Preliminary metabacording dietary analysis of Diaphus splendidus in South China Sea
-
摘要: 食性研究是鱼类生物学和生态学研究的重要内容,是进行渔业资源开发和管理的基础。以南海亮眶灯鱼 (Diaphus splendidus) 为研究对象,提取其胃含物DNA,选用线粒体基因细胞色素C氧化酶亚基I (Mitochondrial cytochrome oxidase subunit I, COI) 作为分子标记进行扩增,通过高通量测序鉴定其食物组成。结果显示,亮眶灯鱼胃含物中共鉴定出饵料生物34种,隶属于5门7纲11目18科29属。亮眶灯鱼食物组成包括介形类、桡足类、端足类、鱼类、水母类、磷虾类、翼足类和多毛类。其中介形类、桡足类和端足类是其食物组成中的优势类群,这些优势类群与形态学鉴定方法的结果基本一致,此外还检测出形态学方法未鉴定到的水母这一食物类群。研究表明宏条形码技术适用于南海亮眶灯鱼的食性分析,且比基于形态学的食性分析具有更高的鉴别潜力。Abstract: Dietary analysis of fish is an important part of fish biology and ecology as well as the basis of fishery resources development. In this study, the gastric DNA of Diaphus splendidus was extracted, and the mitochondrial cytochrome c oxidase subunit I (COI) was amplified as a molecular marker. The food composition was identified by high-throughput sequencing. The results show that a total of 34 species belonged to 5 phyla, 7 classes, 11 orders, 18 families and 29 genera. The diet of D. splendidus mainly included Ostracoda, Copepoda, Amphipoda, Fish, Jellyfish, Euphausiacea, Gastropod and Polychaeta. Ostracoda, Copepoda and Amphipoda were the dominant groups in its food composition, which is basically consistent with the previous research based on traditional morphological identification, except for jellyfish that was identified only by this study. In conclusion, DNA metabarcoding method is suitable for the food analysis of D. splendidus in the South China Sea, and has higher identification potential than the food analysis based on morphology.
-
Keywords:
- Myctophidae /
- Diaphus splendidus /
- Dietary habits /
- Metabarcoding /
- Stomach content /
- South China Sea
-
水产养殖是世界上增长最快的食品生产领域之一,对全球粮食安全和优质蛋白质供给贡献重大,海水网箱养殖是其中的重要组成部分[1]。作为海水网箱养殖系统的核心构件之一,材质合适的网衣对于海水养殖生产至关重要。常规的聚乙烯和尼龙材料的养殖网衣很容易受到污损生物的影响[2]。污损生物在海水网箱养殖网衣上的附着已经成为一个日益影响海水养殖产业的全球性问题[3]。其会降低养殖网箱的容积,缩紧网眼,增加锚链的拖曳强度[3],养殖网箱的质量也会严重增加,并进一步导致网箱浮力的降低和网衣形变的增加[2-3]。另外,污损生物的附着还会对网衣造成直接的物理损伤,加速其老化;网目尺寸的降低会减少水流、营养物质的交换和养殖生物自身排泄物的扩散稀释[4]。同时,溶解氧含量也会受其干扰,特别是在污损生物附着量较大的夏季,污损生物附着叠加较高的水温,加上污损生物自身的呼吸活动,会进一步加剧溶解氧含量的下降,严重时可能会出现缺氧现象,不仅影响养殖生产,还可能会影响周边海洋环境,造成局部富营养化等负面影响[5]。此外,污损生物群落的形成可能会为寄生虫和病原微生物提供栖息场所,从而对养殖生物的健康产生潜在危害[6]。换网、人工或机器清理、防污涂层、化学产品的投入等物理、化学方法是海水网箱养殖业中常用的清除污损生物的途径,但上述方式可能会对周边海洋环境造成不利影响,有效性不强[7],也会额外增加养殖成本,降低养殖收入[8]。因此,需要寻找更有效的替代策略。
