Response of environmental factors to distribution of skipjack tuna purse seine fishery in Western and Central Pacific Ocean during different El Niña events
-
摘要: 金枪鱼围网鲣 (Katsuwonus pelamis) 主要作业渔场位于中西太平洋热带海域,厄尔尼诺事件对其分布有显著影响。文章基于中国大陆地区渔船围网鲣渔捞日志数据及环境因子,构建最大熵模型 (Maximum Entropy Model, MaxEnt),探讨不同类型厄尔尼诺事件对渔场空间分布及环境因子的响应特征。结果表明:1) 利用MaxEnt模型能够较好预测渔场分布;2) 中等强度中部型厄尔尼诺事件中鲣渔场主要分布在赤道太平洋160°E附近,超强东部型和弱中部型厄尔尼诺事件中鲣渔场主要分布在赤道太平洋170°E附近;3) 50 m水深温度 (Temperature of subsurface at 50 m depths, T50)、海表盐度 (Sea surface salinity, SSS)、海表温度 (Sea surface temperature, SST) 是影响鲣分布的关键因子,在中等强度中部型厄尔尼诺事件中,SSS贡献率最高;而在超强东部型和弱中部型事件中,T50贡献率最高;4) 鲣渔场重心在经度方向上集中分布于160°E—175°W海域,不同尼诺事件下,适宜栖息地面积比分别为:中等中部型事件24%,超强东部型事件28%,弱中部型事件29%。Abstract: Skipjack tuna (Katsuwonus pelamis) is widely distributed in the Western and Central Pacific Ocean, and El Niño events have significant impacts on its distribution. Based on the logbook data from mainland of China and the oceanographic environmental data, we applied the Maximum Entropy Model (MaxEnt) to explore the spatial distribution of fishing grounds and the response characteristics of environmental factors in different types of El Niño events. The results show that: 1) The MaxEnt model could predict the distribution of fishing grounds well. 2) The moderate Central Pacific El Niño events were mainly distributed around 160°E in the equatorial Pacific, while the super Eastern Pacific and weak Central Pacific El Niño events were mainly distributed around 170°E. 3) Sea surface temperature (SST), sea temperature at depth of 50 m (T50) and sea surface salinity (SSS) were the key factors affecting the distribution of skipjack tuna. In the moderate Central Pacific El Niño events, SSS had the highest contribution rate, while in the super Eastern Pacific and weak Central Pacific El Niño events, T50 did. 4) The center of gravity of fishing ground along the longitude was mainly distributed between 160°E and 175°W, and the suitable habitat average percentage was different in different El Niño events. The moderate Central Pacific El Niño events was 24%; the super Eastern Pacific El Niño events was 28%; the weak Central Pacific El Niño events was 29%.
-
