性类固醇激素雌二醇、睾酮对半滑舌鳎雌、雄、伪雄鱼生长性能的影响

王佳林, 杨英明, 杨倩, 王娜, 陈松林

王佳林, 杨英明, 杨倩, 王娜, 陈松林. 性类固醇激素雌二醇、睾酮对半滑舌鳎雌、雄、伪雄鱼生长性能的影响[J]. 南方水产科学, 2021, 17(4): 27-34. DOI: 10.12131/20210030
引用本文: 王佳林, 杨英明, 杨倩, 王娜, 陈松林. 性类固醇激素雌二醇、睾酮对半滑舌鳎雌、雄、伪雄鱼生长性能的影响[J]. 南方水产科学, 2021, 17(4): 27-34. DOI: 10.12131/20210030
WANG Jialin, YANG Yingming, YANG Qian, WANG Na, CHEN Songlin. Effects of sex steroid hormones (estradiol and testosterone) on growth traits of female, male and pseduo-male Chinese tongue sole (Cynoglossus semilaevis)[J]. South China Fisheries Science, 2021, 17(4): 27-34. DOI: 10.12131/20210030
Citation: WANG Jialin, YANG Yingming, YANG Qian, WANG Na, CHEN Songlin. Effects of sex steroid hormones (estradiol and testosterone) on growth traits of female, male and pseduo-male Chinese tongue sole (Cynoglossus semilaevis)[J]. South China Fisheries Science, 2021, 17(4): 27-34. DOI: 10.12131/20210030

性类固醇激素雌二醇、睾酮对半滑舌鳎雌、雄、伪雄鱼生长性能的影响

基金项目: 国家自然科学基金项目 (31873037);中国水产科学研究院中央级公益性科研院所基本科研业务费专项资金资助 (2020TD20)
详细信息
    作者简介:

    王佳林 (1996—),男,博士研究生,研究方向为水产生物技术。E-mail: 529947529@qq.com

    通讯作者:

    王 娜 (1980—),女,博士,研究员,从事海水鱼类细胞培养及功能基因组学研究。E-mail: wangna@ysfri.ac.cn

  • 中图分类号: S 917.4

Effects of sex steroid hormones (estradiol and testosterone) on growth traits of female, male and pseduo-male Chinese tongue sole (Cynoglossus semilaevis)

  • 摘要: 多种鱼类包括半滑舌鳎 (Cynoglossus semilaevis) 都存在性别大小异形现象,这种生长二态性可能与性类固醇激素和生长轴相关基因的相互作用有关。笔者课题组前期已通过转录组学分析发现性类固醇激素可能参与半滑舌鳎性别大小异形调控过程。为探究性类固醇激素对半滑舌鳎不同性别生长差异的影响,该研究对16月龄雌、雄、伪雄鱼进行了雌二醇、睾酮激素注射处理,并对其生长数据进行统计,且对半滑舌鳎生长激素1 (Growth hormone 1, gh1)、胰岛素样生长因子1 (Insulin-like growth factor 1, igf1) 和细胞因子信号转导抑制因子 (Suppressor of cytokine signaling 3, socs3) 3个基因进行了定量分析。结果表明,两种性类固醇激素对半滑舌鳎不同性别个体的生长均具有抑制作用。激素处理后,gh1、igf1在脑、肝脏中的表达量总体呈下降趋势,socs3在肌肉和肝脏中的表达量显著上升。该研究探讨了性类固醇激素对半滑舌鳎不同性别生长性能的影响,为深入研究性固醇激素调控鱼类性别大小异形现象提供了参考。
    Abstract: A variety of fish, including Chinese tongue sole (Cynoglossus semilaevis), have sexual size dimorphism, and this growth dimorphism may be related to the interaction of sex steroid hormones and growth axis-related genes. For the early stage of this study, transcriptomics analysis has found that sex steroid hormones might be involved in the growth regulation of Chinese tongue sole. In order to explore the effect of sex steroid hormones on the growth difference of different sexes of Chinese tongue sole, we injected 16-month-old female, male and pseudo-male fish with estradiol and testosterone hormones, and measured the growth hormone 1 (gh1), insulin-like growth factor 1 (igf1) and suppressor of cytokine signaling 3 (socs3) for quantitative analysis. The results reveal that the two sex steroid hormones had inhibitory effects on the growth performance of individuals of different sexes of Chinese tongue sole. After the treatment, the expressions of gh1 and igf1 in the brain and liver showed an overall downward trend, and the expression of socs3 in the muscle and liver increased significantly, indicating that the growth performance of fish had declined. By exploring the effects of sex steroid hormones on the growth performance of different sexes of Chinese tongue sole, we provide references for the in-depth study of sex steroid hormones in the regulation of fish sex size abnormalities.
  • 由于内源性生物钟的存在,生物体在生理、行为和基因表达方面都表现出节律性变化,并且这些生物活动与24 h的光暗周期同步[1]。生物钟系统由三部分组成,首先识别外信号,主要为光信号,信号传输至大脑转为神经信号,从而指挥由生物钟基因和功能蛋白组成的核心振荡器,产生昼夜性分子节律,最后分子节律转换成生理节律和行为节律,调控生物体的睡眠-苏醒循环、体温波动、激素涨落、识别及记忆能力变化等机体活动[2]

