基于LC-MS技术的海、淡水养殖刀鲚卵巢的代谢组学比较分析

高淑芳, 张金鹏, 施永海, 袁新程, 刘其根

高淑芳, 张金鹏, 施永海, 袁新程, 刘其根. 基于LC-MS技术的海、淡水养殖刀鲚卵巢的代谢组学比较分析[J]. 南方水产科学, 2022, 18(3): 68-75. DOI: 10.12131/20210185
引用本文: 高淑芳, 张金鹏, 施永海, 袁新程, 刘其根. 基于LC-MS技术的海、淡水养殖刀鲚卵巢的代谢组学比较分析[J]. 南方水产科学, 2022, 18(3): 68-75. DOI: 10.12131/20210185
GAO Shufang, ZHANG Jinpeng, SHI Yonghai, YUAN Xincheng, LIU Qigen. Metabonomics analysis of ovaries of Coilia nasus in seawater and freshwater based on liquid chromatography-mass spectrometry[J]. South China Fisheries Science, 2022, 18(3): 68-75. DOI: 10.12131/20210185
Citation: GAO Shufang, ZHANG Jinpeng, SHI Yonghai, YUAN Xincheng, LIU Qigen. Metabonomics analysis of ovaries of Coilia nasus in seawater and freshwater based on liquid chromatography-mass spectrometry[J]. South China Fisheries Science, 2022, 18(3): 68-75. DOI: 10.12131/20210185

基于LC-MS技术的海、淡水养殖刀鲚卵巢的代谢组学比较分析

基金项目: 农业部鱼类营养与环境生态研究中心 (A1-3201-19-300204);上海市科委重点攻关项目(17391900300)
详细信息
    作者简介:

    高淑芳 (1994—),女,硕士研究生,研究方向为刀鲚分子生物学。E-mail: sfgao101@163.com

    通讯作者:

    刘其根 (1965—),男,教授,从事水域生态学研究。E-mail: qgliu@shou.edu.cn

  • 中图分类号: S 965.227

Metabonomics analysis of ovaries of Coilia nasus in seawater and freshwater based on liquid chromatography-mass spectrometry

  • 摘要: 为探究海、淡水养殖环境对刀鲚 (Coilia nasus) 卵巢发育的影响,采用非靶向代谢组学的方法,测定了海、淡水环境下刀鲚卵巢中代谢产物的差异情况,并与基因组百科全书 (KEGG) 数据库进行比对,找出相对应的代谢通路并分析其原因。结果表明,海水组和淡水组样品共鉴定出47种差异代谢物 (P<0.05、FC>1、VIP>1),与海水组相比,淡水组表达差异倍数最明显的为碳环血氧烷A2 (Carbocyclic thromboxane A2)、半乳糖神经酰胺(Galactosyl ceramide),差异倍数分别为10.40、2.78倍;与海水组相比,淡水组卵巢组织内皮质醇升高了1.61倍;对47种差异代谢物进行KEGG分析发现,变化显著的通路有氨酰-tRNA的生物合成和嘧啶代谢通路 (P<0.05),皮质醇、氨酰-tRNA的生物合成通路、嘧啶代谢通路和鞘磷脂代谢通路可能与刀鲚生殖洄游过程中卵巢发育有关。
    Abstract: In order to clarify the effects of seawater and freshwater on the ovary development of Coilia nasus, we analyzed their differences by using non-targeted metabolomics, and compared with database of KEGG directly to find out the corresponding metabolic pathways, then analyzed its causes. The results show that a total of 47 metabolites had significant difference between the two groups (P<0.05, FC>1, VIP>1). Compared with the seawater group, the most significant differences in the expression were carbocyclic thromboxane A2, Galactosylceramide, and their differences were 10.40 and 2.78 times, respectively. The cortisol in the ovarian tissue of the freshwater group increased by 1.61 times. According to the analysis on KEGG metabolic pathways of 47 different metabolites, the biosynthesis of aminoacyl-tRNA and pyridine metabolic pathways changed in the seawater and freshwater environments significantly (P<0.05). The biosynthesis pathway of cortisol, aminoyl-tRNA, pyrimidine metabolism pathway and sphingo-lipid metabolism pathway may be related to the ovarian development during the reproductive migration of C. nasus.
  • 三角帆蚌 (Hyriopsis cumingii) 所产珍珠占中国珍珠产量的80%以上[1],且品质良好、经济价值较高。但三角帆蚌培育珍珠的大小、光泽度等均与性别有关,在产珠性能方面雄性优于雌性[2],而人工雌雄分养情况下能促进雌性三角帆蚌的个体发育及产珠性能[3]。三角帆蚌属于雌雄异体,不存在异型染色体,目前性别决定无法从染色体层面进行研究,所以性别分化与决定相关基因的研究成为性别调控的热点,对揭示复杂的性别决定与分化机制研究及创造经济效益具有重大意义[4]

    丝裂原活化蛋白激酶 (MAPK) 也称为细胞外信号调节激酶,受各种细胞外生长因子及受体的相互作用而被激活,会影响许多组织特异性生物活性,如细胞增殖、存活和分化[5-6]。然而,MAPK在雌性生殖细胞中不遵循这种传统的模式[7]。在卵母细胞中,MAPK独立于生长因子和酪氨酸激酶受体而被激活,独立于转录调控发挥作用[8],受特殊上游调节剂激酶 MOS的控制,在卵母细胞减数分裂中起关键作用[9-10]。Mos/MAPK通路在脊椎动物中启动卵母细胞的成熟发育[10]C-MOS基因在Mos/MAPK通路中位于MAP2K1基因的上游。MAP2K1基因作为MAPK家族的一分子,参与细胞增殖、分化、基因转录调控和发育过程[11-13]。在脊椎动物中,MAP2K1基因参与小鼠 (Mus musculus) 的卵巢发育[14],促进水牛 (Bubalus) 卵母细胞的表达与发育[15],对鹅 (Anser cygnoides orientalis) 的卵泡发育起到支持与促进作用[5]。在无脊椎动物中,MAP2K1基因对斑节对虾 (Penaeus monodon) 卵母细胞的生长发育起促进作用[14];能促进果蝇 (Drosophilid) 的卵母细胞成熟[16]