使用新型材料是替代并弥补传统网衣材料缺点的一种可行性策略[9]。目前海水养殖领域已经涌现出超高分子量聚乙烯、龟甲网和金属网等材料,替代传统的聚乙烯和尼龙材质的网衣,减少污损生物附着带来的危害[10]。其中,铜合金和超高分子量聚乙烯材料因其独特的性能而受到关注。铜合金是由铜和其他金属元素组成的合金材料,具有很好的抗腐蚀性、抗污损生物附着和抗凝水性能,以及较高的强度和耐磨性,已应用于海水养殖生产中,相比较传统网衣材料,其优越性也有相关报道[11]。超高分子量聚乙烯一般指相对分子质量在150×104以上的无支链线性聚乙烯,分子链上基本不含极性基团,结晶度一般在65%~85%,密度为0.920~0.964 g·cm−3。相对其他常用的工程塑料,超高分子量聚乙烯的密度降低,而其断裂伸长率和抗冲击强度均大幅提升,使其在水产养殖领域得到了不少应用[12]。新材料的应用在防止污损生物附着和养殖生物逃逸,保持养殖生物健康,减少传统网衣材料对环境的潜在负面影响等方面均表现出了良好的应用前景。但目前关于不同材质新材料之间防止污损生物附着效果的比较研究仍较缺乏,国内极少见相关文献,需要进一步开展相关筛选研究。
本研究通过超高分子量聚乙烯材质网衣和铜合金材质网衣的现场海上挂网实验,比较分析2种材质网衣附着的污损生物的种类组成、数量、季节变化及演替规律等,为海水网箱养殖网衣新材料的应用筛选、网衣的维护和清洗策略提供科学依据。
1. 材料与方法
1.1 实验材料
超高分子量聚乙烯纤维材料购自荷兰帝斯曼迪尼玛纤维公司 (DSM Dyneema) 并喷涂了防污涂层,铜合金材料购自日本三菱伸铜株式会社,由专业网衣厂商编织成网,具体规格为30 cm×30 cm。其中,铜合金网衣网目尺寸 (方形网目边长) 为5 cm,网线直径4 mm;超高分子量聚乙烯网衣网目拉直内径尺寸为5.2 cm,网线直径3 mm (图1)。另外配套的材料还包括钢筋、聚乙烯缆绳、尼龙扎带、铁锚、浮球等。
1.2 实验方法
1.2.1 挂网制作
超高分子量聚乙烯和铜合金网衣首先使用与其大小匹配的钢筋框固定并连接在一起,用尼龙扎带将网衣固定在钢筋框上,每组网衣均为铜合金和超高分子量聚乙烯网衣各1片,在外侧4个角使用聚乙烯缆绳将网衣材料串联。
1.2.2 实验海域
经现场踏勘调研,现场挂网实验在福建莆田南日岛福建龙源风力发电有限公司风电场海域开展,具体位置为风电场的测风塔 (119.54°E, 25.24°N) (图2-a)。实验海域水深约15 m,最低潮时水深约12 m,测风塔的桩基作为实验的挂点 (图2-b)。
1.2.3 实验设计
由图2可知,实验场所养殖设施密布,受周边船只通航的影响,实验方案需要减少缆绳在水平方向上的伸展。实验示意图如图3所示,首先将约100 m长的缆绳两头分别固定在测风塔两侧的桩基上,向外拉伸,形成“U”形,在“U”形的中间位置,垂直方向上沉积物中布设1根铁锚用缆绳连接,使“U”形稳定,然后水平方向上在“U”形的一侧布设挂网材料,与海面垂直,离海面约0.5 m,挂网材料垂直方向上使用长度约16 m的缆绳与浮筒连接固定,保持挂网材料能够随潮水涨落。同时,在浮筒上使用黄色油漆标记不同挂网组,便于后续识别取样。取样或者更换新的网衣组时,使用船舶起锚机将缆绳拉出海面取样或者更换新的网衣组,同时将网衣组拆解,分成单个网衣材料,然后平铺包装在聚乙烯密封袋中,分类编号带回实验室待分析。
在污损生物生长旺盛的春季 (2022年3—5月) 和夏季 (2022年6—8月) 开展逐月现场实验。
1.2.4 污损生物的鉴定分析
对每一个网衣对应的的污损生物用精密电子天平测定 (精度为0.01 g) 湿质量,采用体式显微镜进行种类鉴定。
1.2.5 密实度计算
网衣密实度指污损生物和网线面积之和与网衣面积的比值,可以反映污损生物的覆盖情况,基于计算机识别技术的计算方法为:输入网衣图像,调整图像大小,选取网衣总面积,计算网衣区域面积 (D1),利用大津算法 (Otsu's method) 将图像中的物体与背景进行自动分割,计算附着物及网线面积 (D2)。示意图见图4。公式为:
$$ \text { 密实度 }=\left(D_2 / D_1\right) \times 100 {\text{%}} $$ (1) 1.2.6 污损生物的群落优势种
采用相对重要性指数 (IRI) 进行污损生物的群落优势种分析[13],公式为:
$$ { {\rm{IRI}} }=(W+N) \times F \times 10^4$$ (2) 式中:W为某一种类的湿质量占总湿质量的百分比;N为某一种类的丰度占总丰度的百分比;F为该种类的出现频率。IRI≥1 000作为重要优势种的判别标准。
2. 结果
2.1 春、夏季2种网衣的密实度变化
春、夏季高分子量聚乙烯网衣和铜合金网衣的密实度变化趋势 (图5) 表明,2种网衣的密实度变化趋势基本一致,整体上表现为春季至夏季逐渐增加。其中,高分子量聚乙烯网衣的密实度均高于铜合金网衣。
