豹纹鳃棘鲈差异流速下肝脏转录组分析

Transcriptome analysis of Plectropomus leopardus liver under different flow velocity

  • 摘要: 水流速度是影响鱼类生长的重要环境因子之一。为探究豹纹鳃棘鲈 (Plectropomus leopardus) 在不同流速条件下相关基因的功能和表达情况,利用RNA-Seq技术对差异流速下的豹纹鳃棘鲈肝脏组织进行了转录组分析。挑选相同繁育批次中规格一致的豹纹鳃棘鲈幼苗,分别在正常流速 (0.1 m·s−1, Low flow velocity, LFV) 和高流速 (0.4 m·s−1, High flow velocity, HFV) 实验组中养殖150 d后进行肝脏转录组测序分析,探究豹纹鳃棘鲈在差异流速下个体间的基因表达模式差异。结果显示,经筛选后共获得1 977个LFV-HFV显著性差异表达基因 (Differentially expressed genes, DGE),其中上调基因999个,下调基因978个。GO功能注释分类发现,共有1 124个DEGs被GO数据库注释到并归属为56个功能类别。KEGG富集分析结果显示,573个DEGs参与了154条KEGG通路,其中富集最显著的为PPAR信号通路。LFV和HFV两组鱼的肝脏组织学观察结果显示,两者之间脂肪含量差异明显,LFV组肝脏中的脂肪含量显著高于HFV组 (P<0.05)。通过转录组分析,筛选了大量豹纹鳃棘鲈差异流速下的DGEs,为深入探讨豹纹鳃棘鲈对流速变化适应性的分子调控机制提供了技术支撑。

     

    Abstract: Water flow velocity is one of important eco-environment factors which affects the fish growth. In order to explore the function and expression of related genes of Plectropomus leopardus under different flow velocity, we conducted a transcriptome analysis of liver tissue of P. leopardus under different flow velocity by RNA-seq technology. We selected the fish fry of P. leopardus with identical size from the same breeding batch and cultured them for 150 d with water flow velocity of 0.1 m·s−1 (Low flow velocity, LFV) and 0.4 m·s−1 (High flow velocity, HFV). Then, we conducted a transcriptome analysis on the liver so as to investigate the difference of gene expression patterns with different flow velocity. We had obtained a total of 1 977 differentially expressed genes (DEGs) by transcriptome analysis (999 up-regulated and 978 down-regulated for LFV-HFV, respectively). The GO functional annotation reveals that 1124 DEGs were annotated in Gene Ontology Consortium and assigned to 56 functional terms. KEGG pathway analysis shows that 573 DEGs belonged to 154 pathways, and PPAR signaling pathway was most significantly enriched. Histological observation of livers of the tested fish indicates that the difference in fat contents between LFV and HFV group was significant, and the fat content was obviously higher in LFV than in HFV (P<0.05). According to the transcriptome analysis, we excavated many DEGs under different flow velocity, which provids technical support for further research on the molecular regulation mechanism of adaptability to change in flow velocity of P. leopardus.

     

/

返回文章
返回