    在贝类中,紫贻贝 (Mytilus galloprovincialis)、虾夷扇贝 (Mizuhopecten yessoensis) 的MAP2K1基因均有报道[17-18]。本文对三角帆蚌MAP2K1基因进行了克隆,分析了该基因在性腺不同阶段和雌雄性腺组织中的表达模式,探讨了该基因在三角帆蚌性腺发育中的作用。

    从浙江省金华市武义实验基地选取健康的1—8月龄和1、2、3龄三角帆蚌,暂养1周后对1—8月龄个体的性腺组织、1龄和2龄个体各组织 (性腺、闭壳肌、肝胰腺、鳃、外套膜、斧足)、3龄个体的性腺组织进行取样,样本立刻放入液氮,速冻后用镊子放入样本盒,−80 ℃保存。

    按TRIzol法提取总RNA,利用NanoDrop 2000分度计进行核酸检测,通过1%琼脂糖凝胶电泳[19] (电压180 V,电流200 mA) 检查RNA完整性情况 (3条条带5.8S、18S、28S)。检查合格后将RNA保存于−80 ℃。将RNA进行反转录 (Prime ScriptTM RT reagent Kit with gDNA Eraser试剂盒,TaKaRa, 日本) 得到cDNA模板,cDNA保存于−40 ℃。

    通过转录组库[20]中得到的序列设计3'RACE的inner和outer引物 (表1),并参照SMART 3'RACE试剂盒 (Clontech, America) 说明书进行MAP2K1基因的3'端PCR扩增。电泳 (电压180 V,电流200 mA) 检测产物,割胶回收纯化。用PMD19-T (TaKaRa,大连) 载体连接纯化产物,16 ℃下连接4 h。准备冰盒,在冰上将连接产物转化入大肠杆菌DH5α (TaKaRa,大连) 中 30 min。准备含氨苄的固体培养基 (4 ℃冰箱保存),将所得菌液均匀地涂在上面,37 ℃培养10 h。挑选白色菌株送至生工 (上海) 测序。

    表  1  本实验所需引物
    Table  1.  Primers for this study
    引物名  
    Primer's name  
    引物序列 (5'—3')    
    Primer sequence (5'−3')    
    用途   
    Purpose   
    K1-O TATTCCTACAGCAGACTCGTGATTG 3'RACE outer
    K1-I GACCTGGATTTGATAATAGATGTGGG 3'RACE inner
    K1-YG-F AACAAGCTGAATCTGACGCTG 荧光定量正向引物
    K1-YG-R GCTCCTTCAGTTTCTTGGTCAGT 荧光定量反向引物
    EFl-αF GGAACTTCCCAGGCAGACTGTGC 内参正向引物
    EFl-αR TCAAAACGGGCCGCAGAGAAT 内参反向引物
    K1-YW-F AACAAGCTGAATCTGACGCTG 原位杂交正向引物
    K1-YW-R TAATACGACTCACTATAGGGGCTCCTTCAGTTTCTTGGTCAGT 原位杂交反向引物
    M-GR-1F TTGGGTATGGTTCGCAGTT 干扰链1正向引物
    M-GR-1R GCCCTTGTAAGCTCATGTTT 干扰链1正向引物
    T7+M-GR-1F TAATACGACTCACTATAGGGTTGGGTATGGTTCGCAGTT T7+干扰链1正向引物
    T7+M-GR-1R TAATACGACTCACTATAGGGGCCCTTGTAAGCTCATGTTT T7+干扰链1反向引物
    M-GR-2F TATGAACGAACATCGGAGGC 干扰链2正向引物
    M-GR-2R CCCATACGCAACAACCC 干扰链2反向引物
    T7+M-GR-2F TAATACGACTCACTATAGGGTATGAACGAACATCGGAGGC T7+干扰链2正向引物
    T7+M-GR-2R TAATACGACTCACTATAGGGCCCATACGCAACAACCC T7+干扰链2反向引物
    M-GR-3F TAACGCCTCACGACGAC 干扰链3正向引物
    M-GR-3R CCGGCTCTTGCATTCC 干扰链3反向引物
    T7+M-GR-3F TAATACGACTCACTATAGGGTAACGCCTCACGACGAC T7+干扰链3正向引物
    T7+M-GR-3R TAATACGACTCACTATAGGGCCGGCTCTTGCATTCC T7+干扰链3反向引物
    下载: 导出CSV 
    | 显示表格