    昼夜节律生物钟包括主生物钟和外周生物钟,主生物钟位于中枢部位,外周生物钟位于心脏、肾脏、肝脏骨骼肌等组织细胞内。主生物钟作为中枢昼夜振荡器调节生物体的行为节律,并协调外周组织中振荡器的节律活动。果蝇的中枢生物钟细胞位于下丘脑的外侧神经元中[3]。哺乳动物的核心振荡器位于下丘脑视交叉上核[4],鸟类和部分鱼类的位于松果体内[5-6]。生物钟基因对于各生物体昼夜节律的发生必不可少,其表达决定于转录和翻译过程的分子振荡,并形成自我调节的反馈环路,因而被认为是组成昼夜节律钟机制的核心元件。生物钟基因在许多物种中都是高度保守的,目前研究所知的生物钟基因主要有Clock、Cry1、Cry2、Cry1a、Per1、Per2、Per3、Bmal1、Npas2、Npas4、Timeless等,其中在脊椎动物主生物钟环路中ClockBmal为正调节因子,PerCry为负调节因子。ClockNpas2与Bmal结合形成异质二聚体再与启动子上含E-box反应元件的生物钟基因结合,如PerCry基因家族,激活生物钟基因PerCry的转录,累积的PerCry的蛋白与酪蛋白激酶形成复合体,该复合体磷酸化后可阻断异质二聚体与E-box反应元件结合从而抑制基因转录,形成负反馈转录回路[7]。主生物钟可通过自主神经系统或体液介质调节外周生物钟使外周生物钟与主生物钟同步[8-9],共同维持一个近24 h的震荡节律。

    生物体可以预知光信号的季节性变化并使生命活动与之同步,光周期是调控季节性繁殖动物繁殖的主要环境因素,而光信号作为生物钟系统输入途径最主要的环境信号,对生物钟的调控起到重要作用,主生物钟在接收光信号后会传递至下丘脑,调节下丘脑-垂体-肾上腺轴 (HPA轴) 释放激素,维持昼夜节律性[10]。HPA轴也会以交互抑制的方式影响生物钟系统的活动与节律[11],因此垂体和下丘脑与生物钟调控密不可分。

    花鲈 (Lateolabrax maculatus) 具有适温范围广、适盐性强、肉质鲜美、经济效益高等特点,是中国重要的水产养殖品种。花鲈属短日照季节性繁殖鱼类,研究花鲈长短光照的昼夜节律可以了解其生活习性、繁殖规律等生理活动,从而优化养殖方法,提高经济效益。

    本实验通过对花鲈3种光周期:长光照 (16 h光照8 h黑暗,16L∶8D)、短光照 (8L∶16D) 和12 h光照12 h黑暗 (12L∶12D) 的处理,检测花鲈重要生物钟基因Bmal2、Npas4、Per2、Cry1、Cry2、Cry1aTimeless在垂体和下丘脑中的表达水平,初步探讨了花鲈昼夜生理规律。

    实验花鲈取自中国水产科学研究院南海水产研究所珠海斗门基地。花鲈养殖水温保持在 (26±2) ℃,所用的海水盐度为10,鱼体质量为 (1 450±80) g,养殖池每天更换1/3的海水并定时清除池内的鱼类代谢物及残渣。分为16L∶8D、8L∶16D和12L∶12D 3组,处理时间为2周。2周后采集实验鱼,在实验开始前24 h停止喂食,样品采集在一昼夜内进行,每隔3 h采集1次,9个采集时间点为6:00、9:00、12:00、15:00、18:00、21:00、24:00、次日3:00、次日6:00,分别对应授权时间 (Zeitgeber Time, ZT) ZT0、ZT3、ZT6、ZT9、ZT12、ZT15、ZT18、ZT21、ZT24。在每组中随机挑选体质健康、无损伤的3条鱼进行解剖,取下丘脑和垂体组织样品迅速存放于液氮中,随后转移至−80 ℃冰箱保存备用。

    采用Trizol法提取下丘脑和垂体的总RNA,1%琼脂糖凝胶电泳以检测RNA的完整性,并通过超微量核酸定量分析系统检测RNA纯度和浓度。

    使用TaKaRa公司的PrimeScriptTM RT reagent Kit with gDNA Eraser试剂盒合成cDNA定量模板。第一步反应体积10 µL,反应程序为42 ℃,2 min;第二步反应体积20 µL,反应程序为37 ℃,60 min;85 ℃,5 s;−80 ℃保存备用。

    利用本课题组已构建的花鲈转录组数据库筛选出Bmal2、Npas4、Per2、Cry1、Cry2、Cry1aTimeless的EST序列,通过Beacon Designer 7.0软件设计巢式PCR引物克隆验证基因,使用Beacon Designer 7.0软件设计荧光定量特异性引物 (表1),通过检测定量引物的扩增效率介于95%~105%,内参基因选择花鲈β-actin。