由高分子量聚乙烯网衣和铜合金网衣污损生物的附着情况 (图6) 可以直观地看出,春季3月2种网衣污损生物开始有少量附着,4月污损生物有比较明显的增加,5月污损生物的种类发生转变;夏季6月污损生物的种类又发生转变,且6—7月污损生物的附着量增加,8月污损生物的种类又发生转变。
图 6 春、夏季 2 种网衣污损生物的附着情况注:图中sp代表春季,su代表夏季;3—8代表月份;c代表铜合金网衣,h代表高分子量聚乙烯网衣。Fig. 6 Adhesion of fouled organisms of ultra high molecular polyethylene mesh and copper alloy mesh in different seasonsNote: In the figure, sp represents spring, and su represents autumn; 3−8 represent months, c represents copper alloy mesh, and h represents ultra high molecular polyethylene mesh.2.2 春、夏季2种网衣污损生物的湿质量和附着密度
春季,高分子量聚乙烯网衣和铜合金网衣污损生物的平均湿质量分别为 (144.83±15.69) 和 (118.32±20.13) g·网−1;夏季,平均湿质量分别为 (1 054.59±34.81) 和 (876.25±23.16) g·网−1。春季,高分子量聚乙烯网衣和铜合金网衣污损生物的平均密度分别为 (2 699±49) 和 (2 678±42) 个·网−1;夏季,平均密度分别为 (4 630±53) 和 (3 870±64) 个·网−1。整体上,春、夏季高分子量聚乙烯网衣的平均湿质量和平均密度均高于铜合金网衣。
2.3 春、夏季2种网衣污损生物的种类构成
春季高分子量聚乙烯网衣共鉴定出5大类12种污损生物,其中甲壳动物种类数最多 (5种),占总种类数的41.67%;藻类4种,占总种类数的33.33%;软体动物、环节动物、刺胞动物各1种,均占总种类数的8.33%。春季铜合金网衣也共鉴定出5大类12种污损生物,其中甲壳动物种类数最多 (5种),占总种类数的41.67%;藻类3种,占总种类数的25.00%;环节动物2种,占总种类数的16.67%;软体动物、刺胞动物各1种,均占总种类数的8.33%。
夏季高分子量聚乙烯网衣共鉴定出7大类35种污损生物,其中以软体动物和甲壳动物种类数最多,各11种,均占总种类数的31.43%;藻类6种,占总种类数的17.14%;环节动物3种,占总种类数的8.57%;苔藓动物2种,占总种类数的5.71%;刺胞动物、棘皮动物各1种,均占总种类数的2.86%。夏季铜合金网衣共鉴定出6大类19种污损生物,其中以软体动物和甲壳动物种类数最多,各6种,均占总种类数的31.58%;藻类3种,占总种类数的15.79%;环节动物2种,占总种类数的10.53%;刺胞动物和苔藓动物各1种,均占总种类数的5.26%。
春季高分子量聚乙烯网衣和铜合金网衣污损生物种类数相同,而夏季高分子量聚乙烯网衣污损生物种类数明显多于铜合金网衣。
2.4 春、夏季2种网衣污损生物的优势种类
春、夏季2种网衣污损生物的优势种类如表1所示。春季,高分子量聚乙烯网衣出现的优势种有4种,分别为长颈麦杆虫 (Caprella equilibra)、中胚花筒螅 (Tubularia mesembryanthemum)、理石叶钩虾 (Jassa marmorata) 和厚壳贻贝 (Mytilus coruscus);铜合金网衣出现的优势种有3种,分别为长颈麦杆虫、理石叶钩虾和厚壳贻贝。其中,长颈麦杆虫、理石叶钩虾和厚壳贻贝是2种网衣的共同优势种,第一优势种均为长颈麦杆虫,高分子量聚乙烯网衣和铜合金网衣长颈麦杆虫的IRI分别为4 740和3 676。
表 1 春、夏季2种网衣污损生物的优势种类统计Table 1 Statistics of dominant species of fouled organisms for two kinds of net in spring and summer网衣类型
Type of mesh春季 Spring 夏季 Summer 种名
Species
name数量
Quantity/
(个·网–1)湿质量
Wet mass/
(g·网–1)相对
重要性
指数
IRI种名
Species
name数量
Quantity/
(个·网–1)湿质量
Wet mass/
(g·网–1)相对
重要性
指数
IRI高分子量聚乙烯网衣
Ultra-high molecular
weight polyethylene mesh长颈麦杆虫
Caprella equilibra19 647 25.02 4 740 理石叶钩虾
Jassa marmorata13 326 13.65 3 285 中胚花筒螅
Tubularia mesembryanthemum131 202.42 3 970 长颈麦杆虫
Caprella equilibra10 325 10.17 2 544 理石叶钩虾