    使用NCBI (https://www.ncbi.nlm.nih.gov/) 中的ORF finder预测MAP2K1基因的开放阅读框 (ORF)、Blast得到不同物种MAP2K1基因序列、Premier设计引物;蛋白基本理化性质利用ProtParam tool (https://web.expasy.org/aprotparam/) 分析;二级结构利用SOPMA (https://npsa-prabi.ibcp.fr/NPSA/npsa_sopma.html) 预测;三级结构利用I-TASSER (https://zhanglab.ccmb.med.umich.edu/I-TASSER/) 预测;跨膜结构域利用TMHMM Serverv 2.0程序 (http://www.cbs.dtu.dk/services/TMHMM/) 预测并用 (http://www.genedenovo.com/news/582.html) 解读结果;信号肽利用SignalP-5.0 (http://www.cbs.dtu.dk/services/SignalP/) 预测并用 (http://www.cbs.dtu.dk/services/SignalP-3.0/output.php) 解读结果,基因表达量差别利用SPSS 18.0软件分析;表达量差别条形图利用SigmaPlot 12.5绘制;NJ (邻接法) 系统进化树利用MEGA 7.0构建,Bootstrap分析其可靠性,重复1 000次。

    选取EF-1α为内参基因,使用CFX96 TouchTM Real-Time PCR Detection System (Bio-Rad) 仪器进行定量分析。定量体系 (20 μL) 为cDNA (使用前混合均匀) 1.6 μL,2×TB Green Premix ExTaq 10 μL,F (上游引物) 0.8 μL,R (下游引物) 0.8 μL,RNase Free Water 6.8 μL。定量程序为95 ℃ 3 min;95 ℃ 5 s,60 ℃ 30 s,循环40次。

    原位杂交的引物具有特异性,上游引物保持不变,将T7启动子序列 (TAATACGACTCACTATAGGG) 加入到下游引物5'端前。三角帆蚌性腺cDNA作为模板进行扩增,得到目的条带割胶回收,纯化后作为模板,使用T7 (T7 High Efficiency Transcription) 试剂盒和DIG RNA Labeling Mix得到标记探针,cDNA 1 µL,4 μL 5×T7 Transcription Reaction、8 μL 10 mmol·L−1 NTP Mix,2 μL T7 Transcription Enzyme Mix,RNase-free water 5 μL。反应程序为37 ℃,2 h。将所得探针纯化后保存于−80 ℃。

    取2龄健康雌、雄三角帆蚌的性腺组织 (组织上连带少许表皮),将其在4%多聚甲醛与DEPC中固定2 h,转移至70%乙醇中,在乙醇中可保存约10 d。进而进行组织梯度脱水、组织透明、浸蜡、包埋、切片 (厚度控制在6~8 μm)、粘片。利用DIG nucleic acid detection kit进行原位杂交,并进行封片处理,在显微镜下观察杂交信号并拍照。

    使用Primer Premier 5.0软件在C-MOS基因的ORF区设计3对引物,在上下游引物前加上T7序列,将每组中正常引物与加有T7序列的引物交叉重组,共形成6对引物,分别进行PCR扩增,扩增后回收纯化cDNA序列 (质量浓度≥167 ng·μL−1)。利用T7 High Efficiency Transcription 试剂盒 (全式金,北京) 将cDNA逆转录成单链RNA,混匀,37 ℃ PCR孵育2 h。将同一片段的两管单链RNA在冰上等量混匀,将混匀物放置在70 ℃ PCR仪中反应10 min,反应结束立刻取出后室温静置20 min。向每20 μL的反应液加入1 μL RNase A (用无酶水稀释200倍) 和1 μL DNase I,放置在37 ℃ PCR仪中反应30 min。这一步骤是为了去除DNA,使之退火合成dsRNA。将所得溶液中加入1/10体积的3 mol·L−1醋酸铵和等量异丙醇,冰中静置5 min;放置离心机中12 000 r·min−1、4 ℃、10 min。弃上清,70%乙醇洗涤沉淀;12 000 r·min−1、4 ℃离心10 min。超净工作台内风干15 min;加入100 μL RNase-free water溶解。检测dsRNA的质量和浓度,−80 ℃保存。

    取1龄三角帆蚌按照每组15只分为4组 (干扰链1、干扰链2、干扰链3和对照组),实验组每只注射50 μL (200 ng·μL−1) 干扰链,阴性对照组每只注射50 μL (200 ng·μL−1) 生理盐水 (Normal saline, NS)。在第12、第24和第48小时提取性腺组织并立刻放置于液氮中。利用TRIzol法提取总RNA,试剂盒将其反转为cDNA,将反转后的cDNA作为模板进行荧光定量实验,检测直接干扰C-MOS基因后在性腺中的表达量情况及下游基因MAP2K1的表达量情况。

    本实验克隆得到三角帆蚌MAP2K1基因cDNA的序列,其中5' 非编码区 (UTR) 为145 bp,3'UTR为2 070 bp,开放阅读框 (ORF) 1 194 bp,编码397个氨基酸 (图1)。预测相对分子质量44.24 kD,等电点为6.81,平均亲水系数为−0.379,推测为亲水蛋白。根据MAP2K1蛋白既不具备跨膜结构、也不具备信号肽的特点,推测其不属于膜蛋白,而属于胞内蛋白。通过SOPMA分析得到MAP2K1基因具有S-TKC结构域 (72—372 aa,图2-a),通过I-TASSER预测MAP2K1基因的蛋白质三级结构 (图2-b)。

    图  1  三角帆蚌MAP2K1基因核苷酸序列及氨基酸序列
    Figure  1.  MAP2K1 gene nucleotide sequence and amino acid sequence of H. cumingii
    图  2  三角帆蚌MAP2K1基因二级、三级结构预测
    Figure  2.  Secondary and tertiary structure prediction of MAP2K1 gene in H. cumingii

    利用GeneDoc进行不同物种之间的序列比对,结果显示来自多种物种的MAP2K1基因结构域重合度很高 (图3),说明在多种物种之间,MAP2K1基因进化和结构具有保守性,推断其具有功能相似性。