    表  1  荧光定量引物
    Table  1.  Primers for qRT-PCR
    引物名称
    Primer name
    序列 (5'–3')
    Sequence
    qBmal2-F TCTGAAAGTACAGGCGAGCCGTCCCA
    qBmal2-R CAGTGTAAGTCATCAAAGTCCCCAGT
    qPer2-F CCCCACCGTCCTTCAG
    qPer2-R TCCCATTCAGCCGCATTA
    qNpas4-F GTCATCTCCTGTGTCCTCTTGCT
    qNpas4-R ACTTCCACTCCCATCTTTGTG
    qCry1-F GACTGGGCTCTGAATGCTGGAA
    qCry1-R TGCCTGCTGAATACTGCGTGGAG
    qCry1a-F CAAAGCAGTATGGGCAGGT
    qCry1a-R AGTAGAAGAGCCGACAGGAGA
    qCry2-F GTCAATGCTGGCAGTTGGATGTGG
    qCry2-R GGGATGTAACGCCTGATGTATTCT
    qTimeless-F GAAACCAGACAGCCTCACTCCTAC
    qTimeless-R AAAGACTCCGACAACTGAAACCCT
    qβ-actin-F CAACTGGGATGACATGGAGAAG
    qβ-actin-R TTGGCTTTGGGGTTCAGG
    下载: 导出CSV 
    | 显示表格

    使用Roche Light Cycler 480Ⅱ实时定量PCR仪进行qRT-PCR反应,总反应体积为12.5 µL,反应体系为上下引物各0.5 µL、1.5 µL cDNA、6.25 µL SYBRⅡPremix Ex Taq、3.75 µL ddH2O。反应程序为95 ℃,30 s;95 ℃ ,5 s;62 ℃,40 s;42个循环;溶解曲线为95 ℃,1 s;65 ℃,5 s。每个cDNA样本和内部参数均设置3个重复。

    使用2–ΔΔCt法计算目的基因的表达量,结果以“平均值±标准差 ($ \overline X \pm {\rm{SD}}$) ”表示。用SPSS 22.0软件进行单因素方差分析 (One-way ANOVA),时间差异显著性结果表示为P<0.05。用Matlab软件进行余弦分析,拟合余弦方程为f (t) =M+Acos (tπ/12−φ);其中f(t) 是指时间对应的基因表达水平;M为波动变化的中线称为中值;A为振幅;φ为峰值相位,是震荡达到峰值的时刻[12] (表2表3)。

    表  2  花鲈垂体中生物钟基因mRNA表达的昼夜节律性参数
    Table  2.  Circadian rhythmic parameters of clock genes mRNA expressions in pituitary of L. maculatus
    基因
    Gene
    光周期
    Photoperiod
    振幅
    Amplitude
    峰值相位
    Acrophase
    中值
    Mesor
    P
    Bmal2 16L∶8D 0.471
    12L∶12D 0.416
    8L∶16D 0.200
    Naps4 16L∶8D 0.070
    12L∶12D 0.274
    8L∶16D 0.286
    Per2 16L∶8D 41.084 1 −18.890 5 43.894 7 <0.001
    12L∶12D 0.253 6 0.226 6 0.187 7 <0.001
    8L∶16D 0.371 2 −0.366 8 0.452 4 0.001
    Cry1 16L∶8D 0.951 9 9.299 7 1.390 5 <0.001
    12L∶12D 1.314 0 0.420 3 1.455 6 <0.001
    8L∶16D 1.165 7 10.981 0 1.647 0 <0.001
    Cryla 16L∶8D 0.364 2 6.375 6 1.577 3 0.002
    12L∶12D 0.498 9 0.568 9 0.648 5 <0.001
    8L∶16D 0.238 8 −7.008 3 1.027 7 <0.001
    Cry2 16L∶8D 47.911 9 0.018 2 31.143 5 <0.001
    12L∶12D 3.106 3 15.143 0 2.599 7 <0.001
    8L∶16D 29.750 8 −16.533 1 34.491 7 <0.001
    Timeless 16L∶8D 0.354 5 −4.266 8 0.860 5 <0.001
    12L∶12D 3.368 8 −1.157 9 2.785 8 <0.001
    8L∶16D 1.264 4 10.797 5 2.447 2 <0.001
    注:振幅为拟合波形峰值之间距离的一半;中值为周期平均值;峰值为相位周期最高幅度的时间点 (弧度);P为时间点间的差异;后表同此 Note: The amplitude is half of the distance between the peak values of the fitting waveform; the median value is the periodic average value; the peak value is the time point (radian) with the highest amplitude of phase period; P is the difference between time points; the same case in the following table.
    下载: 导出CSV 
    | 显示表格
    表  3  花鲈下丘脑中生物钟基因mRNA表达的昼夜节律性参数
    Table  3.  Circadian rhythmic parameters of clock genes mRNA expressions in hypothalamus of L. maculatus
    基因
    Gene
    处理组
    Photoperiod
    振幅
    Amplitude
    峰值相位
    Acrophase
    中值
    Mesor
    P
    Bmal2 16L∶8D 0.469
    12L∶12D 0.060
    8L∶16D 0.260
    Naps4 16L∶8D 0.762
    12L∶12D 0.166
    8L∶16D 0.095
    Per2 16L∶8D 0.472 1 −8.423 1 0.808 7 0.018
    12L∶12D 2.773 3 −8.478 7 3.971 5 0.001
    8L∶16D 0.896 2 −11.462 8 1.088 0 0.004
    Cry1 16L∶8D 0.436 6 −5.273 3 1.408 4 0.006
    12L∶12D 0.378 3 0.461 1 1.654 0 0.007
    8L∶16D 1.741 5 −0.099 9 1.554 6 <0.001
    Cryla 16L∶8D 0.096 4 −1.274 2 0.876 5 0.047
    12L∶12D 1.000 0 1.436 0 0.000 3 0.017
    8L∶16D 1.038 8 −9.228 1 1.978 6 <0.001
    Cry2 16L∶8D 44.338 7 7.936 4 24.514 2 <0.001
    12L∶12D 2.681 0 8.881 4 4.563 0 <0.001
    8L∶16D 6.819 8 8.026 9 4.909 8 <0.001
    Timeless 16L∶8D 9.888 2 −4.951 6.863 4 <0.001
    12L∶12D 2.955 7 9.236 6 3.071 5 <0.001
    8L∶16D 78.572 9 −6.378 3 45.208 1 <0.001
    下载: 导出CSV 
    | 显示表格