Jassa marmorata15 582 7.18 3 451 翡翠股贻贝
Perna viridis4 024 766.58 1 718 厚壳贻贝
Mytilus coruscus2 389 89.44 1 073 中胚花筒螅
Tubularia mesembryanthemum139 349.86 1 549 — — — — 背棘麦杆虫
Caprella caura5 407 13.35 1 367 — — — — 网纹藤壶
Amphibalanus
reticulatu393 639.55 1 146 铜合金网衣
Copper alloy mesh长颈麦杆虫
Caprella equilibra11 300 14.28 3 676 翡翠股贻贝
Perna viridis3 435 675.28 4 138 理石叶钩虾
Jassa marmorata8 929 4.06 2 641 长颈麦杆虫
Caprella equilibra5 392 5.91 2 813 厚壳贻贝
Mytilus coruscus2 520 129.50 1 356 理石叶钩虾
Jassa marmorata4 845 5.60 2 529 — — — — 中胚花筒螅
Tubularia mesembryanthemum103 208.87 1 641 注:—. 未鉴定出。 Note: —. Not identified. 夏季,高分子量聚乙烯网衣出现的优势种有6种,分别为理石叶钩虾、长颈麦杆虫、翡翠股贻贝 (Perna viridis)、中胚花筒螅、背棘麦杆虫 (Caprella caura) 和网纹藤壶 (Amphibalanus reticulatu);铜合金网衣出现的优势种有4种,分别为翡翠股贻贝、长颈麦杆虫、理石叶钩虾和中胚花筒螅。其中,翡翠股贻贝、长颈麦杆虫、理石叶钩虾和中胚花筒螅是2种网衣的共同优势种。高分子量聚乙烯网衣第一优势种是理石叶钩虾,IRI为3 285,而铜合金网衣第一优势种是翡翠股贻贝,IRI为4 138。
3. 讨论
3.1 2种材质网衣污损生物的生态特性
海水养殖网箱的网衣为各类污损生物的附着提供了附着基,同时,海水养殖网箱水体中丰富的营养盐为污损生物的生长提供了养料,在环境合适时,污损生物在网衣上大量繁殖生长,其附着种类和附着量与养殖海域、养殖种类、养殖设施、养殖季节等因素密切相关[14]。目前已知的中国沿海主要污损生物可以分为藻类、腔肠动物、苔藓动物、多毛类动物、软体动物、甲壳动物、被囊动物及海绵动物等8大类群,其群落组成有明显的地域性,并呈季节性变化[15]。本研究实验点位于福建南日岛海域,出现的污损生物共有7个类群,基本覆盖了上述各类群。由于受当地海区的水温、盐度、光照、溶解氧、pH、水流和营养物质等环境因素的影响,本研究出现的主要群落以近岸暖水种和沿岸温带广温种为主,春、夏季2种网衣污损生物的主要优势种类与严涛等[16]报道的东海区主要污损生物优势种相吻合。本研究表明甲壳动物和软体动物是春、夏季的主要优势类群,原因是软体动物中腹足类生物较多,其生态习性使其容易附着在网衣上,如藤壶幼虫可以释放一种黏合剂,在适宜的附着表面进行永久附着[17],而贻贝则使用胶原蛋白形成的足丝与底质牢固结合,进行选择性附着[18]。随着网衣密实度的增加,附着面积也随之增大,给甲壳动物等污损生物的生存提供了良好的场所,导致甲壳动物种类数随之增加。已有研究[19]表明,东海海域污损生物出现的低谷期为水温较低的冬、春季,其附着种数少,附着密度低,6—9月则是东海海域污损生物附着量高的季节。本研究结果与该研究一致,2种网衣污损生物的种类和数量均表现出夏季高于春季,特别是夏季总湿质量约为春季的6~9倍,总密度也比春季高约1 000个·网−1。这种季节性差异,是因为随着水温的升高,污损生物进入生长和繁殖旺盛期,个体增多,导致夏季2种网衣的密实度远高于春季[20]。春季的3—4月和夏季的6—7月2种网衣对湿质量贡献最大的附着生物均为中胚花筒螅,而5和7月对湿质量贡献最大的附着生物分别为厚壳贻贝和翡翠股贻贝,说明相同季节的不同月份之间污损生物的主要优势种也存在差异。由表1可以看出,春、夏季的优势种也存在差异,这与不同污损生物的最适生长温度有关[21]。
3.2 2种材质网衣对污损生物附着的影响
目前世界范围内海水养殖网箱的网衣一般采用传统合成纤维网衣材料加工制作,在养殖生产中由于污损生物附着严重,严重影响了网箱养殖的正常生产。本研究结果表明,不同材质的网衣对污损生物的附着有较大影响,春、夏季高分子量聚乙烯网衣污损生物的湿质量和密度均高于铜合金网衣。2种不同材质的网衣悬挂于相同海域,季节、水温、盐度、水文等环境条件相同,出现的污损生物种类、群落和生物量的差异与网衣材质有关。细菌在不同材料的表面形成的微生物膜是污损生物附着的基础,铜合金作为一种金属网衣,具有抑制微生物菌类和水生生物的作用,其主要原理是铜/海水界面的化学作用可以释放出具有杀菌作用的铜离子和其他合金元素,使铜合金表面无法形成微生物膜,从而使污损生物无法附着[22]。这种抑制效果受铜/海水界面的化学作用及污损生物的附着强度控制,同时也受铜合金网衣周边物理、化学和生物因素的影响。尽管高分子量聚乙烯网衣拉伸力等综合性能也较优秀,且本实验用高分子量聚乙烯网衣也喷涂了防污涂层,但其防污损生物附着能力仍弱于铜合金网衣,可能是由于随着时间的延长,高分子量聚乙烯网衣的防污涂层由于环境条件的影响出现磨损、剥落;同时,由于高分子量聚乙烯网衣更粗糙,更易于污损生物的附着。