    图  3  三角帆蚌与其他物种MAP2K1基因的蛋白序列比对
    Figure  3.  Protein sequence comparison of MAP2K1 gene between H. cumingii and others

    根据同源性比对结果分析,三角帆蚌MAP2K1基因与紫贻贝、虾夷扇贝、泥蚶 (Tegillarca granosa) 的同源性较高,同源性分别为85.52%、82.65%、80.59%。与智人 (Homo sapiens)、北美属兔 (Ochotona princeps) 等同源性较低,同源性分别为72.27%、72.53%。系统进化树显示三角帆蚌与紫贻贝、虾夷扇贝、泥蚶聚为一支,亲缘关系较近 (图4)。

    图  4  不同物种MAP2K1基因的氨基酸序列构建的NJ系统进化树
    Figure  4.  NJ phylogenetic trees constructed from amino acid sequences of MAP2K1 gene in different species

    在雌雄三角帆蚌的不同组织中,MAP2K1基因均有一定的表达量,但是MAP2K1基因在雌性性腺中的相对表达量高于另5个组织,雌雄差异也比较显著 (P<0.05,图5)。

    图  5  三角帆蚌MAP2K1基因在雌雄各组织中的表达
    注:*表示存在显著性差异 (*. P<0.05, **. P<0.01) ;图7图9图10图11同此。
    Figure  5.  Expression of MAP2K1 gene in both male and female tissues of H. cumingii
    Note: *. Significant difference (*. P<0.05, **. P<0.01); the same case in Fig. 7, Fig. 9, Fig. 10 and Fig. 11.

    在三角帆蚌幼龄 (1—8月) 性腺发育阶段过程中,MAP2K1基因均有一定程度的表达 (图6)。说明MAP2K1基因在三角帆蚌幼龄性腺发育阶段起到一定作用。

    图  6  三角帆蚌MAP2K1基因在早期性腺组织中的表达
    注:柱上不同字母表示存在显著性差异 (P<0.05) ;相同字母表示无显著性差异。
    Figure  6.  Expression of MAP2K1 in various tissues of female and male adults of H. cumingii
    Note: Different letters indicate significant difference (P<0.05), while the same letters indicate insignificant difference.

    三角帆蚌1龄性腺中,雌性相对表达量显著高于雄性 (P<0.01),但在雄性中也有一定表达 (图7);等到2龄左右,性腺相对表达量雌雄差异极显著 (P<0.01),雄性中几乎不表达;在3龄性腺中,雌雄表达量均处于非常低的水平。结果表明,MAP2K1基因在三角帆蚌2龄卵巢发育过程中起到非常重要的作用。

    图  7  MAP2K1基因在1—3龄三角帆蚌性腺中的相对表达
    Figure  7.  Relative expression of MAP2K1 gene in gonads ofH. cumingii of 1−3 years old

    结果显示,实验组中三角帆蚌雌性性腺的卵母细胞、卵子上,蓝紫色杂交信号非常显著。实验组中三角帆蚌雄性性腺的精原细胞、精母细胞上,蓝紫色杂交信号存在极少,雌性及雄性阴性对照组中均未出现杂交信号 (图8)。根据结果推测,MAP2K1基因可能参与三角帆蚌的卵巢发育过程。

    图  8  三角帆蚌MAP2K1基因在2龄三角帆蚌性腺原位杂交
    注:a. 雌性阴性对照组;b. 雌性实验组;c. 雄性阴性对照组;d. 雄性实验组。
    Figure  8.  MAP2K1 in situ hybridization in gonads of 2-year-old H. cumingii
    Note: a. Female of negative control group; b. Female of experimental group; c. Male of negative control group; d. Male of experimental group.

    三条干扰链的干扰结果为,干扰链1在雌性和雄性中的干扰率分别为88.43%和77.90%;干扰链2在雌性和雄性中的干扰率分别为93.10%和78.10%;干扰链3在雌性和雄性中的干扰率分别为96.39%和86.26% (图9)。干扰率结果显示干扰链3对C-MOS基因的干扰效果最佳,为此选择干扰链3进行实验,检测C-MOS基因在12、24和48 h干扰后在性腺中的表达情况,结果显示干扰链3在第24小时的干扰效率最佳 (图10)。

    图  9  三角帆蚌C-MOS基因干扰后表达情况
    Figure  9.  Expression of C-MOS gene of H. cumingii after interference
    图  10  干扰链3随时间变化的干扰情况
    Figure  10.  Variation of Interference chain 3 with time

    干扰C-MOS基因后,荧光定量检测其下游基因MAP2K1的表达量情况 (图11)。结果显示,MAP2K1基因在雌性中的表达量下降了82.31%,在雄性中的表达量下降了73.60%。说明在三角帆蚌中,C-MOS基因对MAP2K1基因有显著的调控作用。

    图  11  三角帆蚌C-MOS基因干扰后MAP2K1基因表达情况
    Figure  11.  Expression of MAP2K1 gene of H. cumingii after C-MOS gene interference