粒径谱 (Size spectrum) 是以能量生态学为基础,把各类复杂的水域生态系统、食物循环、种群变动和影响机制等简化为谱图的一种方法[1]。它不依赖于传统的生物学分类知识[2],具有数据需求少、易操作和结果直观等特点,避免了生物特性鉴定不准确或调查资源有限引起的误差,在总体上、宏观地研究不同生态系统和群落动态及其变化机制和控制因素[1],可以用来比较不同历史时期和环境条件下生态系统的特点和差异[3],从某一粒级估计其他粒级的生物量或产量[1-2],评估捕捞[4]或环境对生态系统的压力[5-6],为研究水生生态学提供了新思路。1988年王荣等[7]首次把粒径谱的概念引入国内,如今我国粒径谱研究的发展及应用越来越广泛,涉及海湾[8]、湿地[9]和河口[10]等生境,在浮游生物[8,10]、底栖生物[9]中已有一定的应用和研究成果,而粒径谱应用于鱼类群落研究[11]近年才开始起步。
浙江省南部近海位于暖温带海区的温州和台州近海,有多条江河入海,受到浙江沿岸水、台湾暖流和黑潮次表层水等水团影响,悬浮物和营养物充足,饵料生物丰富[12],为多种鱼类提供了必要的栖息、索饵和繁衍场所。近年来,由于过度捕捞、环境污染等问题,近海水域的渔业资源严重衰退,渔业群落结构发生较大变动[13]。目前,国内已有学者对浙江省南部近海鱼类群落进行了物种生态优势度[14]、多样性[15]、生态位[16]等方面的研究,但受到气候变化和捕捞压力的持续影响,该海域鱼类群落结构发生着动态变化,需要进一步掌握其群落特征。本文根据2019年浙江南部近海4个季节的渔业资源调查数据,从时间和空间上进行鱼类群落粒径谱分析,探究该海域鱼类群落粒径谱特征,为鱼类资源保护与生态可持续发展提供参考。
1. 材料与方法
1.1 采样与测定
研究区域为浙江南部近岸海域 (120.93°E—122.95°E, 27.21°N—28.97°N),采样时间为2019年2月26日—3月2日 (冬季)、5月23—27日 (春季)、8月1—7日 (夏季) 和11月1—4日 (秋季),共4个航次的渔业资源和环境调查 (图1)。
调查船“浙洞渔10109”,主机马力540 HP,总吨位305 t,取样网具为网口宽40 m、网高7.5 m、网囊网目2 cm的底拖网。其中冬、夏季各27个站位,春季26个站位,秋季24个站位 (图1)。调查时每站位拖曳1次,平均拖速3 kn,每次作业时间1 h。同时,使用温盐深测量仪 (Conductivity temperature depth, CTD) 于每个站位测定盐度、温度、深度和pH等环境数据 (表1)。现场采样中样品的采集、保存和测定等均按照《海洋监测规范 (GB 17378)》和《海洋调查规范 (GB/T 12763)》执行。
表 1 浙江南部近海环境指标统计值Table 1. Statistical values of environmental indicators in offshore waters of southern Zhejiang Province季节
Season环境因子
Environmental factor最小值
Minimum value最大值
Maximum value平均值±标准差
$\overline { X}\pm { \rm {SD}} $春季 Spring 水深 Water depth/m 20.00 66.50 47.66±14.32 水温 Temperature/℃ 21.20 24.50 22.46±0.79 盐度 Salinity 26.30 33.10 28.77±1.74 pH 8.23 8.71 8.44±0.14 夏季 Summer 水深 Water depth/m 19.90 65.20 48.50±14.18 水温 Temperature/℃ 28.00 30.20 28.94±0.45 盐度 Salinity 31.70 34.00 33.36±0.71 pH 8.09 8.32 8.17±0.06 秋季 Autumn 水深 Water depth/m 16.70 63.70 51.21±12.25 水温 Temperature/℃ 21.60 23.90 22.96±0.58 盐度 Salinity 28.40 33.20 31.64±1.40 pH 8.15 8.27 8.22±0.04 冬季 Winter 水深 Water depth/m 21.50 66.00 48.26±13.63 水温 Temperature/℃ 10.40 15.80 13.21±1.80 盐度 Salinity 28.80 34.30 32.24±1.60 pH 8.18 8.34 8.26±0.04 1.2 研究方法
1.2.1 Sheldon鱼类粒径谱
鱼类个体生物量 (g) 经过log2转换后划分粒级,以最小生物量为起点,每一个粒级的上限值是下限值的2倍[17],即粒径间距以公比2成等比形式增长,作为横轴;单位面积 (km2)上对应粒级的生物量经过log2转换后作为纵轴,以此构建鱼类Sheldon粒径谱。谱上的散点用曲线连接后形成的峰型可以反映鱼类群落的结构特征[18-19]。
1.2.2 标准化鱼类粒径谱
鱼类标准化粒径谱的横轴是粒径级上限值经过log2转换后划分粒级作为横轴;每个单位面积上的鱼类总生物量与该粒级上鱼类个体生物量的变化幅度的比值,经log2对数化后作为纵轴,并对谱线进行相关性和回归分析,实质上代表了鱼类群落的粒级丰度[18-20]。
$$ \mathrm{\beta }\left({w}_{i}\right)={\rm{log}}_{2}\left[\frac{{B}\left({{w}}_{i}\right)}{\Delta {{w}}_{i}}\right] $$ (1) 式中:
