Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: a risk to human health[J]. Environ Pollut, 2020, 266: 115260. doi: 10.1016/j.envpol.2020.115260
[80] ZHAO W X, WANG B, YU G. Antibiotic resistance genes in China: occurrence, risk, and correlation among different parameters[J]. Environ Sci Pollut R, 2018, 25: 21467-21482. doi: 10.1007/s11356-018-2507-z
[81] Antimicrobial resistance: global report on surveillance[R]. Geneva, Switzerland: WHO, 2014: 35-55.
[82] ALEXANDRA T, LARISA I, ALEJANDRO H B, et al. Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture[J]. Env Microbbiol Rep, 2015, 7(5): 803-809. doi: 10.1111/1758-2229.12327
[83] SYROVA E, KOHOUTOVA L, DOLEJSKA M, et al. Antibiotic resistance and virulence factors in mesophilic Aeromonas spp. from Czech carp fisheries[J]. J Appl Microbiol, 2018, 125(6): 1702-1713. doi: 10.1111/jam.14075
[84] LEE K, KIM D, LEE D, et al. Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance[J]. Microbiome, 2020, 8: 2. doi: 10.1186/s40168-019-0774-7
[85] NNADOZIE C F, ODUME O N. Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes[J]. Environ Pollut, 2019, 254: 113067. doi: 10.1016/j.envpol.2019.113067
[86] ALEXANDER J, BOLLMANN A, SEITZ W, et al. Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria[J]. Sci Total Environ, 2015, 512-513: 316-325. doi: 10.1016/j.scitotenv.2015.01.046
[87] AARTS H, MARGOLLES A. Antibiotic resistance genes in food and gut (non-pathogenic) bacteria. Bad genes in good bugs[J]. Front Microbiol, 2015, 5: 754.
[88] SU H C, YING G G, TAO R, et al. Occurrence of antibiotic resistance and characterization of resistance genes and integrons in Enterobacteriaceae isolated from integrated fish farms in South China[J]. J Environ Monit, 2011, 13(11): 3229-3236. doi: 10.1039/c1em10634a
[89] TRANG D T, HIEN B T T, MØLBAK K, et al. Epidemiology and aetiology of diarrhoeal diseases in adults engaged in wastewater-fed agriculture and aquaculture in Hanoi, Vietnam[J]. Trop Med Int Health, 2007, 2: 23-33.
[90] AMARASIRI M, SANO D, SUZUKI S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: current knowledge and questions to be answered[J]. Crit Rev Environ Sci Technol, 2020, 50(19): 2016-2059. doi: 10.1080/10643389.2019.1692611
[91] KLASE G, LEE S, LIANG S, et al. The microbiome and antibiotic resistance in integrated fishfarm water: implications of environmental public health[J]. Sci Total Environ, 2019, 649: 1491-1501. doi: 10.1016/j.scitotenv.2018.08.288
[92] SHARON L. Reduced antibiotic use in livestock: how Denmark tackled resistance[J]. Environ Health Perspect, 2014, 122(6): 160-165.
[93] ANDERSSON D I, HUGHES D. Antibiotic resistance and its cost: is it possible to reverse resistance?[J]. Nat Rev Microbiol, 2010, 8: 260-271. doi: 10.1038/nrmicro2319
[94] GAGGÌA F, MATTARELLI P, BIAVATI B. Probiotics and prebiotics in animal feeding for safe food production[J]. Int J Food Microbiol, 2010, 141: S15-S28. doi: 10.1016/j.ijfoodmicro.2010.02.031
[95] LI Z, HU Y H, YANG Y Y, et al. Antimicrobial resistance in livestock: antimicrobial peptides provide a new solution for a growing challenge[J]. Anim Front, 2018, 8(2): 21-29. doi: 10.1093/af/vfy005
[96] GUO M T, YUAN Q B, YANG J. Ultraviolet reduction of erythromycin and tetracycline resistant heterotrophic bacteria and their resistance genes in municipal wastewater[J]. Chemosphere, 2013, 93(11): 2864-2868. doi: 10.1016/j.chemosphere.2013.08.068
[97] WANG B I, SHI H H, HABTESELASSIE M Y, et al. Simultaneous removal of multidrug-resistant Salmonella enterica serotype typhimurium, antibiotics and antibiotic resistance genes from water by electrooxidation on a Magnéli phase Ti4O7 anode[J]. Chem Eng J, 2020, 407: 127134.
[98] HOU J, CHEN Z Y, GAO J, et al. Simultaneous removal of antibiotics and antibiotic resistance genes from pharmaceutical wastewater using the combinations of up-flow anaerobic sludge bed, anoxic-oxic tank, and advanced oxidation technologies[J]. Water Res, 2019, 159: 511-520. doi: 10.1016/j.watres.2019.05.034
[99] KAEWMANEE A, CHIEMCHAISRI W, CHIEMCHAISRI C. Influence of high doses of antibiotics on anoxic-aerobic membrane bioreactor in treating solid waste leachate[J]. Int Biodeterior Biodegradation, 2019, 138: 15-22. doi: 10.1016/j.ibiod.2018.12.011
[100] RODRÍGUEZ-CHUECA J, VARELLA DELLA GIUSTINA S, ROCHA J, et al. Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs: removal or persistence of antibiotics and antibiotic resistance genes?[J]. Sci Total Environ, 2019, 652: 1051-1061. doi: 10.1016/j.scitotenv.2018.10.223
[101] BAO J F, WANG X J, GU J, et al. Effects of macroporous adsorption resin on antibiotic resistance genes and the bacterial community during composting[J]. Bioresour Technol, 2020, 295: 121997. doi: 10.1016/j.biortech.2019.121997
[102] WANG H C, WANG J, LI S M, et al. Synergistic effect of UV/chlorine in bacterial inactivation, resistance gene removal, and gene conjugative transfer blocking[J]. Water Res, 2020, 185: 116290. doi: 10.1016/j.watres.2020.116290
[103] WU Y Q, CHEN Z Q, WEN Q X, et al. Mechanism concerning the occurrence and removal of antibiotic resistance genes in composting product with ozone post-treatment[J]. Bioresour Technol, 2021, 321: 124433. doi: 10.1016/j.biortech.2020.124433
[104] NI B J, YAN X F, DAI X H, et al. Ferrate effectively removes antibiotic resistance genes from wastewater through combined effect of microbial DNA damage and coagulation[J]. Water Res, 2020, 185: 116273. doi: 10.1016/j.watres.2020.116273
[105] XU L K, CAMPOS L C, CANALES M, et al. Drinking water biofiltration: behaviour of antibiotic resistance genes and the association with bacterial community[J]. Water Res, 2020, 182: 115954. doi: 10.1016/j.watres.2020.115954
[106] MA J W, CUI Y B, LI A M, et al. Evaluation of the fate of nutrients, antibiotics, and antibiotic resistance genes in sludge treatment wetlands[J]. Sci Total Environ, 2020, 712: 136370. doi: 10.1016/j.scitotenv.2019.136370
[107] SHAO Y T, WANG Y P, YUAN Y W, et al. A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China[J]. Sci Total Environ, 2021, 798: 149205. doi: 10.1016/j.scitotenv.2021.149205