浙江南部近海鱼类粒径谱特征

杨柯迩, 周曦杰, 秦松, 马金, 赵静

杨柯迩, 周曦杰, 秦松, 马金, 赵静. 浙江南部近海鱼类粒径谱特征[J]. 南方水产科学, 2022, 18(1): 10-21. DOI: 10.12131/20210090
引用本文: 杨柯迩, 周曦杰, 秦松, 马金, 赵静. 浙江南部近海鱼类粒径谱特征[J]. 南方水产科学, 2022, 18(1): 10-21. DOI: 10.12131/20210090
YANG Ke'er, ZHOU Xijie, QIN Song, MA Jin, ZHAO Jing. Fish size spectrum characteristics in offshore waters of southern Zhejiang Province[J]. South China Fisheries Science, 2022, 18(1): 10-21. DOI: 10.12131/20210090
Citation: YANG Ke'er, ZHOU Xijie, QIN Song, MA Jin, ZHAO Jing. Fish size spectrum characteristics in offshore waters of southern Zhejiang Province[J]. South China Fisheries Science, 2022, 18(1): 10-21. DOI: 10.12131/20210090

浙江南部近海鱼类粒径谱特征

基金项目: 国家自然科学基金项目 (31902372, 41606146);浙江省渔业资源专项调查 (158053)
详细信息
    作者简介:

    杨柯迩 (1996—),女,硕士研究生,研究方向为近海水生生物和生态学。E-mail: 525300710@qq.com

    通讯作者:

    赵 静 (1984—),女,讲师,博士,从事渔业资源、海洋生态学、近海栖息地养护等研究。E-mail: jzhao@shou.edu.cn

  • 中图分类号: S 931.1

Fish size spectrum characteristics in offshore waters of southern Zhejiang Province

  • 摘要: 为了解浙江南部近海鱼类群落粒径结构的时空特征、季节变动及其影响因素,基于2019年4个季节的渔业资源调查数据,利用粒径谱、多维尺度排序等方法,研究了鱼类粒径谱特征及其时空变动。结果表明,全年Sheldon鱼类粒径谱形状大体为单峰型,鱼类粒级介于−2~11,最高值出现在6~7粒级,以小型鱼类为主。四季Sheldon鱼类粒径谱基本呈单峰型,各季节峰值和最高生物量对应粒级区间、鱼种组成存在差异,其标准化鱼类粒径谱拟合曲线均呈“穹顶”型,曲率介于−0.18~−0.09,以冬季最大 (−0.09),春季最小 (−0.18),表明春季鱼类生物量受外界干扰程度最大,冬季相对稳定。多维尺度排序结果表明,冬、春季鱼类群落可分为4组,夏、秋季可分为3组。分组粒径谱分析结果表明,近岸鱼类群落比远岸鱼类群落受到更大的外界干扰。总体上,浙江南部近海鱼类群落处于干扰状态,这可能与环境因素、洄游性与定栖性鱼类的季节变化等有关,也存在禁渔期及人类捕捞活动的影响。
    Abstract: In order to improve the understanding of the spatio-temporal characteristics, seasonal variation and influencing factors of size structure of offshore fish communities in southern Zhejiang Province, we studied the characteristics of fish particle size spectrum and its spatiotemporal variation by means of particle size spectrum and multi-dimensional scale sorting based on the seasonal fishery survey data in 2019. The results show that the shape of annual Sheldon fish size spectrum was generally unimodal, and the size class ranged from −2 to 11, with the highest biomass occurring in the size classes of 6−7, mainly small fishes. The Sheldon fish size spectrum was basically unimodal in four seasons, and there were seasonal differences in the peak and maximum biomass corresponding to the size range and species composition. The fitted curves for the normalized fish size spectrum were all dome-shaped, and the curvature ranged from −0.18 to −0.09, with the maximum in winter (−0.09) and the minimum in spring (−0.18), indicating that the fish biomass was most vulnerable to external disturbance in spring but relatively stable in winter. The results of multidimensional scaling demonstrate that the fish community in this study can be classified into four subgroups in winter and spring, and three subgroups in summer and autumn. The analysis of size spectra by subgroups shows that the nearshore fish community is much affected by external disturbances than the far-shore fish community. In general, the fish community off southern Zhejiang Province is in a disturbed state, which may be related to environmental factors, seasonal migra-tory and sedentary fishes, as well as the closed fishing periods and fishing activities.
  • 隆背笛鲷 (Lutjanus gibbus) 隶属笛鲷科、笛鲷属,广泛分布于热带和亚热带海域[1],具有性成熟早、生长快、寿命长 (可高达38龄) 等特点,是存在雪卡毒素风险的鱼类[2-3],也是印度-太平洋海域商业渔业、手工渔业、休闲渔业和土著渔业的重要目标物种[2]。隆背笛鲷占西太平洋岛国图瓦卢手钓渔获捕捞的36%[3]和波纳佩渔业生物量的26%[4],也是我国南沙群岛美济礁海域手钓和刺网的优势物种[5]。隆背笛鲷肉质鲜美、经济价值高,促使渔民对其进行高强度捕捞而忽视了种群的可持续性[6];此外,产卵聚集是其生活史中的必须生态过程[7],也导致其被过度捕捞[3]