    本研究克隆了三角帆蚌MAP2K1基因的cDNA序列,编码一个长为1 194 bp的ORF。蛋白质结构预测分析显示,MAP2K1基因中含有S-TKC催化结构域。蛋白苏氨酸/丝氨酸激酶是十分常见的一类蛋白激酶[21],主要作用是蛋白磷酸化、去磷酸化,有利于细胞内活性[22]。S-TKC是这类激酶中一个位于核心部位重要的催化结构域[23]。在S-TKC中有一个极其保守的区域,在催化结构域它已被证明是涉及ATP的结合,即赖氨酸残基附近N-末端的一个富含甘氨酸的残基。在S-TKC的中间区域,存在一个天冬氨酸残基,在催化结构域它已被证明对酶的催化活性起显著作用[24-26]。拥有S-TKC催化结构域的基因通常参与许多生理生化过程[27-30],若其构造折叠或变化,会对丝氨酸/苏氨酸蛋白激酶产生影响,从而对个体的生殖发育过程造成极大损害[31],这说明MAP2K1基因可能参与了三角帆蚌个体的生殖发育过程。

    不同物种之间的序列比对结果显示,MAP2K1基因在三角帆蚌中的氨基酸序列与其他物种结构域重合度较高,说明与其他物种相似度较高,尤其与虾夷扇贝等软体动物相似度更高,由此推断在进化过程中,MAP2K1基因呈现高度保守状态。各组织、早期发育阶段、不同发育时期的定量结果说明,MAP2K1基因在卵巢中特异性高表达,在1—8月龄时期均有不同程度的表达,在1、2、3龄卵巢中的表达量均高于睾丸,对小鼠[14]、水牛[15]、鹅[5]、斑节对虾[14]及果蝇[16]MAP2K1基因的研究中,均发现雌性表达量高于雄性,与本实验结果相近,由此推测MAP2K1基因是三角帆蚌中的偏雌性基因,既参与了三角帆蚌的早期发育阶段,也参与了卵巢发育过程。根据原位杂交的探针定位显示,MAP2K1基因在卵母细胞及卵子上存在明显的信号,推测MAP2K1基因可能参与了三角帆蚌的卵巢发育过程。

    RNA干扰结果显示,3条干扰链中干扰链2和干扰链3对C-MOS基因起到抑制作用,但是干扰链3的干扰效果最佳,在雌性和雄性中的干扰率分别为84.21%和96.87%。在选取干扰链3观察干扰C-MOS基因后MAP2K1基因的表达情况中,MAP2K1基因在雌性中的表达量下降了82.31%,在雄性中的表达量下降了73.60%。结果显示在三角帆蚌中,C-MOS基因对MAP2K1基因有显著的调控作用。在脊椎动物卵母细胞MAPK信号通路中,MAPK独立于生长因子和酪氨酸激酶受体而被激活,受特殊上游调节剂激酶MOS的控制,在卵母细胞减数分裂中起关键作用[9]。综上,推测在三角帆蚌中,MAP2K1基因可能参与了三角帆蚌的卵巢发育过程,是偏雌性基因。