    3种光周期条件下,花鲈垂体内各生物钟基因mRNA表达结果显示Per2、Cry1、Cry1aCry2、Timeless有显著性时间差异 (P<0.05),Bmal2、Npas4的时间差异不显著 (P>0.05)。各生物钟基因在垂体中表达的昼夜节律性参数见表2,余弦分析拟合结果见图1Per2在12L∶12D下有明显节律性,其表达在光亮时达高峰,在光灭时至低谷;在8L∶16D下其节律明显,表达呈先降后升的趋势;在16L∶8D下无明显节律性。Cry1、Cry1aCry2作为同源基因在12L∶12D下均表现出明显节律性,其中Cry1、Cry1a表达在早晨达高峰,傍晚至低谷;Cry2表达呈先升后降的趋势,在ZT9—ZT12达高峰。Cry1在16L∶8D下节律变化为先升后降,在8L∶16D下于ZT6左右达高峰。Cry1a在16L∶8D下无明显节律,与12L∶12D相比,8L∶16D下相位左移,于ZT21左右达高峰。Cry2在16L∶8D和8L∶16D下无明显昼夜节律性。Timeless基因在12L∶12D下表现出明显节律性,表达高峰介于ZT6—ZT9,而在16L∶8D和8L∶16D下未表现出明显昼夜节律性 (图1)。

    图  1  3种光周期下花鲈垂体中生物钟基因mRNA昼夜节律表达的时间模式
    每个点的值代表每个生物钟基因的表达水平,采用“平均值±标准差”表示 (n=3);不同字母表示显著性差异 (P<0.05);虚线表示由余弦分析计算出的基因昼夜节律表达余弦函数,图上方条状图表示光周期,白色代表光照,黑色代表黑暗;后图同此
    Figure  1.  Relative expression of clock genes in pituitary of L. maculatus under three photoperiod conditions
    The values are $ \overline X \pm {\rm{SD}} $ (n=3) of the normalized transcript levels of each clock gene. Different lowercase letters indicate significant difference (P<0.05). The broken line is the periodic sinusoidal function of gene expression in a circadian cycle constructed from the periodicity parameters. The photoperiod regime is represented by composite block above the graph. White and black represent the light and dark phase, respectively; the same case in the following figure.

    3种光周期条件下,花鲈下丘脑内各生物钟基因mRNA表达结果显示Per2、Cry1、Cry1aCry2、Timeless有显著性时间差异 (P<0.05),Bmal2、Npas4的时间差异不显著 (P>0.05)。下丘脑中Per2在3种光周期下的表达趋势相似,但在12L∶12D下昼夜节律表现出明显的昼低夜高的节律性振荡。Cry1在16L∶8D和8L∶16D下表现无节律性,在12L∶12D下先降后升,峰值出现在清晨。Cry1a在16L∶8D与12L∶12D下无明显节律性,在8L∶16D下节律变化为先降后升,于清晨达到高峰。Cry2在3种光周期下表达趋势相似,均在下午达高峰。Timeless在12L∶12D下节律性变化为先升后降,在16L∶8D下表达于凌晨至高峰,在8L∶16D下则无昼夜节律性 (图2)。

    图  2  3种光周期下花鲈下丘脑中生物钟基因mRNA昼夜节律表达的时间模式
    Figure  2.  Relative expression of clock genes in hypothalamus of L. maculatus under three photoperiod conditions

    本实验研究了花鲈在不同光周期条件下生物钟基因在垂体和下丘脑中的表达规律。在12L∶12D条件下,垂体中Per2、Cry1、Cry2、Cry1aTimeless均有明显的昼夜节律震荡,而在下丘脑中Cry1、Cry1a则无明显节律性震荡。Per2、Cry1、Cry2、Cry1aTimeless基因在垂体和下丘脑中的表达高峰数值相近,每个基因在垂体和下丘脑中的表达量相近。12L∶12D条件下垂体中的Per2基因表达在光亮时刻达到高峰,而下丘脑中是在光灭时达到高峰。大西洋鲑 (Salmo salar) 松果体中Per2基因在夜晚达到高峰[13];大菱鲆 (Scophthalmus maximus) 在正常光照下下丘脑中Per2、Cry1的表达为昼高夜低[14];小鼠 (Mus musculus) Per2在视交叉上核表达为昼高夜低,在光灭时刻达高峰[15],与花鲈下丘脑中的表达规律一致。斑马鱼 (Danio rerio) Per2基因在早晨表达量最高,即在光亮时达到高峰[16],与花鲈垂体中的表达规律一致,Per2在垂体和下丘脑中的表达可能并不平行。Cry2在垂体和下丘脑中的昼夜节律变化一致,均呈现昼高夜低的趋势,Cry2在金鱼 (Carassius auratus) 视网膜[17]、大西洋鲑脑[18]和斑马鱼幼体[19]的表达均在黎明达到高峰。Cry1、Cry1a作为同源基因在垂体中表达的昼夜节律规律相似,但两者在下丘脑中的表达无昼夜节律性,这可能是因为生物钟基因的相互调控并不依赖于Cry1、Cry1a在下丘脑中的表达。Timeless是最先发现的两个生物钟基因之一,它对生物节律的影响与Per基因相似,在垂体中Timeless的表达呈现昼高夜低,在下丘脑中光灭时达到高峰,这与斑马鱼胚胎的表达趋势相同。