    隆背笛鲷是一种典型的珊瑚礁鱼类。我国南海珊瑚礁生态系统出现了严重退化[8],而鱼类是珊瑚礁生态系统的顶级消费者,是其关键组成部分[9]。对鱼类资源的保护尤其对优势关键物种的保护是珊瑚礁生态系统保护的重要环节[10]。为更好地制定保护和管理措施,需要了解鱼类的基础生物学信息[11]。然而,国内鲜见有关隆背笛鲷的生物学研究。本研究对2020年于南沙美济礁采集的隆背笛鲷样本的雌雄比、性成熟体长、繁殖力、食性组成、营养级和营养生态位等生物学特征进行了分析,以期为其渔业资源、珊瑚礁生态系统的保护和管理提供理论依据,同时也为其养殖提供有益参考。

    隆背笛鲷样本是雇佣渔民于2020年7月在南沙美济礁瀉湖海域潜水捕捞获得。美济礁 (115°32'E、9°54'N) 位于南沙群岛中东部海域,属于典型半封闭环礁,东西长约9 km,南北宽约6 km,瀉湖环礁内水深20~30 m,礁坪面积14.69 km2,潟湖面积 30.62 km2,环礁总面积约56.6 km2。样本经速冻后,由科考船“南锋”号带回,进行生物学测量 (测量体长、体质量、性腺质量等数据)。体长精确至1 mm,体质量和性腺质量精确至0.01 g。性腺发育期采用I—VI期性腺成熟度划分标准,规定性腺发育期达III期及以上个体为性成熟个体;摄食等级采用0~4级划分标准[12]。两性的体长分布差异采用Kolmogorov-Smirnov test (K-S test) 检验。

    卡方检验用于检验雌雄比是否偏离1∶1[13],显著性水平为P<0.05。

    性腺发育期III—VI期的鱼类均记为成熟个体。将鱼的体长划分为10 mm的区间来计算50%性成熟体长 (L50),以Logistic方程拟合各体长区间性成熟百分比,计算公式为:

    $$ P=100/{1+{\rm{exp}}[-a\cdot(L-L_{50})]} $$ (1)

    式中:P为成熟百分比;a为参数;L为体长。

    卵径测量。先在解剖镜下对随机选取的性腺发育期为IV期的卵母细胞进行拍照,然后用FishBC 3.0软件对所拍照的卵母细胞进行测量。

    繁殖力 (F) 的计算采用质量法,对准确称质量后性腺发育期为IV期的卵巢,随机称取0.2 g,并计数所有有卵黄的卵母细胞,计算其繁殖力。体长 (L) 和体质量 (W) 的相对繁殖力分别用F/LF/W计算。

    鱼类在实验室解剖后,现场识别其胃含物,鉴定区分到大类。

    解剖时从鱼类背部选取一块白色肌肉,用清水冲洗干净,然后在60 ℃下烘烤48 h,再将其研磨成均匀粉末用于同位素测量。所有样品的碳、氮稳定同位素 (δ13C、δ15N) 分析均在中国科学院水生生物研究所进行,所用仪器为美国Thermo公司的元素分析仪和 Delta Plus Finnigan MAT 253同位素质谱仪,测定样品中的δ13C和δ15N,计算公式如下:

    $$ \delta X=\left(\frac{{R}_{\mathrm{s}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}}}{{R}_{\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{d}}}-1\right)\times 1\;000 $$ (2)

    式中:δ表示稳定同位素丰度;X13C或15N;R13C/12C或15N/14N;Rsample为样品所测得的同位素比值;Rstandard为标准物质的同位素比值;δ13C和δ15N测定的标准物质分别为PDB (美洲拟箭石) 和大气氮。每测定10个样品插入1个标准样品。Rsample营养级的计算公式为:

    $$ {\rm{TL}}=\left(\frac{{\delta }^{15}{\mathrm{N}}_{\mathrm{s}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}}-{\delta }^{15}{\mathrm{N}}_{\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}}}{{\rm{TEF}}}\right)+ λ $$ (3)

    式中:TL为计算生物的营养级;δ15Nsampleδ15Nbaseline分别为鱼类样品和选取的基准生物的氮稳定同位素比值;λ为基准生物营养级,本研究选取植食性鱼类灰额刺尾鱼 (Acanthurus glaucopareius) 作为基准生物,发现本海域灰额刺尾鱼 (δ15N=3.93) 是植食性鱼类δ15N最低的鱼类 (λ=2);TEF为相邻营养级的富集度,取值为3.4‰[14]

    利用R软件的SIAR和SIBER[15]软件包计算隆背笛鲷的营养生态位。本研究选取δ13C范围 (CRb)、δ15N范围 (NRb)、凸多边形面积 (Total area of convex hull, TA) [16]和校正标准椭圆 (Corrected standard ellipse area, SEAc) [15] 4种营养生态位定量指标进行分析。CRb和NRb分别为隆背笛鲷的δ13C和δ15N的最大值与最小值之差,描述鱼类利用食物资源碳、氮的范围。TA为所有隆背笛鲷个体δ13C-δ15N二维空间包围构成的凸多边形面积,表示鱼类占据的生态位总大小。SEAc为隆背笛鲷个体δ13C-δ15N二维空间包围大概40%数据点的椭圆面积,表示鱼类占据的核心生态位的大小。