值得指出的是,尽管铜合金网衣比超高分子量聚乙烯网衣的防污效果好,具有很好的抗腐蚀性、抗凝水性能,较高的强度、耐磨性、可回收利用性及较好的环保性能[11],且已在日本、美国、北欧、澳大利亚等国家或地区的海水养殖领域开展了实际应用[9,23-24]。但是,铜合金网衣的成本及网箱规格和装配技术要求均较高,需要进一步研究和改进。建议根据养殖实际需求,将多种材质的网衣联合使用,既可降低成本,又能满足渔业发展的需要。
4. 结论
超高分子量聚乙烯和铜合金网衣的污损生物附着呈现出一定的季节性差异,2种网衣污损生物的密实度、种类数、优势种种类数、湿质量和密度均表现为春季低于夏季。铜合金网衣的防污损生物附着效果优于高分子量聚乙烯网衣。
-
表 1 亮眶灯鱼生物学信息
Table 1 Sampling information of D. splendidus
样品编号
Sample No.体长
Body length/mm体质量
Body mass/g摄食强度
Feeding intensityLK-1 58 2.88 1 LK-2 47 1.46 1 LK-3 56 2.89 2 LK-4 53 2.19 2 LK-5 54 2.35 1 LK-6 48 1.62 1 LK-7 47 1.69 1 LK-8 38 0.95 2 表 2 亮眶灯鱼肌肉和胃含物种类鉴定的PCR引物
Table 2 PCR primers for species identification of muscle and stomach contents of D. splendidus
表 3 亮眶灯鱼胃含物组成
Table 3 Stomach contents of D. splendidus
纲
Class饵料生物
Prey species相对丰度百分比
Percentage of abundance/%排序
Rank生物类群
Biome甲壳纲 Hexanauplia 瘦乳点水蚤 Pleuromamma gracilis 0.10 20 桡足类 剑乳点水蚤 Pleuromamma xiphias 0.47 8 桡足类 腹突乳点水蚤 Pleuromamma abdominalis 0.07 24 桡足类 美丽长腹水蚤 Metridia venusta 0.13 14 桡足类 普通波水蚤 Undinula vulgaris 0.28 17 桡足类 波刺水蚤属 Undeuchaeta sp. 0.41 11 桡足类 茗荷属 Conchoderma sp. 9.83 2 桡足类 介形虫纲 Ostracoda 长拟浮萤 Paraconchoecia oblonga 0.09 22 介形类 猬刺拟浮萤 Paraconchoecia echinata 0.44 10 介形类 胖海浮萤 Halocypris inflata 77.70 1 介形类 吸海萤属 Halocypris sp. USNM IZ 1448950 0.06 27 介形类 双浮萤属 Discoconchoecia sp. S8-D6 0.67 6 介形类 短刺直浮萤 Orthoconchoecia secernenda 0.11 19 介形类 刺额葱萤 Porroecia spinirostris 0.04 30 介形类 软甲纲 Malacostraca 拟遂足磷虾 Thysanopoda aequalis 0.40 12 磷虾类 武装片戎 Vibilia armata 3.56 3 端足类 莫氏硬壳寄居蟹 Calcinus morgani 0.07 24 十足类 辐鳍亚纲 Actinopteri 半裸银斧鱼 Argyropelecus hemigymnus 0.03 31 鱼类 长银斧鱼 Argyropelecus affinis 0.07 24 鱼类 勃氏圆罩鱼 Cyclothone braueri 0.10 20 鱼类 大西洋钻光鱼 Gonostoma atlanticum 0.36 13 鱼类 离光鱼属 Woodsia sp. 0.03 32 鱼类 黑须黑巨口鱼 Melanostomias tentaculatus 0.06 27 鱼类 眶灯鱼属 Diaphus sp. 0.12 18 鱼类 吕氏眶灯鱼 Diaphus luetkeni 0.08 23 鱼类 眶暗虹灯鱼 Bolinichthys pyrsobolus 0.05 29 鱼类 后肛鱼 Opisthoproctus soleatus 0.45 9 鱼类 望远冬肛鱼 Winteria telescopa 0.59 7 鱼类 水螅纲 Hydrozoa 棍手水母属 Rhopalonema sp. 0.23 15 水母类 Botrynema sp. 2.43 4 水母类 腹足纲 Gastropoda Clio pyramidata 0.78 5 翼足类 Diacria major 0.01 34 翼足类 驼龟螺 Cavolinia gibbosa 0.02 33 翼足类 多毛纲 Polychaeta 叶须虫属 Phyllodoce sp. 11BIOAK-1631 0.16 16 多毛类 表 4 南海海域不同灯笼鱼胃含物比较