  • 图  1   海水组和淡水组的主成分分析 (a) 和正交偏最小二乘判别分析 (b) 得分图

    Figure  1.   PCA (a) and OPLS-DA (b) scores of seawater and freshwater

    图  2   置换检验图

    Figure  2.   Permutation test

    图  3   代谢产物Venn图

    Figure  3.   Venn map of metabolites

    图  4   差异代谢物筛选火山图

    Figure  4.   Volcanic map of different metabolites

    图  5   代谢物的通路富集分析

    Figure  5.   Metabolite pathway enrichment analysis

    表  1   差异代谢物信息表

    Table  1   Differential metabolites information sheet

    差异代谢物   
    Differential metabolite   
    分子式
    Molecular formula
    变量投影重要度
    VIP
    FC
    Fold change
    P变化趋势
    Variation trend
    磷脂酰肌醇 PI [20:4(5Z,8Z,11Z,14Z)/0:0] C29H49O12P 1.58 0.93 0.017 下降
    谷氨酰胺色氨酸 Glutaminyltryptophan C16H20N4O4 1.05 0.96 0.018 下降
    L-异亮氨酸 L-Isoleucine C6H13NO2 1.33 0.96 0.005 下降
    木麻黄6-α-D-葡萄糖苷 Casuarine 6-alpha-D-glucoside C14H25NO10 1.13 0.94 0.043 下降
    甘油一脂 MG(10:0/0:0/0:0) C13H26O4 3.59 0.71 0.025 下降
    皮质醇 Cortisol C21H30O5 3.28 1.61 0.008 上升
    碳环血氧烷A2 Carbocyclic thromboxane A2 C22H36O3 2.88 10.40 0.007 上升
    (±)9-十八碳二烯酸 (±)9-HPODE C18H32O4 2.90 0.58 0.020 下降
    N-棕榈酰蛋氨酸 N-palmitoyl methionine C21H41NO3S 1.86 0.75 0.022 下降
    13-羟基十八酸 13-hydroxyoctadecanoic acid C18H36O3 1.95 0.86 0.005 下降
    咖啡酰环戊醇 Caffeoylcycloartenol C39H56O4 2.07 0.81 0.036 下降
    11,13-二十碳二烯酸 15-OxoEDE C20H34O3 2.51 0.70 0.032 下降
    2,3-二氢苯并呋喃 2,3-dihydrobenzofuran C8H8O 1.19 1.08 0.033 上升
    4-甲酰基吲哚 4-formyl indole C9H7NO 1.34 0.83 0.040 下降
    红花素C Safflomin C C30H30O14 2.04 0.85 0.003 下降
    6-[(2-羧基乙酰基)氧]-3,4,5-三羟基氧烷-2-羧酸6-[(2-carboxyacetyl)oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid C9H12O10 2.07 1.12 0.001 上升
    异戊二烯 Isoputreanine C7H16N2O2 2.33 0.84 0.001 下降
    脯氨酸 L-Proline C5H9NO2 1.80 0.91 0.003 下降
    羟脯氨酸 Hydroxyprolyl-hydroxyproline C10H16N2O5 3.13 0.72 0.007 下降
    5-O-阿魏酰黑精 5-O-Feruloylnigrumin C21H25NO10 1.0 0.95 0.037 下降
    壬二酸 Azelaic acid C9H16O4 1.12 0.96 0.012 下降
    尿苷 Uridine C9H12N2O6 1.35 0.95 0.001 下降
    视黄酯 Retinyl ester C20H30O2 1.24 0.96 0.004 下降
    顺-9,10-环氧硬脂酸 cis-9,10-Epoxystearic acid C18H34O3 1.66 0.92 0.025 下降
    异柠檬酸盐 Isocitrate C6H8O7 1.55 1.12 0.047 上升
    戊二酸 Glutaric acid C5H8O4 2.53 1.38 0.015 上升
    6-脱氧噬菌体胺 (6-脱氧花青) 6-Deoxyfagomine C6H13NO2 1.36 0.94 0.012 下降
    乙酰-L-酪氨酸 Acetyl-L-tyrosine C11H13NO4 1.38 0.87 0.010 下降
    γ-谷氨酰鸟氨酸 Gamma glutamyl ornithine C10H19N3O5 1.87 1.58 0.023 上升
    对茴香酸异戊酯 (异戊基异茴香酸酯) Isoamyl p-anisate C13H18O3 1.76 0.67 0.041 下降
    3-氧十二酸 3-Oxododecanoic acid C12H22O3 1.01 0.92 0.043 下降
    C-2神经酰胺 C-2 Ceramide C20H39NO3 2.21 0.75 0.028 下降
    磷脂酰乙醇胺 PE(15:0/16:1(9Z)) C36H70NO8P 1.42 1.10 0.030 上升
    半乳糖神经酰胺 Galactosyl ceramide (d18:1/14:0) C38H73NO8 1.97 2.78 0.045 上升
    N-棕榈酰甘氨酸 N-Palmitoyl glycine C18H35NO3 1.97 0.86 0.000 下降
    二十碳五烯酸 Eicosapentaenoic acid C20H30O2 1.01 0.98 0.004 下降
    溶血磷脂酰乙醇胺 LysoPE(0:0/20:2(11Z,14Z)) C25H48NO7P 1.33 1.12 0.037 上升
    9-羟基癸酸 9-Hydroxydecanoic acid C10H20O3 1.21 0.92 0.028 下降
    甘油一脂 MG(a-13:0/0:0/0:0)[rac] C16H32O4 1.92 0.79 0.040 下降
    反式-2-十二碳烯二酸 Traumatic acid C12H20O4 1.37 0.86 0.025 下降
    9-氧壬酸 9-Oxo-nonanoic acid C9H16O3 1.15 0.93 0.019 下降
    8-羟基-5,6-辛二烯酸 8-Hydroxy-5,6-octadienoic acid C8H12O3 1.04 0.94 0.016 下降
    (S)-3-磺酸盐 (S)-3-Sulfonatolactate C3H6O6S 2.57 3.05 0.046 上升
    γ-谷氨酰缬氨酸 gamma-Glutamylvaline C10H18N2O5 1.80 0.87 0.008 下降
    穗花牡荆苷 Agnuside C22H26O11 1.41 0.91 0.005 下降
    假尿苷 Pseudouridine C9H12N2O6 1.19 0.93 0.003 下降
    雌三醇7-(6-反式-对-香豆酰基葡萄糖苷)
    Eriodictyol 7-(6-trans-p-coumaroylglucoside)
    C30H28O13 1.44 0.92 0.020 下降
    注:FC表示某差异代谢物在淡水组相对于海水组的表达倍数变化,FC>1表示该代谢物上调,FC<1表示该代谢物下调;P<0.05表示差异显著,P<0.01表示差异极显著。 Note: FC value indicates the change of expression multiple of a differential metabolite in FOV group compared with SOV group. FC>1 indicates that the metabolite is upregulated; FC<1 indicates that the metabolite is down-regulated. P<0.05 indicates significant difference, and P<0.01 indicates extremely significant difference.
    下载: 导出CSV

    表  2   差异代谢产物的KEGG通路富集表

    Table  2   KEGG pathway enrichment table of differential metabolites

    富集的差异代谢产物名称 
    Enriched differential metabolite name 
    富集个数
    Numble
    富集通路
    ID Pathway
    通路描述  
    Pathway desciption  
    P
    半乳糖神经酰胺 Galactosyl ceramide (d18:1/14:0) 1 map00600 鞘脂代谢 0.059
    脯氨酸 L-Proline 1 map00330 精氨酸和脯氨酸代谢 0.176
    异柠檬酸盐 Isocitrate 1 map00020 柠檬酸循环 0.057
    戊二酸 Glutaric acid 1 map00310 赖氨酸降解 0.130
    皮质醇 Cortisol 1 map00140 类固醇激素生物合成 0.207
    尿苷 Uridine;假尿苷 Pseudo uridine 2 map00240 嘧啶代谢 0.011
    异柠檬酸盐 Isocitrate 1 map00630 乙醛酸和二羧酸代谢 0.137
    L-异亮氨酸 L-Isoleucine;脯氨酸 L-Proline 2 map00970 氨酰tRNA生物合成 0.008
    L-异亮氨酸 L-Isoleucine 1 map00290 缬氨酸、亮氨酸和异亮氨酸生物合成 0.064
    二十碳五烯酸 Eicosapentaenoic acid 1 map01040 不饱和脂肪酸生物合成 0.097
    L-异亮氨酸 L-Isoleucine 1 map00280 缬氨酸、亮氨酸和异亮氨酸降解 0.107
    (S)-3-磺酸盐 (S)-3-Sulfonatolactate 1 map00270 半膀氨酸和蛋氨酸代谢 0.141
    下载: 导出CSV
  • [1]