$ \beta \left({w}_{i}\right) $ 为第$ i $ 粒级所对应的纵坐标;$ B\left({w}_{i}\right) $ 为单位面积上第$ i $ 粒级的总生物量;$ \Delta {w}_{i} $ 为第$ i $ 粒级上个体生物量的变化幅度。在理想的稳定状态下,标准化粒径谱为线性,且斜率为−1[2]。当鱼类群落受外界干扰打破平衡时,标准化粒径谱为抛物线型[11,21],曲线随捕捞强度增大而更加陡峭[18],且曲率或斜率大小受到当年生幼鱼和鱼类粒径大小[22]、人类捕捞活动强度[4]、栖息地环境[18]等因素影响。
1.2.3 多维尺度法
为了揭示不同站点鱼类群落的相似度结构,筛选出同时在3个或以上站点出现且丰度占1个站位1%以上的物种用于分析[23],以平衡稀有种、偶见种对整个鱼类群落的影响,再用该数据计算Bray-Curtis相似矩阵,在该矩阵的基础上,用多维尺度法 (Multidimensional Scaling, MDS) 对浙江省南部近岸海域的鱼类群落空间特征进行分析。使用胁强系数 (Stress) 检验MDS结果,一般情况下Stress<0.2时,可用MDS的二维散点图来表示,其图形有一定意义[24]。为判断分组的统计学意义,用相似性分析 (Analysis of similarities, ANOSIM) 检验组间的差异显著性,Global R>0为有效分组,表示组间差异大于组内差异。
1.3 数据处理与分析
鱼类生物学原始数据进行拖网时间 (1 h) 和拖网速度 (3 kn) 标准化,在R 4.0.2中完成鱼类粒径谱建立、显著性检验以及环境因子与标准化粒径谱曲率的相关性分析,鱼类群落分组用Primer 6.15进行MDS分析,采用Primer 6.15的ANOSIM和SPSS 19.0的单因素方差分析 (One-way ANOVA) 检验粒径谱特征差异和各分组间差异的显著性。
2. 结果
2.1 全年鱼类粒径谱
全年Sheldon鱼类粒径谱形状呈不规则的锯齿状 (图2-a),大体为单峰模式,粒级介于−2~11 (表2)。在−2~6粒级单位面积的生物量呈上升趋势,6~7粒级生物量增加趋势放缓,在7~9粒级呈下降趋势,9~11粒级缓慢增加。生物量最高值出现在6~7粒级,主要由带鱼 (Trichiurus lepturus)、刺鲳 (Psenopsis anomala)、镰鲳 (Pampus echinogaster) 等组成 (表2)。其中带鱼的生物量和数量占整个粒级上生物量和数量百分比的36.04%和36.57%,平均个体生物量为69 g;刺鲳的生物量和数量占比分别为12.02%和11.33%,平均个体生物量为75 g;镰鲳的生物量和数量占比分别为10.49%和9.70%,平均个体生物量为76 g。
表 2 浙江南部近海鱼类群落组成及营养级状况Table 2. Composition of fish community and trophic level in offshore waters of southern Zhejiang Province粒径
Size range粒径级上限值
Upper limit of
size class/g总生物量
Total biomass/
(g·km−2)主要鱼类物种
Main fish species营养级
Trophic level
$\overline X \pm {\rm{SD}}$−3~−2 −2 1 麦氏犀鳕 Bregmaceros mcclellandi 3.30±0.42* −2~−1 −1 2 麦氏犀鳕 B. mcclellandi 3.30±0.42* 粗吻海龙 Trachyrhamphus serratus — −1~0 0 9 麦氏犀鳕 B. mcclellandi 3.30±0.42* 六丝钝尾虾虎鱼 Amblychaeturichthys hexanema 3.65±0.05[25] 舒氏冠海龙 Corythoichthys schultzi 3.80±0.50* 0~1 1 40 麦氏犀鳕 B. mcclellandi 3.30±0.42* 六丝钝尾虾虎鱼 A. hexanema 3.65±0.05[25] 细条天竺鲷 Jaydia lineata 3.70±0.50* 赤鼻棱鳀 Thryssa kammalensis 3.91±0.31[25] 鳄齿鱼 Champsodon capensis 4.20±0.73* 1~2 2 163 六丝钝尾虾虎鱼 A. hexanema 3.65±0.05[25] 细条天竺鲷 J. lineata 3.70±0.50* 麦氏犀鳕 B. mcclellandi 3.30±0.42* 拉氏狼牙虾虎鱼 Odontamblyopus lacepedii — 2~3 3 613 拉氏狼牙虾虎鱼 O. lacepedii — 龙头鱼 Harpadon nehereus 3.62±0.20[25] 发光鲷 Acropoma japonicum − 细条天竺鲷 J. lineata 3.70±0.50* 大头白姑鱼 Pennahia macrocephalus 4.10 ±0.64* 蓝圆鲹 Decapterus maruadsi 3.63±0.06[25] 带鱼 T. lepturus 