    共采集隆背笛鲷样本67尾,体长介于115~270 mm (平均198.08 mm);体质量介于51.41~665.43 g (平均256.7 g) (表1)。独立样本t检验表明,雌、雄隆背笛鲷体长和体质量的差异均不显著 (P>0.05),但雌性的平均体长和体质量均大于雄性 (表1)。隆背笛鲷两性的体长分布差异显著 (P<0.05),雌性以大个体分布为主,而雄性的中大型个体较多且分布较均匀 (图1)。

    表  1  美济礁海域隆背笛鲷体长、体质量特征
    Table  1.  Body length and body mass of L. gibbus from Meiji Reef
    群体
    Group
    数量
    Number
    体长范围
    Body length range/mm
    平均体长
    Average body length/mm
    体质量范围
    Body mass range/g
    平均体质量
    Average body mass/g
    雌性 Female 30 140~250 215.63 72.51~411.79 303.92
    雄性 Male 15 160~270 203.33 120.99~665.43 282.87
    雌雄不辨 Unsex 22 115~240 170.55 51.41~465.58 174.46
    总体 Total 67 115~270 198.08 51.41~665.43 256.7
    下载: 导出CSV 
    | 显示表格
    图  1  美济礁隆背笛鲷体长分布
    Figure  1.  Distribution of body length of L. gibbus from Meiji Reef

    美济礁海域共鉴别雌、雄隆背笛鲷分别为30和15尾,无法鉴别雌、雄性样本22尾 (表1),雌雄比为2∶1,不符合1∶1的理论值 (P<0.05)。

    美济礁隆背笛鲷雌、雄性的L50分别为204.757和201.623 mm,雌性略大于雄性 (图2)。

    图  2  美济礁隆背笛鲷个体性成熟比例的逻辑斯蒂曲线
    Figure  2.  Logistic curve of sexual maturity percentage of L. gibbus from Meiji Reef

    本研究随机挑选了2尾性腺发育期为IV期的个体性腺进行卵径测量 (共测量306粒),卵径介于0.176~0.419 mm (平均0.296 mm)。卵径频率分布显示,美济礁隆背笛鲷的卵径频率分布为典型单峰型分布 (图3)。

    图  3  美济礁隆背笛鲷的卵径分布频率分布
    注:a. 体长为 230 mm,体质量为 366.91 g;b. 体长为 220 mm,体质量为 314.50 g。
    Figure  3.  Oocyte size-frequency distribution of L. gibbus from Meiji Reef
    Note: a. Body length: 230 mm, and body mass: 366.91 g; b. Body length: 220 mm, and body mass: 314.50 g.

    本研究共获取了21尾性腺发育期达到IV期的隆背笛鲷性腺,计算了所有个体的繁殖力。繁殖力为51 858 粒 (体长215 mm)~276 205粒 (体长230 mm),平均139 145 粒。体长的相对繁殖力为241.20 粒∙cm−1 (体长215 mm)~1 200.89 粒∙cm−1 (体长230 mm),平均611.61粒∙cm−1。体质量的相对繁殖力为164.48 粒∙g−1 (体长215 mm)~763.53 粒∙g−1 (体长230 mm),平均407.72粒∙g−1

    美济礁隆背笛鲷的繁殖力与体长、体质量成显著的幂函数关系 (图4)。

    图  4  美济礁隆背笛鲷繁殖力与体长和体质量的相关性
    Figure  4.  Relationships of fecundity-body length and fecundity-body mass of L. gibbus from Meiji Reef

    本研究67尾鱼中仅有7尾存在胃含物,空胃率高达89.56%。胃含物分析表明,螃蟹出现率最高 (4次),是美济礁隆背笛鲷最主要的食物,其他胃含物均仅出现1次,分别是鱼、螺、贝、虾和珊瑚沙。

    随机选取了15尾隆背笛鲷 (体长140~236 mm) 进行稳定同位素分析,δ15N介于7.13‰~9.27‰,平均8.44‰;δ13C介于−15.75‰~−14.11‰,平均−14.11‰ (表2)。独立样本t检验表明,美济礁隆背笛鲷性成熟 (7尾) 与未性成熟 (8尾) 个体δ15N和δ13C均无显著性差异 (P>0.05)。δ15N与体长呈现显著正相关性 (P<0.05),即随体长的增加而增加;δ13C与体长无相关性 (P>0.05,图5),说明隆背笛鲷食性随个体的发育发生了转变。通过营养级计算公式,使用δ15N计算得到隆背笛鲷营养级介于2.94~3.57 (平均3.33),性成熟个体营养级均值为3.40,未性成熟个体营养级均值为3.27,较性成熟个体小了0.13个营养级。