    SU M, DUAN Z, SHI H, et al. The effects of salinity on reproductive development and egg and larvae survival in the spotted scat Scatophagus argus under controlled conditions[J]. Aquac Res, 2019, 50(7): 1782-1794. doi: 10.1111/are.14056

    [2]

    MOHANTY B, GUPTA K, BABU G, et al. Exposure to salinity stress cause ovarian disruption in a stenohaline freshwater teleost, Heteropneustes fossilis (Bloch, 1794)[J]. Aquac Res, 2020, 51(5): 1964-1972. doi: 10.1111/are.14548

    [3]

    PHAM H Q, KJØRSVIK E, NGUYEN A T, et al. Reproductive cycle in female Waigieu seaperch (Psammoperca waigiensis) reared under different salinity levels and the effects of dopamine antagonist on steroid hormone levels[J]. J Exp Mar Biol Ecol, 2010, 383(2): 137-145. doi: 10.1016/j.jembe.2009.12.010

    [4]

    PHAM H Q, NGUYEN A T, KJØRSVIK E, et al. Seasonal reproductive cycle of Waigieu seaperch (Psammoperca waigiensis)[J]. Aquac Res, 2012, 43(6): 815-830. doi: 10.1111/j.1365-2109.2011.02894.x

    [5] 牛景彦, 刘占才. 影响鱼类性腺发育的生态因素研究[J]. 农业与技术, 2016, 36(16): 109.
    [6] 杜学芳. 盐度对凡纳滨对虾繁殖及家系生长、存活的影响[D]. 上海: 上海海洋大学, 2013: 9-17.
    [7] 吴旭干, 赵亚婷, 何杰, 等. 低盐度海水和淡水对中华绒螯蟹性腺发育及交配行为的影响[J]. 动物学杂志, 2013, 48(4): 555-561.
    [8] 吴建辉, 王家启, 戴小杰, 等. 基于概率模型的长江口鱼类空间共现模式分析[J]. 南方水产科学, 2019, 15(1): 1-9. doi: 10.12131/20180112
    [9]

    ZHU G L, WANG L J, TANG W Q, et al. Identification of olfactory receptor genes in the Japanese grenadier anchovy Coilia nasus[J]. Genes Genomics, 2017, 39(5): 521-532. doi: 10.1007/s13258-017-0517-8

    [10]

    DUAN J R, ZHOU Y F, XU D P, et al. Ovary transcriptome profiling of Coilia nasus during spawning migration stages by Illumina sequencing[J]. Mar Genomics, 2015, 21: 17-19.

    [11]

    LI W X, ZOU H, WU S G, et al. Richness and diversity of helminth communities in the JapaneseI grenadier anchovy, Coilia nasus, during its anadromous migration in the Yangtze River, China[J]. J Parasitol, 2012, 98(3): 449-452. doi: 10.1645/GE-2983.1

    [12]

    LI W X, SONG R, WU S G, et al. Seasonal occurrence of helminths in the anadromous fish Coilia nasus (Engraulidae): parasite indecators of fish migratory movements[J]. J Parasitol, 2011, 97(2): 192-196. doi: 10.1645/GE-2621.1

    [13]

    ZHANG H, WU G, XIE P, et al. Role of body size and temporal hydrology in the dietary shifts of shortjaw tapertail anchovy Coi-lia brachygnathus (Actinopterygii, Engraulidae) in a large floodplain lake[J]. Hydrobiologia, 2013, 703(1): 247-256. doi: 10.1007/s10750-012-1370-z

    [14] 代培, 严燕, 朱孝彦, 等. 长江刀鲚国家级水产种质资源保护区(安庆段)刀鲚资源现状[J]. 中国水产科学, 2020, 27(11): 1267-1276.
    [15]

    SHEN H, GU R, XU G, et al. In-depth transcriptome analysis of Coilia ectenes, an important fish resource in the Yangtze River: de novo assembly, gene annotation[J]. Mar Genomics, 2015, 23: 15-17. doi: 10.1016/j.margen.2015.03.002

    [16] 鲜博, 高建操, 徐钢春, 等. 盐度对刀鲚生长、抗氧化应激和渗透压调节能力的影响[J]. 海洋湖沼通报, 2020(2): 152-159.
    [17] 王武. 鱼类增养殖学[M]. 北京: 中国农业出版社, 2000: 193.
    [18]

    XU G, DU F, LI Y, et al. Integrated application of transcripto-mics and metabolomics yields insights into population-asynchronous ovary development in Coilia nasus[J]. Sci Rep, 2016, 6(1): 1-11. doi: 10.1038/s41598-016-0001-8

    [19]

    YIN D, LIN D, YING C, et al. Metabolic mechanisms of Coilia nasus in the natural food intake state during migration[J]. Genomics, 2020, 112(5): 3294-3305. doi: 10.1016/j.ygeno.2020.05.027

    [20]

    ZHAO H J, XU J K, YAN Z H, et al. Microplastics enhance the developmental toxicity of synthetic phenolic antioxidants by disturbing the thyroid function and metabolism in developing zebrafish[J]. Environ Int, 2020, 140: 105750. doi: 10.1016/j.envint.2020.105750

    [21]

    DING J, HUANG Y, LIU S, et al. Toxicological effects of nano-and micro-polystyrene plastics on red tilapia: are larger plastic particles more harmless?[J]. J Hazard Mater, 2020, 396: 122693. doi: 10.1016/j.jhazmat.2020.122693

    [22]

    ZHANG H, LIU Y, ZHOU L, et al. Metabonomic insights into the sperm activation mechanisms in ricefield eel (Monopterus albus)[J]. Genes, 2020, 11(11): 1259. doi: 10.3390/genes11111259

    [23]

    HUANG Y, ZHANG Y, ZHENG J, et al. Metabolic profiles of fish nodavirus infection in vitro: RGNNV induced and exploited cellular fatty acid synthesis for virus infection[J]. Cell Microbiol, 2020, 22(9): e13216.