3.76±0.13[25] 赤鼻棱鳀 Thryssa kammalensis 3.91±0.31[25] 3~4 4 2 778 赤鼻棱鳀 T. kammalensis 3.91±0.31[25] 大头白姑鱼 P. macrocephalus 4.10 ±0.64* 白姑鱼 Pennahia argentata 4.10 ±0.70* 发光鲷 A. japonicum — 龙头鱼 H. nehereus 3.62±0.20[25] 4~5 5 8 507 黄鲫 Setipinna tenuifilis 3.74±0.15[25] 黑姑鱼 Atrobucca nibe 4.00±0.69* 大头白姑鱼 P. macrocephalus 4.10 ±0.64* 龙头鱼 H. nehereus 3.62±0.20[25] 5~6 6 17 971 小黄鱼 Larimichthys polyactis 3.70±0.40* 龙头鱼 H. nehereus 3.62±0.20[25] 带鱼 T. lepturus 3.76±0.13[25] 刺鲳 P. anomala 4.00±0.28* 6~7 7 19 326 带鱼 T. lepturus 3.76±0.13[25] 刺鲳 P. anomala 4.00±0.28* 镰鲳 P. echinogaster 3.50±0.20* 7~8 8 10 651 带鱼 T. lepturus 3.76±0.13[25] 镰鲳 P. echinogaster 3.50±0.20* 刺鲳 P. anomala 4.00±0.28* 8~9 9 4 018 镰鲳 P. echinogaster 3.50±0.20* 蓝圆鲹 D. maruadsi 3.63±0.06[25] 绿鳍鱼 Chelidonichthys kumu 3.70±0.57* 黄鳍东方鲀 Takifugu xanthopterus — 9~10 10 5 234 黄鮟 Lophius litulon 4.17±0.09[25] 中国花鲈 Lateolabrax maculatus — 10~11 11 5 867 黄鮟 L. litulon 4.17±0.09[25] 注:*. 数据来源于FishBase (www.fishbase.org);—. 无数据。
Note: *. Data from FishBase (www.fishbase.org); —. No data.全年标准化鱼类粒径谱 (图2-b) 的拟合曲线呈“穹顶”抛物线状,回归系数R2为0.88 (P<0.01),曲线穹顶位于3~7粒级,曲率为−0.15,表明浙江南部近海鱼类群落总体处于受干扰状态。
2.2 鱼类粒径谱的季节差异
2.2.1 Sheldon鱼类粒径谱
浙江南部近海4个季节Sheldon型鱼类生物量粒径谱形状基本呈单峰模式,季节差异不显著 (P=0.93,图3)。4个季节鱼类粒级介于−2~11,其中冬季粒级介于−1~11,春季为0~10,夏季为−2~10,秋季为0~9;鱼类总生物量以夏季 (8月) 最大,春季 (5月) 最小。冬季,Sheldon峰值位于10~11粒级,主要由黄鮟 (Lophius litulon)组成,其渔获重量百分比和数量百分比分别占该粒级的68.95%和66.67%,生物量最高值位于5~6粒级,主要由小黄鱼 (Larimichthys polyactis)、黄鲫 (Setipinna tenuifilis)构成,小黄鱼的渔获重量百分比和数量百分比分别为34.51%和28.34%,黄鲫的相应占比分别为18.93%和22.81%。春季,鱼类生物量最高值位于5~6粒级,主要由带鱼、龙头鱼 (Harpadon nehereus)构成,其中带鱼的渔获质量百分比和数量百分比分别为38.18%和35.55%,龙头鱼的相应占比分别为18.57%和20.09%;夏季,鱼类生物量最高值位于6~7粒级,主要由带鱼和日本鲭 (Scomber japonicus) 组成,其中带鱼的渔获质量百分比和数量百分比分别为50.60%和49.73%,日本鲭的相应占比分别为15.55%和14.32%;秋季,鱼类生物量最高值位于6~7粒级,主要由刺鲳、镰鲳等组成,其中刺鲳的渔获质量百分比和数量百分比分别为28.27%和24.23%,镰鲳的相应占比分别为18.97%和18.37%。
2.2.2 标准化鱼类粒径谱
浙江省南部近岸海域4个季节标准化鱼类粒径谱的拟合曲线均呈“穹顶”抛物线型 (图4),所有回归结果均极显著 (P<0.01)。回归系数R2以冬季最大 (R2=0.90),夏季最小 (R2=0.75,表3);曲率介于−0.18~−0.09,以冬季最大 (−0.09),夏秋次之,春季最小 (−0.18,表3),且冬季曲线相对平缓,春季曲线较为陡峭,这表明春季浙江南部近海鱼类生物量受外界干扰程度最大,而冬季相对稳定。
表 3 标准化鱼类粒径谱各季拟合曲线的参数Table 3. Parameters of seasonal fitted curve of normalized fish size spectra季节
Season拟合方程
Fitted
equation曲率
Curvature回归系数R2
Regression