    表  2  美济礁隆背笛鲷的δ13C、δ15N和营养生态位指标
    Table  2.  δ13C, δ15N values and trophic niche metrics for L. gibbus from Meiji Reef
    群体
    Group
    数量
    Number
    碳稳定同位素 δ13C/‰ 氮稳定同位素δ15N/‰ δ13C范围 CRb/‰ δ15N范围 NRb/‰ 凸多边形面积TA/‰2 校正标准椭圆SEAC/‰2
    未性成熟 Immature 8 −14.27 8.24 2.49 1.15 2.79 2.30
    性成熟 Mature 7 −13.94 8.68 2.91 1.30 1.82 1.61
    总体 Total 15 −14.11 8.44 3.41 2.14 4.51 2.17
    下载: 导出CSV 
    | 显示表格
    图  5  美济礁隆背笛鲷的体长与δ13 C、δ15 N的相关性
    Figure  5.  Relationships of body length-δ13 C and body length-δ15 N of L. gibbus from Meiji Reef

    从TA来看,美济礁隆背笛鲷占据的营养生态宽幅为4.51‰2,性成熟个体为1.82‰2,未性成熟个体为2.79‰2;从SEAC的面积来看,整体营养生态宽幅为2.17‰2;性成熟个体为1.61‰2,未性成熟个体为2.30‰2 (表2)。这说明性成熟个体的营养生态宽幅较未性成熟个体明显变窄,食性变得更加专一。

    L50是渔业管理的重要参数,也是制定鱼类最小可捕规格的重要参考依据。本研究中隆背笛鲷雌、雄性L50均约为200 mm,与其他水域的研究结果较相似,如密克罗尼西亚水域雌、雄分别为188.77和182.62 mm[17];新喀里多尼亚水域分别为235.30和226.52 mm[3];美属萨摩亚水域未区分雌雄,为218.62 mm[18]。此外,所有研究结果均显示雌性性成熟体长大于雄性,雌性更大个体参与繁殖有利于后代的成活。

    卵径频率分布一般可以说明鱼类的产卵类型。本研究发现美济礁隆背笛鲷的卵径频率分布为单峰型,说明其为同步发育卵巢[19]。West[20]指出卵径频率分布只能是繁殖方式的一个佐证,最终需要通过性腺组织切片来验证。Nanami等[21]通过对隆背笛鲷性成熟性腺进行组织切片分析,发现大量未被吸收的产后卵泡,这一结果充分证实隆背笛鲷为分批繁殖鱼类。而其性腺为同步发育,因此可以认为隆背笛鲷是同步分批产卵鱼类。

    卵径大小是鱼类繁殖策略的重要组成部分,是鱼类对单个后代的繁殖投入。本研究发现隆背笛鲷的卵径特别小,平均卵径不到0.3 mm,这一结果与同属鱼类金焰笛鲷 (L. fulviflamma) 类似,其IV期卵母细胞的最大卵径为0.42 mm[22],与本研究的0.419 mm基本一致。

    卵径小一般意味着繁殖力大。本研究的最大繁殖力为276 205粒。繁殖力是鱼类种群评估的重要参数和评估鱼类补充量的重要计算依据。有关隆背笛鲷繁殖力的研究较少,仅Longenecker和Langston[17]对2尾隆背笛鲷性腺进行了繁殖力评估。本研究对21尾隆背笛鲷进行了繁殖力分析,发现其体长和体质量均与繁殖力呈显著幂函数关系,这一规律与其他笛鲷属鱼类一致,如金焰笛鲷[22]、西大西洋笛鲷 (L. campechanus)[23]、画眉笛鲷 (L. vitta)[24]等。笛鲷为繁殖力很强的鱼类,其最大与最小的繁殖力可相差2个数量级[25]。本研究的最大繁殖力和最小繁殖力相差1个数量级,但最大个体远小于Fishbase记录的最大全长 (500 mm),因此也符合这一规律。这也证实了大个体鱼类在繁殖中起主导和决定性的作用。Barneche等[26]通过分析342种海洋鱼类发现,79.1%的鱼类繁殖能量输出随个体大小呈超比例的增加,成幂函数关系。体长61 cm的美国红鱼 (L. campechanus) 怀卵量为9.3×106粒,相当于212尾体长为42 cm小个体的总怀卵量[27]。此外,像隆背笛鲷这一类具有季节性集群产卵的鱼类,大个体在繁殖过程中占据主导地位,可通过抑制小个体同类繁殖来维护种群结构的稳定[27]

    食性研究可以了解鱼类在生态系统中的能量流动,确定鱼类在生态系统中的位置[28]。美济礁隆背笛鲷主要摄食蟹类,这一结果与Nanami和Shimose[29]的研究吻合,其分析了4种笛鲷属鱼类食性,并从形态学方面证实了隆背笛鲷以蟹类为食的原因。隆背笛鲷拥有较高的体高、短的圆锥状牙齿和较小的颌结构,这决定其不具备较大的咬合力,也导致其更容易捕获底栖生物如螃蟹和虾类等[28]