    不同光周期下基因表达趋势不同,在垂体中,Per2在8L∶16D下与12L∶12D下相比相位发生改变,震荡更强烈,而在16L∶8D下失去昼夜节律性。Cry1的表达,与12L∶12D条件相比,在8L∶16D下到达高峰的时间较晚,而在16L∶8D下达到高峰的时间最晚,但3种周期的震荡高峰都在光亮时间。在小鼠脑中,与短光周期相比,长光周期下Per1升高持续时间更长,在长短光周期中均表现为昼高夜低,Cry1在长短光周期中均表现为昼低夜高[20]。花鲈垂体中Cry1a在16L∶8D下失去节律性,Cry2在8L∶16D、16L∶8D下也失去节律性,Timeless在8L∶16D和16L∶8D下均失去昼夜节律性。同样在大西洋鲑鱼脑中持续的光照会使Per1-likeCry2、clockPer2基因均失去节律性。而在尼罗罗非鱼 (Oreochromis niloticus) 的视顶盖中Per1bCry2a在持续光照下节律趋势不变[21],日本鹌鹑 (Coturnix coturnix japonica) 下丘脑内Per2、Cry1在长短光周期下的节律趋势相似[22],说明不同物种光周期影响基因表达节律的相位、波形和振幅以及它们之间的相位关系。在下丘脑中Per2 在3种光周期下的昼夜节律趋势相同,但8L∶16D、16L∶8D均比12L∶12D下的震荡弱。Cry1在8L∶16D、16L∶8D 下均无明显的昼夜节律,Cry1a在12L∶12D和16L∶8D下均无昼夜节律性,表明下丘脑可能不是Cry1、Cry1a基因发挥作用的主要组织。Cry2在8L∶16D和16L∶8D下昼夜节律趋势基本相同,而12L∶12D与其峰值相位不同。Timeless在16L∶8D下表达高峰在黑暗时间,在12L∶12D下表达高峰在光亮时间且节律震荡更强烈。峰值时间的变化可能意味着不同物种、器官在不同光周期下,生物钟基因表达有不同的响应。

    本研究对3种光周期处理后的花鲈重要生物钟基因Bmal2、Npas4、Per2、Cry1、Cry2、Cry1aTimeless在垂体和下丘脑中的表达水平进行了初步分析,结果表明在正常光照下垂体中Per2、Cry1、Cry2、Cry1aTimeless表现出昼夜节律性,在下丘脑中Per2、Cry2、Cry1、Timeless表现出昼夜节律性,相同基因在垂体和下丘脑两种组织中的昼夜节律不同,因此花鲈垂体和下丘脑可能有自己独立的昼夜节律。在体外,环境信号似乎可以将所有细胞组织昼夜节律设置成相同的相位;但在体内,各种荷尔蒙、神经信号会对节律进行调整,产生组织特有的节律相位[23]。与哺乳动物不同,鱼类细胞可以直接进行光响应,不需要眼睛和松果体,因此在大脑、松果体、心脏、肝脏等组织中都有独立的昼夜节律,他们可以独立通过光响应同步,也可以相互作用[10, 24-25]。本实验中,长光照或短光照均会改变花鲈垂体和下丘脑中昼夜节律震荡强弱,也会改变峰值相位,部分基因在长光照或短光照下会出现失去昼夜节律性的现象。本研究结果可为花鲈生物钟相关研究提供基础资料。

  • 图  1   半滑舌鳎伪雄鱼鉴定电泳结果 (部分)

    ZW. 伪雄鱼;ZZ. 雄鱼;M. DL2000 DNA Marker

    Figure  1.   Electrophoresis results of pseudo-male identification of C. semilaevis (partial)

    ZW. Pseudo males; ZZ. Males; M. DL2000 DNA Marker

    图  2   性类固醇激素处理后体质量绝对生长率对比

    C. 对照组;E. 雌二醇处理组;T. 睾酮处理组;标有不同字母表示差异显著 (P<0.05),下同

    Figure  2.   Comparison of absolute growth rate of bodymass after treatment with sex steroid hormones

    C. Control group; E. Estradiol treated group; T. Testosterone treated group; different letters indicate significant difference (P<0.05). The same below.