coefficient冬季 Winter y=−0.09x2+0.83x+4.54 −0.09 0.90 春季 Spring y=−0.18x2+1.70x+2.63 −0.18 0.87 夏季 Summer y=−0.13x2+1.07x+5.08 −0.13 0.75 秋季 Autumn y=−0.16x2+1.51x+3.59 −0.16 0.88 2.3 鱼类群落空间差异
对浙江省南部近海四季各站位鱼类丰度进行多维尺度分析,得出四季MDS图 (图5)。Stress值分别为0.13、0.17、0.18和0.13,均在0.2以下,表明MDS结果可以反映各站位间的关系。冬季27个站位以69%的群落相似性将鱼类群落分为组Ⅰ、组Ⅱ、组Ⅲ、组Ⅳ,春季以57%的相似性分为4组,夏季以48%的相似性分为3组,秋季以64%的相似性分为3组。其中冬季组Ⅰ(站位21)、春季组Ⅰ(站位42) 和夏季组Ⅰ(站位04) 在各自季节自成一组,聚类相似性接近0。ANOSIM结果显示,冬季Global R=0.83 (P<0.01),春季Global R=0.74 (P<0.01),夏季Global R=0.69 (P<0.01),秋季Global R=0.85 (P<0.01),说明各分组间差异性极显著。
2.4 鱼类粒径谱的空间差异
根据MDS结果,构建四季14个群落组的Sheldon粒径谱 (图6),每个群落组均呈不规则的锯齿状。除夏季外,远岸站位比近岸站位的粒级区间大、生物量高。
冬季,组Ⅰ (站位21) 粒级介于4~10,主要由带鱼等鱼种组成;组Ⅱ(站位33、34) 粒级介于1~7,主要以六丝钝尾虾虎鱼 (Amblychaeturichthys hexanema)等为主;组Ⅲ (01、06、11等近岸站位) 粒级介于−1~10,以丰度高的拉氏狼牙虾虎鱼 (Odontamblyopus lacepedii)、黄鲫等小粒级鱼类为主;组Ⅳ (03、04、13等远岸站位) 粒级介于0~11,出现黄鮟等生物量较高鱼类。
春季,组Ⅰ(站位42) 粒级介于4~9,以龙头鱼等种类为主;组Ⅱ (32、33、23、24等远岸站位) 粒级介于0~10,总生物量最大,主要由带鱼等组成;组Ⅲ (39、35等近岸站位) 粒级介于2~9,峰值出现在5~7粒级上,以小黄鱼等为主;组Ⅳ (01、21等近岸站位) 粒级介于2~9,以黄鲫等鱼类为主。
夏季,组Ⅰ(站位04) 粒级介于4~8,在5~6粒级上捕获大量白姑鱼 (Pennahia argentata),生物量较高形成峰值,而在6~7粒级上捕获1尾短尾大眼鲷 (Priacanthus macracanthus),生物量低于5~6和7~8粒级上的生物量,致使波谷出现;组Ⅱ(33、14、42等远岸站位) 粒级介于−2~9,最小粒级主要由麦氏犀鳕 (Bregmaceros mcclellandi)、六丝钝尾虾虎鱼等低生物量鱼类组成;组Ⅲ (01、31、35等近岸站位) 粒级介于−1~10,捕获1尾海鳗 (Muraenesox cinereus) 使9~10粒级上生物量较高。
秋季,组Ⅰ(站位31、35) 粒级介于3~8,以龙头鱼居多;组Ⅲ (24、32、42等远岸站位) 粒级介于0~9,较群落组Ⅱ (01、06、16等近岸站位) 粒级 (1~9) 更完整,峰值出现在粒级7~8上,主要由刺鲳、带鱼、镰鲳等组成。
14个鱼类群落组的标准化粒径谱 (图7) 均存在显著差异 (P<0.01),除冬季群落组Ⅰ近似线性外,其他各组拟合曲线均呈穹顶型。冬季,拟合曲线的曲率为−0.17~−0.01,R2介于0.68~0.89 (表4),其中组Ⅰ拟合曲线的曲率最大且近似直线,其次为组Ⅳ和组Ⅲ,组Ⅱ最小,生物量由组Ⅳ向组Ⅰ依次减少。春季,拟合曲线的曲率为−0.29~−0.19,R2介于0.31~0.80 (表4),其中组Ⅱ拟合曲线的曲率最大,其次为组Ⅲ和组Ⅰ,组Ⅳ最小;组Ⅱ生物量最大,其次是组Ⅲ、Ⅳ、Ⅰ。夏季,拟合曲线的曲率为−0.38~−0.10,R2介于0.57~0.82 (表4),其中组Ⅲ拟合曲线的曲率最大,其次为组Ⅱ,组Ⅰ最小;组Ⅲ生物量最大,组Ⅰ生物量最小。秋季,拟合曲线的曲率为−0.24~−0.15,R2介于0.26~0.88 (表4),其中组Ⅰ拟合曲线的曲率最大,其次为组Ⅲ,组Ⅱ最小;组Ⅲ生物量最大,组Ⅰ生物量最小。四季各群落组标准化粒径谱的曲率大小表明,除夏季外,近岸鱼类群落整体上比远岸鱼类群落受到更大的干扰。
表 4 各季节分组标准化鱼类粒径谱拟合曲线参数Table 4. Parameters of seasonal fitted curve of normalized fish size spectra in different groups季节
Season分组
Group拟合方程
Fitted equation曲率
Curvature回归系数R2
Regression coefficient生物量