Table 4 Stomach contents of different Myctophidae fishes from South China Sea
生物类群
Biome亮眶灯鱼 (本研究)
D. splendidus (this study)金鼻眶灯鱼[14] D. chrysorhynchus 瓦氏眶灯鱼[15] D. watasei 尾明角灯鱼[32] Ceratoscopelus warmingii 介形类 Ostrac oda √ √ √ √ 桡足类 Copepoda √ √ √ √ 端足类 Amphipoda √ √ √ √ 鱼类 Fish √ √ √ √ 磷虾类 Euphausiacea √ √ √ √ 腹足类 Gastropod √ √ √ 十足类 Decapoda √ √ 多毛类 Polychaeta √ √ 水母类 Jellyfish √ 萤虾类 Lucifer √ 等足类 Sopoda √ 毛鄂类 Chaetognatha √ 头足类 Cephalopoda √ √ -
[1] HULLEY P A. Upper-slope distributions of oceanic lanternfishes (family: Myctophidae)[J]. Mar Biol, 1992, 114(3): 365-383. doi: 10.1007/BF00350027
[2] HUDSON J M, STEINBERG D K, SUTTON T T, et al. Myctophid feeding ecology and carbon transport along the northern Mid-Atlantic Ridge[J]. Deep Sea Res I, 2014, 93(10): 104-116.
[3] FRID A, MARLIAVE J. Predatory fishes affect trophic cascades and apparent competition in temperate reefs[J]. Biol Lett, 2010, 6(4): 533-536. doi: 10.1098/rsbl.2010.0034
[4] MOKU M, KAWAGUCHI K, WATANABE H, et al. Feeding habits of three dominant myctophid fishes, Diaphus theta, Stenobrachius leucopsarus and S. nannochir, in the subarctic and transitional waters of the western north Pacific[J]. Mar Ecol Prog Ser, 2000, 207: 129-140. doi: 10.3354/meps207129
[5] WATANABE H, KAWAGUCHI K. Decadal change in the diets of the surface migratory myctophid fish myctophum nitidulum in the kuroshio region of the western north Pacific: predation on sardine larvae by myctophids[J]. Jap Soc Fish Sci, 2003, 69(4): 716-721.
[6] TAKAGI K, YATSU A, ITOH H, et al. Comparison of feeding habits of myctophid fishes and juvenile small epipelagic fishes in the western north Pacific[J]. Mar Biol, 2009, 156(4): 641-659. doi: 10.1007/s00227-008-1115-8
[7] SHREEVE R S, COLLINS M A, TARLING G A, et al. Feeding ecology of myctophid fishes in the northern Scotia Sea[J]. Mar Ecol Prog Ser, 2009, 386: 221-236. doi: 10.3354/meps08064
[8] PUSCH C, SCHNACK-SCHIEL S, MIZDALSKI E, et al. Feeding ecology of three myctophid species at the greatmeteor seamount (northeast Atlantic)[J]. Arch Fish Mar Res, 2004, 51(1-3): 251-271.