    食性转变是鱼类生活史中的普遍现象[30]。本研究通过稳定同位素分析发现,隆背笛鲷食性随个体大小发生了转变,这一结果不仅与其他隆背笛鲷的研究[31]相似,也与墨西哥笛鲷 (L. guttatus)[32]L. peru[33]、巴哈马笛鲷 (L. synagris)[17]、双色笛鲷 (L. analis)[34]、西大西洋笛鲷[35]等研究结果一致。无论是隆背笛鲷还是其他笛鲷属鱼类,其摄食鱼类比例均随着个体发育逐渐增加。本研究也证实了这一观点,美济礁隆背笛鲷性成熟的个体营养生态位宽度较未性成熟个体窄,说明其食性来源更窄,更多摄食鱼类。另外,摄食高营养级的鱼类也导致了性成熟个体的营养级比未性成熟个体高。这一结果与墨西哥笛鲷[32]研究相似,小个体的营养级为3.8,大个体为4.0,同时生态位宽度也明显较小个体窄。食性的转变与个体的形态、行为、栖息地等的改变息息相关[30]。Valle-Lopez等[32]研究表明,笛鲷食性的转变是因为不同大小的鱼类形态学存在差异。笛鲷捕食选择性与嘴的直径相关,小个体鱼类只有较小口裂,导致其只能捕食小的食物如甲壳类,而大个体鱼类口裂较大,能够捕食鱼类等大个体食物;此外,大个体鱼类的游泳和捕食猎物的能力也会明显增加。食性的转变是鱼类为了减少竞争、增加共存的一种潜在捕食生存策略[33]

    本文对隆背笛鲷繁殖和食性进行了初步研究,为其生物学研究提供了基础资料,并为其资源的保护、管理和可持续发展提供理论依据,也为今后这一优质种质物种的养殖提供基础的理论参考。

  • 图  1   浙江南部近海采样站位

    Figure  1.   Sampling stations in offshore waters of southern Zhejiang Province

    图  2   浙江南部近海全年鱼类粒径谱

    a. Sheldon粒径谱;b. 标准化粒径谱。

    Figure  2.   Annual fish size spectrum in offshore waters of southern Zhejiang Province

    a. Sheldon size spectrum; b. Normalized size spectrum.

    图  3   浙江南部近海的各季节Sheldon鱼类粒径谱

    Figure  3.   Sheldon fish size spectra by seasons in offshore waters of southern Zhejiang Province

    图  4   浙江南部近海的各季节标准化鱼类粒径谱

    Figure  4.   Normalized fish size spectra in offshore waters of southern Zhejiang Province in different seasons

    图  5   鱼类群落的多维尺度排序

    Figure  5.   MDS ordination of fish samples

    图  6   浙江南部近海不同鱼类群落Sheldon粒径谱

    Figure  6.   Sheldon fish size spectra of different fish communities in offshore waters of southern Zhejiang Province

    图  7   浙江南部近海不同鱼类群落标准化粒径谱

    Figure  7.   Normalized fish size spectra of different fish communities in offshore waters of southern Zhejiang Province

    图  8   标准化粒径谱曲率与环境因子的相关性分析

    *. P<0.05,显著相关;**. P<0.01,极显著相关;***. P<0.001,非常显著相关。

    Figure  8.   Correlation analysis between curvature of normalized size spectra and environmental indicators

    *. P<0.05, significant correlation; **. P<0.01, extremely significant correlation; ***. P<0.001, very significant correlation.

    表  1   浙江南部近海环境指标统计值

    Table  1   Statistical values of environmental indicators in offshore waters of southern Zhejiang Province

    季节  
    Season  
    环境因子  
    Environmental factor  
    最小值
    Minimum value
    最大值
    Maximum value
    平均值±标准差
    $\overline { X}\pm { \rm {SD}} $
    春季 Spring 水深 Water depth/m 20.00 66.50 47.66±14.32
    水温 Temperature/℃ 21.20 24.50 22.46±0.79
    盐度 Salinity 26.30 33.10 28.77±1.74
    pH 8.23 8.71 8.44±0.14
    夏季 Summer 水深 Water depth/m 19.90 65.20 48.50±14.18
    水温 Temperature/℃ 28.00 30.20 28.94±0.45
    盐度 Salinity 31.70 34.00 33.36±0.71
    pH 8.09 8.32 8.17±0.06
    秋季 Autumn 水深 Water depth/m 16.70 63.70 51.21±12.25
    水温 Temperature/℃ 21.60 23.90 22.96±0.58
    盐度 Salinity 28.40 33.20 31.64±1.40
    pH 8.15 8.27 8.22±0.04
    冬季 Winter 水深 Water depth/m 21.50 66.00 48.26±13.63
    水温 Temperature/℃ 10.40 15.80 13.21±1.80
    盐度 Salinity 28.80 34.30 32.24±1.60
    pH 8.18 8.34 8.26±0.04
    下载: 导出CSV

    表  2   浙江南部近海鱼类群落组成及营养级状况

    Table  2   Composition of fish community and trophic level in offshore waters of southern Zhejiang Province