Biomass/(g·km−2)冬季 Winter 组Ⅰ y=−0.01x2+0.64x+0.92 −0.01 0.89 8 004 组Ⅱ y=−0.17x2+1.33x+3.44 −0.17 0.68 4 291 组Ⅲ y=−0.10x2+0.93x+4.27 −0.10 0.85 17 109 组Ⅳ y=−0.08x2+0.70x+4.99 −0.08 0.75 28 858 春季 Spring 组Ⅰ y=−0.28x2+3.83x−8.03 −0.28 0.31 5 232 组Ⅱ y=−0.19x2+1.80x+3.10 −0.19 0.74 24 650 组Ⅲ y=−0.28x2+2.78x+0.19 −0.28 0.80 19 059 组Ⅳ y=−0.29x2+2.89x−0.57 −0.29 0.78 9 667 夏季 Summer 组Ⅰ y=−0.38x2+3.21x+0.49 −0.38 0.82 8 076 组Ⅱ y=−0.13x2+1.12x+4.72 −0.13 0.65 29 358 组Ⅲ y=−0.10x2+0.92x+5.27 −0.10 0.57 34 790 秋季 Autumn 组Ⅰ y=−0.15x2+1.60x+1.05 −0.15 0.26 4 069 组Ⅱ y=−0.24x2+2.32x+1.78 −0.24 0.88 16 406 组Ⅲ y=−0.16x2+1.31x+4.03 −0.16 0.59 20 425 3. 讨论
3.1 鱼类群落特征
Sheldon鱼类粒径谱的峰型主要反映海域生态系统对外界干扰的适应性响应[26]。Warwick[27]与Jung和Houde[19]的研究表明,粒径谱图应为“双峰模式”,小粒级物种和大粒级物种分别形成波峰,并于交汇处形成波谷。本研究显示,浙江南部近海2019年整体粒级介于−2~11,但仅在6~7粒级出现最高生物量 (19 326 g·km−2),由带鱼、刺鲳、镰鲳等数量多的低生物量鱼类组成,在8~9粒级处捕获的镰鲳、蓝圆鲹等生物量 (4 018 g·km−2) 最低,低于7~8 (10 651 g·km−2) 和9~10 (5 234 g·km−2) 粒级,致使于8~9粒级处形成波谷,而不存在第二个峰值,表明该海域鱼类粒径处于不平衡状态,鱼类组成主要以小型鱼类为主,大型经济鱼类较少,这可能与过度捕捞有关。
标准化粒径谱拟合曲线的曲率、回归系数可指示群落的健康和稳定状况[28-29]。本研究中,浙江南部近海鱼类标准化粒径谱拟合曲线呈“穹顶”抛物线型,曲率为−0.15,高于稳态理论值−1,曲线较陡,说明小型鱼类居于有利地位,不易被大型鱼类捕食,向大型鱼类能量传递效率偏低,表明鱼类群落中的营养循环效率低。标准化粒径谱拟合曲线R2 (0.88) 接近1,说明各个粒级之间的能量传递效率近似。
本研究发现,东海传统“四大海产”中,鱼类除小黄鱼、带鱼能保持一定的采样率外,大黄鱼 (L. crocea) 等采样率极低。浙江省南部近岸海域鱼类群落主要以六丝钝尾虾虎鱼、麦氏犀鳕、拉氏狼牙虾虎鱼、鳄齿鱼 (Champsodon capensis) 等饵料性鱼类为主,而刀鲚 (Coilia nasus)、大黄鱼、中国花鲈等高营养级的经济鱼类少,几乎无法形成利于捕捞的渔汛期,这可能是因为不合理的捕捞活动造成亲体资源量剧减,加之近年海岸带开发、环境污染等原因,也可能与调查采样的海域范围有关。
3.2 鱼类粒径谱季节变动及其影响因素
鱼类粒径谱反映鱼类群落的粒径结构[18,30]及鱼类大小与丰度的关系[31]。本研究中,浙江南部近海冬季鱼类的粒级介于−1~11,春季为0~10,夏季为−2~10,秋季为0~9,各季节粒级大小存在季节变动。本次调查中冬季平均水温为13.21 ℃,最大粒级 (10~11) 捕获冷温性鱼类黄鮟、远东海鲂 (Zeus faber) 和中国花鲈,最小粒级 (−2~−1) 捕获虻鲉 (Erisphex pottii)、舒氏冠海龙 (Corythoichthys schultzi)、粗吻海龙 (Trachyrhamphus serratus)、六丝钝尾虾虎鱼等生物量低的鱼类和幼鱼;春季水温上升,平均值22.46 ℃,黄鮟等大粒级的冷温性鱼种游向水温较低处使粒级区间小于冬季,最小粒级 (−1~0) 捕获眼镜鱼 (Mene maculata)、翼红娘鱼 (Lepidotrigla alata)、蓝圆鲹的幼鱼,而高粒级只捕获1尾乌鲹 (Parastromateus niger);夏季正值禁渔期,平均水温为28.94 ℃,营养盐丰富,带鱼等暖温性鱼类洄游至近海进行育幼,以幼鱼数量居多,最小粒级 (−3~−2) 以带鱼为主;秋季平均水温为22.96 ℃,在伏季休渔期结束后,人类捕捞强度逐渐增大导致高粒级经济鱼类剧减,鱼类粒级区间缩小,最小粒级 (−1~0) 捕获发光鲷、六丝钝尾虾虎鱼、丝棘虎鲉 (Minous pusillus)、麦氏犀鳕、棕腹刺鲀 (Gastrophysus spadiceus),最大粒级有带鱼、鮸 (Miichthys miiuy)、鲶 (Silurus asotus)、棕腹刺鲀。
同时,粒径谱图形的曲率受到各季节最小粒级上鱼类生物量[9]、当年生幼鱼数量、洄游性与定栖性鱼类生物量[26]、捕捞强度[32]等影响。本研究发现,冬季浙江南部近海鱼类群落相对稳定,最小粒级上捕获数量较多的小个体鱼类,使得该粒级总生物量较高。冷温性鱼种黄鮟等个体较大的成鱼在冷水系沿岸流影响下出现,这或许是冬季存在高粒级 (10~11) 的原因,从而使得冬季鱼类群落的粒径结构较其余季节好,标准化粒径谱的曲率相对平缓。春、夏季,最小粒级上鱼类的数量和生物量均较少,秋季虽在最小粒级上捕获较多麦氏犀鳕,但随着捕捞强度的增大,高粒级鱼类缺乏,使标准化鱼类粒径谱的曲率相对陡峭。此外,小粒径的丝棘虎鲉、粗吻海龙、六丝钝尾虾虎鱼等定栖性鱼类的存在,发光鲷、麦氏犀鳕、蓝圆鲹、眼镜鱼等洄游性鱼类的季节性出现,以及带鱼等当年生鱼类的出现,都会使得谱图曲率产生季节变化。冬季到春季曲率降低与位于春季最小粒级 (0~1) 上的1尾眼镜鱼、蓝圆鲹、翼红娘鱼有关,春季生物量为3 g·km−2,低于冬季生物量 (7 g·km−2),且粒级区间小于冬季;春季到夏季曲率升高与夏季最小粒级 (−2~0) 捕获到较多麦氏犀鳕、带鱼幼鱼、六丝钝尾虾虎鱼有关,且0~1粒级上夏季生物量 (9 g·km−2) 高于春季 (4 g·km−2);夏季到秋季曲率下降是由于秋季最小粒级 (0~1) 上的麦氏犀鳕、发光鲷等造成,生物量 (6 g·km−2) 低于夏季生物量 (9 g·km−2),且粒级区间较秋季小;秋季到冬季曲率上升与冬季最小粒级 (−1~0) 捕获粗吻海龙、六丝钝尾虾虎鱼、丝棘虎鲉等,少数大粒级 (10~11) 黄鮟有关,且0~1粒级生物量 (7 g·km−2) 高于秋季生物量 (6 g·km−2)。