    [24]

    OZEN G, NOREL X. Prostanoids in the pathophysiology of human coronary artery[J]. Prostag Oth Lipid M, 2017, 133: 20-28.

    [25]

    YAN H, ZHANG M Z, WONG G, et al. Mechanisms of U46619-induced contraction in mouse intrarenal artery[J]. Clin Exp Pharmacol Physiol, 2019, 46(7): 643-651. doi: 10.1111/1440-1681.13087

    [26]

    SMYTH E M. Thromboxane and the thromboxane receptor in cardiovascular disease[J]. Clin Lipidol, 2010, 5(2): 209-219. doi: 10.2217/clp.10.11

    [27]

    GU W, MADRID D M D, YANG G, et al. Unaltered influenza disease outcomes in swine prophylactically treated with α-galactosylceramide[J]. Dev Comp Immunol, 2021, 114: 103843. doi: 10.1016/j.dci.2020.103843

    [28]

    WANG T, LIU F, TIAN G, et al. Lineage/species-specific expansion of the Mx gene family in teleosts: differential expression and modulation of nine Mx genes in rainbow trout Oncorhynchus mykiss[J]. Fish Shellfish Immunol, 2019, 90: 413-430. doi: 10.1016/j.fsi.2019.04.303

    [29]

    HOEHN K, MARIEB E N. Human anatomy & physiology[M]. San Francisco: Benjamin Cummings, 2010: 1064-1094.

    [30]

    SOPINKA N M, CAPELLE P M, SEMENIUK C A D, et al. Glucocorticoids in fish eggs: variation, interactions with the environment, and the potential to shape offspring fitness[J]. Physiol Biochem Zool, 2017, 90(1): 15-33. doi: 10.1086/689994

    [31]

    MOUSA M A, IBRAHIM M G, KORA M F, et al. Experimental studies on the reproduction of the thin-lipped mullet, Liza ramada[J]. Egypt J Aquat Biol Fish, 2018, 22(3): 125-138. doi: 10.21608/ejabf.2018.9455

    [32]

    CUI W, MA A, WANG X, et al. Myo-inositol enhances the low-salinity tolerance of turbot (Scophthalmus maximus) by modula-ting cortisol synthesis[J]. Biochem Biophys Res Commun, 2020, 526(4): 913-919. doi: 10.1016/j.bbrc.2020.04.004

    [33] 胡静, 叶乐, 吴开畅, 等. 急性盐度胁迫对克氏双锯鱼幼鱼血浆皮质醇浓度和 Na+-K+-ATP 酶活性的影响[J]. 南方水产科学, 2016, 12(2): 116-120. doi: 10.3969/j.issn.2095-0780.2016.02.017
    [34]

    SARAVANAN M, RAMESH M, PETKAM R, et al. Influence of environmental salinity and cortisol pretreatment on gill Na+/K+-ATPase activity and survival and growth rates in Cyprinus carpio[J]. Aquac Rep, 2018, 11: 1-7. doi: 10.1016/j.aqrep.2018.04.002

    [35]

    KWON N H, FOX P L, KIM S. Aminoacyl-tRNA synthetases as therapeutic targets[J]. Nat Rev Drug Discov, 2019, 18(8): 629-650. doi: 10.1038/s41573-019-0026-3

    [36]

    GOMEZ M A R, IBBA M. Aminoacyl-tRNA synthetases[J]. RNA, 2020, 26(8): 910-936. doi: 10.1261/rna.071720.119

    [37]

    GARAVITO M F, NARVÁEZ-ORTIZ H Y, ZIMMERMANN B H. Pyrimidine metabolism: dynamic and versatile pathways in pathogens and cellular development[J]. J Genet Genomics, 2015, 42(5): 195-205. doi: 10.1016/j.jgg.2015.04.004

    [38]

    LAVIEU G, SCARLATTI F, SALA G, et al. Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation[J]. J Biol Chem, 2006, 281(13): 8518-8527. doi: 10.1074/jbc.M506182200

    [39]

    HANNUN Y A, OBEID L M. The ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind[J]. J Biol Chem, 2002, 277(29): 25847-25850. doi: 10.1074/jbc.R200008200

  • 期刊类型引用(1)

    1. 路俊怡,姜立妍,龙凯,王韬,吴正理,李艳红. HcTLR1通过MyD88-NF-κB信号通路参与三角帆蚌抗菌免疫应答. 南方水产科学. 2024(06): 19-30 . 本站查看

    其他类型引用(0)

图(5)  /  表(2)
计量
  • 文章访问数:  724
  • HTML全文浏览量:  319
  • PDF下载量:  100
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-06-23
  • 修回日期:  2021-10-08
  • 录用日期:  2021-11-03
  • 网络出版日期:  2021-11-09
  • 刊出日期:  2022-06-04

目录

/

返回文章
返回