    粒径
    Size range
    粒径级上限值
    Upper limit of
    size class/g
    总生物量
    Total biomass/
    (g·km−2)
    主要鱼类物种
    Main fish species
    营养级
    Trophic level
    $\overline X \pm {\rm{SD}}$
    −3~−2 −2 1 麦氏犀鳕 Bregmaceros mcclellandi 3.30±0.42*
    −2~−1 −1 2 麦氏犀鳕 B. mcclellandi 3.30±0.42*
    粗吻海龙 Trachyrhamphus serratus — 
    −1~0 0 9 麦氏犀鳕 B. mcclellandi 3.30±0.42*
    六丝钝尾虾虎鱼 Amblychaeturichthys hexanema 3.65±0.05[25]
    舒氏冠海龙 Corythoichthys schultzi 3.80±0.50*
    0~1 1 40 麦氏犀鳕 B. mcclellandi 3.30±0.42*
    六丝钝尾虾虎鱼 A. hexanema 3.65±0.05[25]
    细条天竺鲷 Jaydia lineata 3.70±0.50*
    赤鼻棱鳀 Thryssa kammalensis 3.91±0.31[25]
    鳄齿鱼 Champsodon capensis 4.20±0.73*
    1~2 2 163 六丝钝尾虾虎鱼 A. hexanema 3.65±0.05[25]
    细条天竺鲷 J. lineata 3.70±0.50*
    麦氏犀鳕 B. mcclellandi 3.30±0.42*
    拉氏狼牙虾虎鱼 Odontamblyopus lacepedii — 
    2~3 3 613 拉氏狼牙虾虎鱼 O. lacepedii — 
    龙头鱼 Harpadon nehereus 3.62±0.20[25]
    发光鲷 Acropoma japonicum − 
    细条天竺鲷 J. lineata 3.70±0.50*
    大头白姑鱼 Pennahia macrocephalus 4.10 ±0.64*
    蓝圆鲹 Decapterus maruadsi 3.63±0.06[25]
    带鱼 T. lepturus 3.76±0.13[25]
    赤鼻棱鳀 Thryssa kammalensis 3.91±0.31[25]
    3~4 4 2 778 赤鼻棱鳀 T. kammalensis 3.91±0.31[25]
    大头白姑鱼 P. macrocephalus 4.10 ±0.64*
    白姑鱼 Pennahia argentata 4.10 ±0.70*
    发光鲷 A. japonicum — 
    龙头鱼 H. nehereus 3.62±0.20[25]
    4~5 5 8 507 黄鲫 Setipinna tenuifilis 3.74±0.15[25]
    黑姑鱼 Atrobucca nibe 4.00±0.69*
    大头白姑鱼 P. macrocephalus 4.10 ±0.64*
    龙头鱼 H. nehereus 3.62±0.20[25]
    5~6 6 17 971 小黄鱼 Larimichthys polyactis 3.70±0.40*
    龙头鱼 H. nehereus 3.62±0.20[25]
    带鱼 T. lepturus 3.76±0.13[25]
    刺鲳 P. anomala 4.00±0.28*
    6~7 7 19 326 带鱼 T. lepturus 3.76±0.13[25]
    刺鲳 P. anomala 4.00±0.28*
    镰鲳 P. echinogaster 3.50±0.20*
    7~8 8 10 651 带鱼 T. lepturus 3.76±0.13[25]
    镰鲳 P. echinogaster 3.50±0.20*
    刺鲳 P. anomala 4.00±0.28*
    8~9 9 4 018 镰鲳 P. echinogaster 3.50±0.20*
    蓝圆鲹 D. maruadsi 3.63±0.06[25]
    绿鳍鱼 Chelidonichthys kumu 3.70±0.57*
    黄鳍东方鲀 Takifugu xanthopterus — 
    9~10 10 5 234 黄鮟 Lophius litulon 4.17±0.09[25]
    中国花鲈 Lateolabrax maculatus — 
    10~11 11 5 867 黄鮟 L. litulon 4.17±0.09[25]
    注:*. 数据来源于FishBase (www.fishbase.org);—. 无数据。
    Note: *. Data from FishBase (www.fishbase.org); —. No data.
    下载: 导出CSV

    表  3   标准化鱼类粒径谱各季拟合曲线的参数

    Table  3   Parameters of seasonal fitted curve of normalized fish size spectra

    季节
    Season
    拟合方程
    Fitted
    equation
    曲率
    Curvature
    回归系数R2
    Regression
    coefficient
    冬季 Winter y=−0.09x2+0.83x+4.54 −0.09 0.90
    春季 Spring y=−0.18x2+1.70x+2.63 −0.18 0.87
    夏季 Summer y=−0.13x2+1.07x+5.08 −0.13 0.75
    秋季 Autumn y=−0.16x2+1.51x+3.59 −0.16 0.88
    下载: 导出CSV

    表  4   各季节分组标准化鱼类粒径谱拟合曲线参数

    Table  4   Parameters of seasonal fitted curve of normalized fish size spectra in different groups