因此,浙江南部近海鱼类粒径谱季节变化明显,主要受环境变化、最小粒径级的鱼类生物量变化、洄游性与定栖性鱼类、当年生幼鱼影响。禁渔期的季节性、人类捕捞活动的季节性强度不同也会对鱼类群落结构和生物量产生影响,进而使得鱼类粒径谱结构发生季节变化。徐姗楠等[11,26]对大亚湾和胶州湾的研究也得到类似结论。
3.3 鱼类粒径谱空间特征
鱼类群落的空间分布特征受鱼类生活习性、丰度分布、栖息地环境等影响[33-34]。对比浙江南部近海四季14个群落组的相似性发现,冬、春季在69%和57%的相似性水平上分别聚为4组,夏、秋季在48%和64%的相似性水平上分别聚为3组,即春、夏季群落相似性均低于冬、秋季,这可能与鱼类生活习性、栖息地环境等有关。秋、冬季鱼类分散索饵或越冬洄游,分布较均匀,各组结构较相似;春、夏季部分鱼类在沿岸产卵、索饵,因环境需求不同,呈分群、斑块状分布,导致各组差异较明显[33],带鱼、龙头鱼、黄鲫等物种并非只出现在某一个站位或群聚中,这可能由于该部分鱼类适温、适盐性强,不存在空间上的相互隔离,即由鱼类丰度分布的空间差异导致[34],本研究进一步证实了这点。
同时,鱼类群落的空间分布也与鱼类生态特征、过度捕捞、环境因素等有关[35]。综合分析14个组发现,各组间均有极显著性差异 (P<0.01),除单个站位组的冬季组Ⅰ (站位21)、春季组Ⅰ (站位42)、夏季组Ⅰ (站位04) 外,近岸站位 (如站位06、16、26等) 和远岸站位 (如站位23、32、13等) 基本不会划分成同一组 (图5),即近岸站位和远岸站位群落结构具有较大差异,这可能与鱼类生态特性有关,与梁海[34]研究结果一致。各组Sheldon粒径谱中,冬季最高值在组Ⅳ,春季为组Ⅱ,夏季为组Ⅲ,秋季为组Ⅲ,这4组粒级区间大、生物量高且均包含大部分远岸站位。从种类组成上看,远岸站点包含了带鱼、中国花鲈、海鳗等生物量稍高的鱼类种类,近岸站点主要由黄鲫、镰鲳、龙头鱼、黑姑鱼等丰度大的小型鱼类组成。标准化粒径谱中,冬季群落组Ⅳ、春季群落组Ⅱ和秋季群落组Ⅲ的曲率分别大于冬季组Ⅲ、春季组Ⅳ和秋季组Ⅱ,整体上,近岸比远岸受到更大干扰,鱼类群落结构发生变化。而夏季正值禁渔期,致使组Ⅱ曲率小于组Ⅲ,证实禁捕政策取得一定成效,近岸站位渔业资源得到一定恢复。研究表明,人类捕捞影响鱼类粒级结构[18],过度捕捞导致大粒级鱼类缺乏[36],标准化粒径谱的曲率随捕捞强度的增加而减小[18,37]。同时,本研究发现标准化粒径谱曲率与环境因子有显著相关性 (图8),其中曲率大小与海表温度 (R=−0.27) 呈极显著负相关,与盐度 (R=0.59) 呈非常显著正相关,与pH (R=−0.46) 呈非常显著负相关,与水深深度 (R=0.11) 无明显相关性,即曲率与海域盐度、pH和温度的相关性显著。有研究认为,蓝圆鲹等鱼类受温度影响大,带鱼、龙头鱼等鱼类的越冬洄游与外侧较深海域的盐度有关[38],环境因子通过影响鱼类生长全过程导致各粒径级对应物种组成变化,从而影响整个鱼类粒径谱形状[18]。此外,宋伦等[8,39]研究表明,海域富营养化对粒径谱的粒径结构和曲率也具有影响。
图 8 标准化粒径谱曲率与环境因子的相关性分析*. P<0.05,显著相关;**. P<0.01,极显著相关;***. P<0.001,非常显著相关。Figure 8. Correlation analysis between curvature of normalized size spectra and environmental indicators*. P<0.05, significant correlation; **. P<0.01, extremely significant correlation; ***. P<0.001, very significant correlation.3.4 展望
根据鱼类粒径谱的结构形态,对偏离理论稳定状态的系统制定修复计划,如生物操纵策略中的增殖放流,根据实际情况在群落/生态系统中补充低于拟合值的生物。小范围海域可通过定向捕捞、投放幼鱼或成鱼等措施;在大范围海域,可先将幼鱼投放在邻近较为稳定的环境中,以确保鱼类资源的亲体补充量,增强群落稳定性和抗干扰能力。本研究从粒径谱角度出发,探索了鱼类群落的粒径谱结构和组成,并从季节和空间两方面分析了鱼类群落的空间差异和变动,为浙江南部近岸海域渔业资源管理和生态可持续发展提供了重要的参考依据。
致谢:对上海海洋大学渔业资源和生态系统量化评估与管理研究室、浙江省海洋水产养殖研究所的老师和同学在样品采集和生物学分析中的付出,戴黎斌、王士聪、薛铭华等提供的帮助,谨致谢忱!