    图  3   性类固醇激素处理后体长绝对生长率对比

    Figure  3.   Comparison of absolute growth rate of body length after treatment with sex steroid hormones

    图  4   睾酮、雌二醇处理后gh1 mRNA在半滑舌鳎不同性别脑组织中表达量的变化

    Figure  4.   Change of gh1 mRNA expression in brain tissues of different sexes of C. semilaevis after T and E2 treatments

    图  5   睾酮、雌二醇处理后igf 1 mRNA在半滑舌鳎不同性别肝脏中表达量的变化

    Figure  5.   Change of igf 1 mRNA expression in liver of different sexes of C. semilaevis after T and E2 treatments

    图  6   睾酮、雌二醇处理后socs3 mRNA在半滑舌鳎不同性别肝脏中表达量的变化

    Figure  6.   Change of socs3 mRNA expression in liver of different sexes of C. semilaevis after T and E2 treatments

    图  7   睾酮、雌二醇处理后socs3 mRNA在半滑舌鳎不同性别肌肉中表达量的变化

    Figure  7.   Changes of socs3 mRNA expression in muscle of different sexes of C. semilaevis after T and E2 treatments

    表  1   荧光定量PCR分析所用引物

    Table  1   Primers for real-time PCR

    NCBI 检索号
    NCBI No.
    引物
    Primer
    序列 (5'−3')
    Primer sequence
    103393304 β-actin-F GCTGTGCTGTCCCTGTA
    β-actin-R GAGTAGCCACGCTCTGTC
    103387754 gh1-F CCGAAGTGAACTGAAGAAA
    gh1-R CTGAGCAAGCAGGTGAAG
    103382578 igf1-F TCGCATCTCATCCTCTTTCTT
    igf1-R ATACAGCACATCGCACTCTTG
    103381769 socs3-F GTCCGACCAGATTTAGCC
    socs3-R TACCTTTGCCACTCACATAA
    下载: 导出CSV

    表  2   对照组、E处理组和T处理组生长参数比较

    Table  2   Comparison of growth parameters between control group, E treatment group and T treatment group $\overline { X}{\bf \pm {SD}}$; n=30

    组别
    Group
    性别
    Gender
    初始体质量
    Initial body
    mass/g
    实验后体质量
    Body mass
    after treatment/g
    初始体长
    Initial body
    length/cm
    实验后体长
    Body length
    after treatment/
    cm
    体质量绝对
    生长率
    Absolute
    growth
    rate W/%
    体长绝对
    生长率
    Absolute
    growth
    rate L/%
    对照组 Control group 雌 F 734.38±83.84a 775.00±77.47a 48.67±2.56a 51.63±2.50a 5.53±0.08c 2.73±0.03b
    雄 M 134.39±19.99b 148.93±20.37b 30.26±1.67b 30.38±1.35b 10.82±0.02a 0.41±0.19d
    伪雄 PM 148.90±22.28b 165.24±21.48b 29.60±2.14b 31.33±1.26b 10.97±0.04a 5.84±0.41a
    E处理组 E treatment group 雌 F 778.76±94.05a 788.46±73.24a 48.97±2.81a 51.56±2.71a 1.25±0.10f 1.96±0.06c
    雄 M 133.75±20.57b 137.52±19.99b 29.80±1.07b 29.95±1.39b 2.82±0.02e 0.52±0.04d
    伪雄 PM 154.83±27.14b 166.73±30.73b 30.18±2.40b 30.41±2.16b 7.69±0.06b 0.75±0.11d
    T处理组 T treatment group 雌 F 721.45±69.85a 750.00±78.54a 48.35±2.07a 51.24±2.15a 3.96±0.22d 2.59±0.04b
    雄 M 147.16±14.76b 152.70±19.03b 30.10±1.47b 30.47±1.53b 3.76±0.03d 1.23±0.29c
    伪雄 PM 159.72±26.19b 165.52±24.65b 30.18±1.90b 30.70±2.11b 3.63±0.13d 1.70±0.10c
    注:同一处理组、不同性别鱼之间的比较或同一性别鱼、不同处理组之间的比较;标有不同字母表示差异显著 (P<0.05) Note: Comparison between fish of the same treatment group and different sexes or comparison between fish of the same sex and different treatment groups. Different letters indicate significant difference (P<0.05).
    下载: 导出CSV
  • [1] 梅洁, 桂建芳. 鱼类性别异形和性别决定的遗传基础及其生物技术操控[J]. 中国科学: 生命科学, 2014, 44(12): 1198-1212.
    [2] 柳学周, 庄志猛, 马爱军, 等. 半滑舌鳎繁殖生物学及繁育技术研究[J]. 海洋水产研究, 2005, 26(5): 9-16.
    [3] 陈松林, 李仰真, 张静, 等. 半滑舌鳎快速生长及高雌性家系的筛选[J]. 水产学报, 2013, 37(4): 481-488.
    [4]

    JI X S, LIU H W, CHEN S L, et al. Growth differences and dimorphic expression of growth hormone (GH) in female and male Cynoglossus semilaevis after male sexual maturation[J]. Mar Genom, 2011, 4(1): 9-16. doi: 10.1016/j.margen.2010.11.002

    [5] 季相山, 陈松林, 马洪雨, 等. 半滑舌鳎养殖群体中自然性逆转伪雄鱼的发现[J]. 水产学报, 2010, 34(2): 322-327.
    [6]

    WEHRENBERG W B, GIUSTINA A. Basic counterpoint: mechanisms and pathways of gonadal steroid modulation of growth hormone secretion[J]. Endocr Rev, 1992, 13(2): 299-308.