    季节
    Season
    分组
    Group
    拟合方程
    Fitted equation
    曲率
    Curvature
    回归系数R2
    Regression coefficient
    生物量
    Biomass/(g·km−2)
    冬季 Winter 组Ⅰ y=−0.01x2+0.64x+0.92 −0.01 0.89 8 004
    组Ⅱ y=−0.17x2+1.33x+3.44 −0.17 0.68 4 291
    组Ⅲ y=−0.10x2+0.93x+4.27 −0.10 0.85 17 109
    组Ⅳ y=−0.08x2+0.70x+4.99 −0.08 0.75 28 858
    春季 Spring 组Ⅰ y=−0.28x2+3.83x−8.03 −0.28 0.31 5 232
    组Ⅱ y=−0.19x2+1.80x+3.10 −0.19 0.74 24 650
    组Ⅲ y=−0.28x2+2.78x+0.19 −0.28 0.80 19 059
    组Ⅳ y=−0.29x2+2.89x−0.57 −0.29 0.78 9 667
    夏季 Summer 组Ⅰ y=−0.38x2+3.21x+0.49 −0.38 0.82 8 076
    组Ⅱ y=−0.13x2+1.12x+4.72 −0.13 0.65 29 358
    组Ⅲ y=−0.10x2+0.92x+5.27 −0.10 0.57 34 790
    秋季 Autumn 组Ⅰ y=−0.15x2+1.60x+1.05 −0.15 0.26 4 069
    组Ⅱ y=−0.24x2+2.32x+1.78 −0.24 0.88 16 406
    组Ⅲ y=−0.16x2+1.31x+4.03 −0.16 0.59 20 425
    下载: 导出CSV
  • [1] 沈国英, 黄凌风, 郭丰, 等. 海洋生态学[M]. 3版. 北京: 科学出版社, 2010: 159-161.
    [2]

    ANDERSEN K. Size spectrum theory[M]. New Jersey: Princeton University Press, 2019: 15-37.

    [3]

    JENNINGS S, BLANCHARD J L. Fish abundance with no fishing: predictions based on macroecological theory[J]. J Anim Ecol, 2004, 73(4): 632-642. doi: 10.1111/j.0021-8790.2004.00839.x

    [4]

    ZHANG C L, CHEN Y, XU B D, et al. Evaluating fishing effects on the stability of fish communities using a size-spectrum model[J]. Fish Res, 2018, 197: 123-130. doi: 10.1016/j.fishres.2017.09.004

    [5]

    HENEGHAN R F, HATTON I A, GALBRAITH E D. Climate change impacts on marine ecosystems through the lens of the size spectrum[J]. Emerg Top Life Sci, 2019, 3(2): 233-243.

    [6]

    GUIET J, POGGIALE J C, MAURY O. Modelling the community size-spectrum: recent developments and new directions[J]. Ecol Model, 2016, 337: 4-14. doi: 10.1016/j.ecolmodel.2016.05.015

    [7] 王荣, 林雅蓉, 刘孝贤. 太平洋表层水某些生物海洋学要素和颗粒谱的分布规律研究[J]. 海洋与湖沼, 1988, 19(6): 505-517.
    [8] 宋伦, 宋广军, 王年斌. 辽东湾浮游生物粒径结构稳定性分析[J]. 中国环境科学, 2015, 35(10): 3117-3126. doi: 10.3969/j.issn.1000-6923.2015.10.032
    [9] 饶义勇, 蔡立哲, 黄聪丽, 等. 湛江高桥红树林湿地底栖动物粒径谱[J]. 生态学报, 2015, 35(21): 7182-7189.
    [10] 李自尚. 春季黄河口及其邻近水域浮游动物群落特征与粒径谱的初步研究[D]. 青岛: 中国海洋大学, 2012: 45-55.
    [11] 徐姗楠, 郭建忠, 陈作志, 等. 胶州湾鱼类生物量粒径谱特征[J]. 水产学报, 2020, 44(4): 596-605.
    [12] 柳晓雪, 高春霞, 田思泉, 等. 基于栖息地适宜指数的浙江南部近海黄鲫最适栖息地分布[J]. 中国水产科学, 2020, 27(12): 1485-1495.
    [13] 中华人民共和国生态环境部. 2018年中国海洋生态环境状况公报[EB/OL]. (2019-05-29)[2020-8-22]. https://hbdc.mee.gov.cn/hjyw/201905/t20190529_704849.shtml.
    [14] 杜晓雪, 田思泉, 王家启, 等. 浙江南部近海鱼类群落结构的时空特征[J]. 大连海洋大学学报, 2018, 33(4): 522-531.
    [15] 戴小杰, 杨志金, 田思泉, 等. 浙江南部近海鱼类分类多样性研究[J]. 海洋学报, 2019, 41(8): 43-51.
    [16] 韩晓凤, 王咏雪, 求锦津, 等. 台州南部近岸海域春秋季主要鱼类生态位及其种间联结性[J]. 水产学报, 2020, 44(4): 621-631.
    [17]

    SHELDON R W, PRAKASH A, SUTCLIFFE W H. The size distribution of particles in the ocean[J]. Limnol Oceanogr, 1972, 17(3): 327-340. doi: 10.4319/lo.1972.17.3.0327

    [18] 郭建忠, 陈作志, 徐姗楠. 鱼类粒径谱研究进展[J]. 海洋渔业, 2017, 39(5): 582-591. doi: 10.3969/j.issn.1004-2490.2017.05.012
    [19]

    JUNG S, HOUDE E D. Fish biomass size spectra in Chesapeake Bay[J]. Estuar Coast, 2005, 28(2): 226-240. doi: 10.1007/BF02732857

    [20]

    SPRULES W G, MUNAWAR M. Plankton size spectra in relation to ecosystem productivity, size, and perturbation[J]. Can J Fish Aquat Sci, 1986, 43(9): 1789-1794. doi: 10.1139/f86-222

    [21]

