张倩, 桂劲松, 任效忠, 薛博茹, 毕春伟, 刘鹰. 相对弧宽比对双通道方形养殖池的流场优化研究[J]. 南方水产科学, 2022, 18(4): 119-125. DOI: 10.12131/20210044
引用本文: 张倩, 桂劲松, 任效忠, 薛博茹, 毕春伟, 刘鹰. 相对弧宽比对双通道方形养殖池的流场优化研究[J]. 南方水产科学, 2022, 18(4): 119-125. DOI: 10.12131/20210044
ZHANG Qian, GUI Jinsong, REN Xiaozhong, XUE Boru, BI Chunwei, LIU Ying. Optimization of flow field in dual-drain square aquaculture tank with relative arc to width ratio[J]. South China Fisheries Science, 2022, 18(4): 119-125. DOI: 10.12131/20210044
Citation: ZHANG Qian, GUI Jinsong, REN Xiaozhong, XUE Boru, BI Chunwei, LIU Ying. Optimization of flow field in dual-drain square aquaculture tank with relative arc to width ratio[J]. South China Fisheries Science, 2022, 18(4): 119-125. DOI: 10.12131/20210044

相对弧宽比对双通道方形养殖池的流场优化研究

Optimization of flow field in dual-drain square aquaculture tank with relative arc to width ratio

  • 摘要: 为改善双通道方形养殖池内流场特性,通过研究圆弧角和直边的池壁组合方式对其进行流场优化,从而为循环水养殖产业提供更好的养殖装备。利用计算流体力学技术对双通道养殖池内流场进行三维数值模拟,通过对修正速度v0和均匀系数UC50的分析,评估了相对弧宽比 (R/BR为圆弧角半径,B为池壁边长) 对池内流场特性的影响。结果表明,不同的底流分流比 (养殖池底部中心排水口的出流流量占总体出流流量的百分比) 工况均呈现相同规律,即在相同的水体交换率下,0.2≤R/B<0.4的方形圆弧角养殖池的平均流速大约为方形养殖池的2倍,而与圆形养殖池相比无明显差异;且在流场均匀性分析中发现,0.2≤R/B<0.4的方形圆弧角养殖池均匀系数较高,甚至优于圆形养殖池的流态。研究表明,方形圆弧角养殖池的圆弧角可有效缩小方形养殖池中直角所导致的低流速区域面积,且保留了较高的空间利用率。方形圆弧角养殖池结合了方形养殖池和圆形养殖池的优势,可较好地解决双通道方形养殖池内流态不佳的问题,具有良好的产业推广及应用价值。

     

    Abstract: In order to improve the flow field characteristics in dual-drain square aquaculture tank, we combined arc angle and straight edge to optimize the flow field, so as to provide better aquaculture equipment for the recirculating aquaculture industry. We applied computational fluid dynamics technology to simulate the flow field in dual-drain aquaculture tanks, and evaluated the effect of relative arc to width ratio (R/B, R is the radius of arc angle, B is the side length of tank wall) on the flow field characteristics in the tanks by analyzing corrected velocity v0 and uniformity coefficient UC50. The results show a same rule under different conditions of underflow split ratio (The percentage of outflow from the center outlet at the bottom of the tank in the total outflow). The average velocity in the square arc angle aquaculture tanks with 0.2≤R/B<0.4 was about twice than that in the square aquaculture tanks for the same water exchange rate, but there was no significant difference compared with the circular aquaculture tanks. According to the analysis of flow field uniformity, the square arc angle aquaculture tanks with 0.2≤R/B<0.4 had higher uniformity coefficient, and even higher than that of circular aquaculture tanks. The research indicates that the area of lower velocity caused by the right angle in the square aquaculture tanks reduced effectively by the arc angle in the square arc angle aquaculture tanks, and higher space utilization rate was retained. The advantages of the square aquaculture tank and the circular aquaculture tank are fully combined in the square arc angle aquaculture tank, which solves the problem of poor flow pattern in dual-drain square aquaculture tank, with good industrial popularization and application value.

     

/

返回文章
返回