[9] DALPADADO P, GJØSÆTER J. Feeding ecology of the lanternfish benthosema pterotum from the Indian Ocean[J]. Mar Biol, 1988, 99(4): 555-567. doi: 10.1007/BF00392563
[10] JOHANNES K, RUTH B S, KNUD S. Aspects of horizontal distribution and diet of myctophid fish in the Arabian Sea with reference to the deep water oxygen deficiency[J]. Deep Sea Res II, 1993, 40(3): 783-800. doi: 10.1016/0967-0645(93)90058-U
[11] SAUNDERS R A, HILL S L, TARLING G A, et al. Myctophid fish (family myctophidae) are central consumers in the food web of the Scotia Sea (southern ocean)[J]. Front Mar Sci, 2019: 6. doi: 10.3389/fmars.2019.00530
[12] PAKHOMOV E A, PERISSINOTTO R, MCQUAID C D. Prey composition and daily rations of myctophid fishes in the Southern Ocean[J]. Mar Ecol Prog Ser, 1996, 134(1/2/3): 1-14.
[13] 金海卫, 薛利建, 潘国良, 等. 东海和黄海南部七星底灯鱼摄食习性的研究[J]. 海洋渔业, 2011, 33(4): 368-377. doi: 10.3969/j.issn.1004-2490.2011.04.002 [14] 龚玉艳, 陈作志, 张俊, 等. 南海北部陆坡海域秋季金鼻眶灯鱼的摄食习性[J]. 南方水产科学, 2015, 11(5): 90-99. doi: 10.3969/j.issn.2095-0780.2015.05.011 [15] 龚玉艳, 杨玉滔, 孔啸兰, 等. 南海北部陆坡海域瓦氏眶灯鱼的渔业生物学特征[J]. 中国水产科学, 2018, 25(5): 1901-1101. [16] 郑光美, 赵欣如, 宋杰, 等. 黄腹角雉的食性研究[J]. 生态学报, 1986, 4(3): 283-288. [17] 武正军, 李义明, 王彦平. 洗胃法与剖胃法在四种蛙食性分析中的对比[J]. 动物学报, 2007, 4(2): 364-372. doi: 10.3969/j.issn.1674-5507.2007.02.022 [18] POMPANON F, DEAGLE B E, SYMONDSON W O C, et al. Who is eating what: diet assessment using next generation sequencing[J]. Mol Ecol, 2012, 21(8): 1931-1950. doi: 10.1111/j.1365-294X.2011.05403.x
[19] JI Y, ASHTON L, PEDLEY S M, et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding[J]. Ecol Lett, 2013, 16(10): 1245-1257. doi: 10.1111/ele.12162
[20] 刘刚, 宁宇, 夏晓飞, 等. 高通量测序技术在野生动物食性分析中的应用[J]. 生态学报, 2018, 38(9): 3347-3356. [21] 林先智, 胡思敏, 刘胜, 等. 传统测序与高通量测序在稚鱼食性分析中的比较[J]. 应用生态学报, 2018, 29(9): 3093-3101. [22] 周天成, 胡思敏, 林先智, 等. 基于18S rDNA条形码技术的珊瑚礁区塔形马蹄螺(Tectus pyramis)食性分析[J]. 海洋科学, 2020, 44(2): 99-107. doi: 10.11759/hykx20190117002 [23] 孙鹏, 凌建忠, 张辉, 等. 基于高通量测序的象山港海域黑鲷 (Acanthopagrus schlegelii) 食性分析[J]. 生态学报, 2021, 41(3): 1221-1228. [24] 徐盛楠, 孙婷婷, 张建设, 等. 基于高通量测序技术的两种水螅水母现场食物研究[J]. 应用海洋学学报, 2020, 39(1): 49-56. [25] WARD R D, ZEMLAK T S, INNES B H, et al. DNA barcoding Australia's fish species[J]. Philos Trans R Soc Lond B Biol Sci, 2005, 360(1462): 1847-1857. doi: 10.1098/rstb.2005.1716
[26] 杨江华. 太湖流域浮游动物物种多样性与环境污染群落生态效应研究[D]. 南京: 南京大学, 2017: 32-33. [27] LERAY M, YANG J Y, MEYER C P, et al. A new versatile primer set targeting a short fragment of the mitochondrial coi region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents[J]. Front Zool, 2013, 10(1). DOI: 10.1186/1742-9994-10-34.