    [7] 代向燕, 张玮, 卓子见, 等. 鱼类生长的神经内分泌调控[J]. 中国科学: 生命科学, 2014, 44(12): 1213-1226.
    [8]

    MA Q, LIU S, ZHUANG Z, et al. Genomic structure, polymorphism and expression analysis of the growth hormone (GH) gene in female and male half-smooth tongue sole (Cynoglossus semilaevis)[J]. Gene, 2012, 493(1): 92-104. doi: 10.1016/j.gene.2011.11.015

    [9]

    NELSON L E, SHERIDAN M A. Regulation of somatostatins and their receptors in fish[J]. Gen Comp Endocrinol, 2005, 142(12): 117-133.

    [10]

    STUDZINSKI A L, ALMEIDA D V, LANES CARLOS F C, et al. SOCS1 and SOCS3 are the main negative modulators of the somatotrophic axis in liver of homozygous GH-transgenic zebrafish (Danio rerio)[J]. Gen Comp Endocrinol, 2009, 161(1): 67-72. doi: 10.1016/j.ygcen.2008.10.008

    [11]

    KHAN M G M, GHOSH A, VARIYA B, et al. Hepatocyte growth control by SOCS1 and SOCS3[J]. Cytokine, 2019, 121: 154733. doi: 10.1016/j.cyto.2019.154733

    [12] 殷艳蓉, 袁炜, 贺明, 等. 17β-雌二醇通过SOCS3抑制泡沫细胞形成的机制初探[J]. 新疆医科大学学报, 2019, 42(12): 1531-1537. doi: 10.3969/j.issn.1009-5551.2019.12.005
    [13]

    GABRIELSSON B G, CARMIGNAC D F, FLAVELL D M, et al. Steroid regulation of growth hormone (GH) receptor and GH-binding protein messenger ribonucleic acids in the rat[J]. Narnia, 1995, 136(1): 209-217.

    [14]

    DOMENÉ H M, MARÍN G, SZTEIN J, et al. Estradiol inhibits growth hormone receptor gene expression in rabbit liver[J]. Mol Cell Endocrinol, 1994, 103(1/2): 81-87.

    [15]

    BRIAN J H, CHRISTINA M D, STEVEN B C, et al. Non-genomic convergent and divergent signalling of rapid responses to aldosterone and estradiol in mammalian colon[J]. Steroids, 2002, 67(6): 483-491. doi: 10.1016/S0039-128X(01)00169-6

    [16]

    HAZEM A H, WILLIAM J E, ALLEN T, et al. Estrogen and androgen elicit growth hormone release via dissimilar patterns of hypothalamic neuropeptide secretion[J]. Steroids, 2001, 66(2): 71-80. doi: 10.1016/S0039-128X(00)00168-9

    [17]

    MANDIKI S N M, BABIAK I, BOPOPI J M, et al. Effects of sex steroids and their inhibitors on endocrine parameters and gender growth differences in Eurasian perch (Perca fluviatilis) juveniles[J]. Steroids, 2005, 70(2): 85-94. doi: 10.1016/j.steroids.2004.10.009

    [18] 王凌宇, 齐飘飘, 陈敏, 等. 性类固醇激素对黄颡鱼雌雄生长二态性的影响[J]. 水生生物学报, 2020, 44(2): 379-388. doi: 10.7541/2020.046
    [19] 马细兰, 张勇, 陈勇智, 等. 性类固醇激素E2、MT对尼罗罗非鱼 (Oreochromis niloticus) 雌、雄生长差异的影响[J]. 海洋与湖沼, 2015, 46(6): 1487-1493.
    [20]

    WANG J, ZHOU J L, YANG Q, et al. Effects of 17 α-methyltestosterone on the transcriptome, gonadal histology and sex steroid hormones in Pseudorasbora parva[J]. Theriogenology, 2020, 155(10): 88-97.

    [21]

    WANG N, WANG R, CHEN S L. Transcriptomics analysis revealing candidate networks and genes for the body size sexual dimorphism of Chinese tongue sole (Cynoglossus semilaevis)[J]. Funct Integr Genomics, 2018, 18(10): 327-339.

    [22] 刘洋, 陈松林, 高峰涛, 等. 半滑舌鳎性别特异微卫星标记的SCAR转化及其应用[J]. 农业生物技术学报, 2014, 22(6): 787-792. doi: 10.3969/j.issn.1674-7968.2014.06.015
    [23]

    CLEVELAND B M, WEBER G M. Effects of sex steroids on expression of genes regulating growth-related mechanisms in rainbow trout (Oncorhynchus mykiss)[J]. Gen Comp Endocrinol, 2015, 216: 103-115. doi: 10.1016/j.ygcen.2014.11.018

    [24]

    YU Y M, DOMENÉ H M, SZTEIN J, et al. Developmental changes and differential regulation by testosterone and estradiol of growth hormone receptor expression in the rabbit[J]. Eur J Endocrinol, 1996, 135(5): 583-590. doi: 10.1530/eje.0.1350583

    [25]

    BORSKI R J, TSAI W, DEMOTT F R, et al. Regulation of somatic growth and the somatotropic axis by gonadal steroids: primary effect on insulin-like growth factor I gene expression and secretion[J]. Endocrinology, 1996, 137(8): 3253-3259. doi: 10.1210/endo.137.8.8754747

    [26]

    HOLLOWAY A C, LEATHERLAND J F. Effect of gonadal steroid hormones on plasma growth hormone concentrations in sexually immature rainbow trout, Oncorhynchus mykiss[J]. Gen Comp Endocrinol, 1997, 105(2): 246-254. doi: 10.1006/gcen.1996.6826

    [27]

    REINECKE M. Insulin-like growth factors and fish reproduction[J]. Biol Reprod, 2010, 82(4): 656-661. doi: 10.1095/biolreprod.109.080093

    [28]

    PÉREZ S J, SIMÓ M P, NAYA C F, et al. Somatotropic axis regulation unravels the differential effects of nutritional and environmental factors in growth performance of marine farmed fishes[J]. Front Endocrinol (Lausanne), 2008, 9(10): 682-689.