    DUPLISEA D E, KERR S R. Application of a biomass size spectrum model to demersal fish data from the Scotian Shelf[J]. J Theor Biol, 1995, 177(3): 263-269. doi: 10.1006/jtbi.1995.0243

    [22]

    TREBILCO R, BAUM J K, SALOMON A K, et al. Ecosystem ecology: size-based constraints on the pyramids of life[J]. Trends Ecol Evol, 2013, 28(7): 423-431. doi: 10.1016/j.tree.2013.03.008

    [23] 于海成. 长江口及邻近海域鱼类群落结构分析[D]. 青岛: 中国科学院大学 (中国科学院海洋研究所), 2008: 16-18.
    [24] 严润玄, 冯明, 王晓波, 等. 浙江北部海域大型底栖动物优势种的时空分布[J]. 海洋与湖沼, 2020, 51(5): 1162-1174. doi: 10.11693/hyhz20191200253
    [25] 高春霞, 戴小杰, 田思泉, 等. 基于稳定同位素技术的浙江南部近海主要渔业生物营养级[J]. 中国水产科学, 2020, 27(4): 438-453.
    [26] 徐姗楠, 郭建忠, 陈作志, 等. 大亚湾鱼类生物量粒径谱特征[J]. 中国水产科学, 2019, 26(1): 34-43.
    [27]

    WARWICK R M. Species size distributions in marine benthic communities[J]. Oecologia, 1984, 61(1): 32-41. doi: 10.1007/BF00379085

    [28]

    DOS SANTOS R M, HILBERS J P, HENDRIKS A J. Evaluation of models capacity to predict size spectra parameters in ecosystems under stress[J]. Ecol Indic, 2017, 79: 114-121. doi: 10.1016/j.ecolind.2017.04.017

    [29]

    BORGMANN U. Particle-size-conversion efficiency and total animal production in pelagic ecosystems[J]. Can J Fish Aquat Sci, 1982, 39(5): 668-674. doi: 10.1139/f82-096

    [30]

    MARQUET P A, QUINONES R A, ABADES S, et al. Scaling and power-laws in ecological systems[J]. J Exp Biol, 2005, 208(9): 1749-1769. doi: 10.1242/jeb.01588

    [31]

    KERR S R, DICKIE L M. The biomass spectrum: a predator-prey theory of aquatic production[M]. New York: Columbia University Press, 2001: 16-18.

    [32] 周林滨, 谭烨辉, 黄良民, 等. 水生生物粒径谱/生物量谱研究进展[J]. 生态学报, 2010, 30(12): 3319-3333.
    [33] 韩晓凤. 温台渔场产卵场保护区及附近海域游泳动物群落结构及多样性研究[D]. 舟山: 浙江海洋大学, 2020: 16-26.
    [34] 梁海. 洞头外侧海域鱼类群落结构及物种多样性研究[D]. 舟山: 浙江海洋大学, 2019: 25-36.
    [35] 孙鹏. 玉环东部及附近海域游泳动物群落特征及多样性研究[D]. 舟山: 浙江海洋大学, 2018: 27-41.
    [36]

    FENBERG P B, ROY K. Ecological and evolutionary consequences of size-selective harvesting: how much do we know?[J]. Mol Ecol, 2008, 17(1): 209-220. doi: 10.1111/j.1365-294X.2007.03522.x

    [37]

    SHIN Y J, ROCHET M J, JENNINGS S, et al. Using size-based indicators to evaluate the ecosystem effects of fishing[J]. ICES J Mar Sci, 2005, 62(3): 384-396. doi: 10.1016/j.icesjms.2005.01.004

    [38] 张琳琳. 浙江南部近岸海域春秋季鱼卵、仔稚鱼群落结构及与环境因子的关系[D]. 舟山: 浙江海洋大学, 2020: 46-52.
    [39] 宋伦, 王年斌, 杨国军, 等. 鸭绿江口及邻近海域生物群落的胁迫响应[J]. 生态学报, 2013, 33(9): 2790-2802.
  • 期刊类型引用(3)

    1. 王洪浩,陆化杰,何静茹,刘凯,陈炫妤,陈新军. 西北印度洋海域鸢乌贼耳石微结构及生长特性. 应用生态学报. 2022(12): 3419-3426 . 百度学术
    2. 李楠,俞骏,方舟,陈新军,张忠. 基于耳石日龄信息的东海海域剑尖枪乌贼日龄、生长及种群结构研究. 水产学报. 2021(06): 887-898 . 百度学术
    3. 谢慕原,徐汉祥,张涛,李鹏飞,徐开达,隋宥珍,刘连为,史会来,梁君. 养殖环境下曼氏无针乌贼生长的初步研究. 浙江海洋大学学报(自然科学版). 2021(05): 400-406 . 百度学术

    其他类型引用(5)

图(8)  /  表(4)
计量
  • 文章访问数:  706
  • HTML全文浏览量:  228
  • PDF下载量:  54
  • 被引次数: 8
出版历程
  • 收稿日期:  2021-03-23
  • 修回日期:  2021-07-02
  • 录用日期:  2021-07-26
  • 网络出版日期:  2021-07-31
  • 刊出日期:  2022-02-04

目录

/

返回文章
返回