[28] EDGAR C E. Uparse: highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10: 996-998. doi: 10.1038/nmeth.2604
[29] PEAY K G, GARBELOTTO M, BRUNS T D. Spore heat resistance plays an important role in disturbance-mediated assemblage shift of ectomycorrhizal fungi colonizing Pinus muricata seedlings[J]. J Ecol, 2009, 97(3): 537-547.
[30] NIETO M P, CARBONE S S. Characterization of juvenile maritime pine (Pinus pinaster Ait.) ectomycorrhizal fungal community using morphotyping, direct sequencing and fruit bodies sampling[J]. Mycorrhiza, 2009, 19(2): 91-98. doi: 10.1007/s00572-008-0207-0
[31] CLARKE L J, TREBILCO R, WALTERS A, et al. DNA-based diet analysis of mesopelagic fish from the southern Kerguelen axis[J]. Deep-Sea Res II, 2020, 172: 104494.
[32] 孔啸兰, 江艳娥, 龚玉艳, 等. 南海中北部尾明角灯鱼渔业生物学特性的初步研究[J]. 南方水产科学, 2016, 12(4): 117-124. doi: 10.3969/j.issn.2095-0780.2016.04.015 [33] 龚玉艳, 杨玉滔, 范江涛, 等. 南海北部陆架斜坡海域夏季浮游动物群落的空间分布[J]. 南方水产科学, 2017, 13(5): 8-15. doi: 10.3969/j.issn.2095-0780.2017.05.002 [34] WANG J T M, CHEN C T. A review of lanternfishes (families: Myctophidae and Neoscopelidae) and their distributions around Taiwan and the Tungsha Islands with notes on seventeen new records[J]. Zool Stud, 2001, 40(2): 103-126.
[35] 张俊, 江艳娥, 陈作志, 等. 南海中南部中层鱼资源声学积分值及时空分布初探[J]. 中国水产科学, 2017, 24(1): 120-135. [36] 左涛, 王荣, 王克, 等. 夏季南黄海浮游动物的垂直分布与昼夜垂直移动[J]. 生态学报, 2004, 4(3): 524-530. doi: 10.3321/j.issn:1000-0933.2004.03.019 [37] O'RORKE R, LAVERY S, JEFFS A. PCR enrichment techniques to identify the diet of predators[J]. Mol Ecol Resour, 2012, 12(1): 5-17. doi: 10.1111/j.1755-0998.2011.03091.x
[38] VESTHEIM H, JARMAN S N. Blocking primers to enhance PCR amplification of rare sequences in mixed samples: A case study on prey DNA in antarctic krill stomachs[J]. Front Zool, 2008, 5: 12.
[39] 李晗溪, 黄雪娜, 李世国, 等. 基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警[J]. 生物多样性, 2019, 27(5): 491-504. doi: 10.17520/biods.2018233 -
期刊类型引用(7)
1. 赵明光,冯广朋,王海华,陈建华,沈晨晨,张燕萍,章海鑫,傅义龙,姚远,徐维康. 基于胃含物分析法和eDNA宏条形码技术的鄱阳湖凶猛性鱼类食性分析. 湖泊科学. 2025(02): 532-542 . 百度学术
2. 宋晓宇,刘永,李纯厚,石娟,赵金发,王腾,孔啸兰,江艳娥,康志鹏. 南海西沙毗邻海域四种眶灯鱼的营养生态位. 中国水产科学. 2024(02): 209-218 . 百度学术
3. 王欣,刘必林,何骏杰,宋林玮. 基于高通量测序的西北太平洋柔鱼食性初步分析. 上海海洋大学学报. 2024(04): 900-910 . 百度学术
4. 高祥刚,夏莹,王震,邢衍阔,鹿志创,田甲申. 基于DNA宏条形码技术的斑海豹食性分析. 野生动物学报. 2024(03): 498-503 . 百度学术
5. 蒙庆米,马兰,陈继位,莫显义,姚俊杰,杨立. 基于水体及胃含物DNA宏条形码技术的斑鳠幼鱼食性分析. 南方水产科学. 2024(05): 149-158 . 本站查看
6. 李玉龙,陈百灵,鲍相渤,周遵春,刘卫东,李云峰. 基于DNA宏条形码技术的沙氏下鱵幼鱼食性分析. 中国水产科学. 2023(04): 393-405 . 百度学术
7. 蔡伟杰,张存芳,李柯懋,郝佳慧,覃敏欣,关弘弢,高强,刘丹,聂苗苗,贾军梅,祁得林. 青海湖裸鲤肠道显微结构及基于宏条形码的食性分析. 水生生物学报. 2023(12): 1954-1964 . 百度学术
其他类型引用(6)