    [29]

    CLEVELAND B M, WEBER G M. Effects of steroid treatment on growth, nutrient partitioning, and expression of genes related to growth and nutrient metabolism in adult triploid rainbow trout (Oncorhynchus mykiss)[J]. Domest Anim Endocrinol, 2016, 56(10): 1-12.

    [30]

    KANAKARAJU K, RUAIRI C R, KIERA M, et al. Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice[J]. Microbiome, 2018, 6(1): 20-25. doi: 10.1186/s40168-018-0404-9

    [31]

    MEINHARDT U J, HO K Y. Modulation of growth hormone action by sex steroids[J]. Clin Endocrinol (Oxf), 2006, 65(4): 413-422. doi: 10.1111/j.1365-2265.2006.02676.x

    [32]

    MARTYNIUK C J, BISSEGGER S, LANGLOIS V S. Current perspectives on the androgen 5 alpha-dihydrotestosterone (DHT) and 5 alpha-reductases in teleost fishes and amphibians[J]. Gen Comp Endocrinol, 2013, 194(12): 264-274.

    [33]

    PERI A, DANZA G, BENVENUTI S, et al. New insights on the neuroprotective role of sterols and sex steroids: the seladin-1/DHCR24 paradigm[J]. Front Neuroendocrin, 2009, 30(2): 119-129. doi: 10.1016/j.yfrne.2009.03.006

    [34]

    LUCIANI P, DELEDDA C, ROSATI F, et al. Seladin-1 is a fundamental mediator of the neuroprotective effects of estrogen in human neuroblast long-term cell cultures[J]. Endocrinology, 2008, 149(9): 4256-4266. doi: 10.1210/en.2007-1795

    [35]

    NELSON P S, CLEGG N, ARNOLD H, et al. The program of androgen-responsive genes in neoplastic prostate epithelium[J]. Proc Nat Acad Sci USA, 2002, 99(18): 11890-11895. doi: 10.1073/pnas.182376299

    [36]

    MENDEZ P, WANDOSELL F, GARCIA S, et al. Cross-talk between estrogen receptors and insulin-like growth factor-I receptor in the brain: cellular and molecular mechanisms[J]. Front Neuroendocrin, 2006, 27(4): 391-403. doi: 10.1016/j.yfrne.2006.09.001

  • 期刊类型引用(7)

    1. 曾睿,汤艳凝,斯琴其木格,陆美霖,刘媛媛,张智勇,陈瑞娟,倪娜. 壳聚糖-刺玫果提取物复配涂膜对半干型风干牛肉贮藏品质的影响. 中国调味品. 2024(05): 24-30 . 百度学术
    2. 王慧蕊,魏团团,董明娜,张慧,马艺超,任丹丹,何云海,汪秋宽. 水产品劣变机制及其保鲜剂研发研究进展. 食品安全质量检测学报. 2024(11): 140-150 . 百度学术
    3. 李琳,徐扬,孙永,赵玲,曹荣,张朝辉. 虾类复合防黑保鲜剂配方优化与应用. 南方水产科学. 2024(03): 143-151 . 本站查看
    4. 崔巧燕,李来好,陈天玉,陈胜军,黄卉,赵永强,李春生. 植物乳植杆菌通过抑制蛋白水解改善罗非鱼发酵鱼糜凝胶强度. 南方水产科学. 2024(04): 1-10 . 本站查看
    5. 葛迎港,崔柯鑫,陈慧,刘楠,孙永,席瑞,王大军,周德庆,孙国辉. 3种抗氧化剂处理对干制鲅鱼脂肪氧化和挥发性风味成分的影响. 肉类研究. 2023(04): 21-28 . 百度学术
    6. 孙朋媛,曹传爱,刘骞,孔保华,王辉. 基于壳聚糖的智能指示包装及其在食品贮藏中应用的研究进展. 食品工业科技. 2023(10): 416-422 . 百度学术
    7. 郝淑贤,黄卉,李来好,吴燕燕,相欢,魏涯,岑剑伟,赵永强. 宰前预冷联合微冻对罗非鱼片品质的影响. 广东海洋大学学报. 2022(06): 11-16 . 百度学术

    其他类型引用(4)

图(7)  /  表(2)
计量
  • 文章访问数:  1511
  • HTML全文浏览量:  639
  • PDF下载量:  67
  • 被引次数: 11
出版历程
  • 收稿日期:  2021-01-14
  • 修回日期:  2021-03-28
  • 录用日期:  2021-04-06
  • 网络出版日期:  2021-04-15
  • 刊出日期:  2021-08-04

目录

/

返回文章
返回