-
表 1 解释变量间方差膨胀因子
Table 1 Variance inflation factor among explanatory variables
解释变量
Explanatory variable方差膨胀因子
VIF海表面温度 SST 1.929 50 m水深温度 T50 3.189 海表面盐度 SSS 4.100 混合层深度 MLD 3.140 海平面异常 SLA 4.761 净初级生产力 NPP 2.634 东西向的海表流速 UCC 1.579 南北向的海表流速 VCC 2.328 表 2 最大熵模型的曲线下的面积值
Table 2 AUC value of Maximum Entropy Model under curve
厄尔尼诺事件
El Niño event时间 (年-月)
Time
(Year-Month)训练数据
Training
data测试数据
Test
data中等中部型厄尔尼诺
Moderate Central Pacific El Niño2009-10 0.977 0.979 2009-11 0.978 0.980 2009-12 0.956 0.960 2010-01 0.956 0.963 2010-02 0.965 0.964 2010-03 0.974 0.978 超强东部型厄尔尼诺
Super Eastern Pacific El Niño2015-10 0.948 0.954 2015-11 0.940 0.955 2015-12 0.928 0.939 2016-01 0.954 0.969 2016-02 0.914 0.916 2016-03 0.965 0.969 弱中部型厄尔尼诺
Weak Central Pacific El Niño2018-10 0.937 0.949 2018-11 0.941 0.944 2018-12 0.944 0.946 2019-01 0.983 0.987 2019-02 0.951 0.953 2019-03 0.960 0.969 表 3 最大熵模型中各环境因子的贡献率
Table 3 Contribution rate of environmental factors of Maximum Entropy Model
厄尔尼诺事件类型
Types of El Niño event环境因子
Environmental
factor均值
Average/%中等中部型厄尔尼诺
Moderate Central Pacific El NiñoSSS 19.72 T50 19.24 SLA 12.56 SST 12.07 NPP 10.97 VCC 9.99 UCC 8.22 MLD 7.23 超强东部型厄尔尼诺
Super Eastern Pacific El NiñoT50 25.49 SST 22.03 SLA 19.85 SSS 16.01 VCC 6.53 MLD 4.49 NPP 3.92 UCC 1.69 弱中部型厄尔尼诺
Weak Central Pacific El NiñoT50 52.86 SST 11.97 SSS 9.86 MLD 8.47 UCC 6.33 VCC 5.67 NPP 4.84 注:环境因子解释见表1 Note: The explanation of the environmental factos are shown in Table 1. 表 4 不同类型厄尔尼诺事件鲣适宜栖息地面积比例
Table 4 Suitable habitat acreage percentage of skipjack tuna in different types of El Niño events
% 厄尔尼诺事件
El Niño event平均值
Average最大值
Maximum最小值
Minimum中位数
Median中等中部型厄尔尼诺 Moderate Central Pacific El Niño 24 31 18 23 超强东部型厄尔尼诺 Super Eastern Pacific El Niño 28 34 21 27 弱中部型厄尔尼诺 Weak Central Pacific El Niño 29 33 20 31 -
[1] WILLIAMS P, THOMAS R, SPC (Secretariat of the Pacific Community). Overview of tuna fisheries in the Western and Central Pacific Ocean, including economic conditions 2019[R]. Pohnpei State: WCPFC-SC16, 2020.
[2] LEHODEY P, BERTIGNAC M, HAMPTON J. El Niño Southern Oscillation and tuna in the western Pacific[J]. Nature, 1997, 389(6652): 715-718. doi: 10.1038/39575
[3] WANG J T, CHEN X J, STAPLES K W, et al. The skipjack tuna fishery in the west-central Pacific Ocean: applying neural networks to detect habitat preferences[J]. Fish Sci, 2018, 84(2): 309-321. doi: 10.1007/s12562-017-1161-6
[4] MCPHADEN M J, PICAUT J. El Niño-Southern Oscillation displacements of the western equatorial Pacific warm pool[J]. Science, 1990, 250(4986): 1385-1388. doi: 10.1126/science.250.4986.1385
[5] HAMPTON J. Estimates of tag-reporting and tag-shedding rates in a large-scale tuna tagging experiment in the western tropical Pacific Ocean[J]. Fish Byte, 1997, 95(1): 68-79.
[6] LIMA M, NAYA D E. Large-scale climatic variability affects the dynamics of tropical skipjack tuna in the Western Pacific Ocean[J]. Ecography, 2011, 34(4): 597-605. doi: 10.1111/j.1600-0587.2010.06422.x
[7] YEH S W, KUG J S, DEWITTE B, et al. Erratum: El Niño in a changing climate[J]. Nature, 2009, 462(7273): 674-674.
[8] YU J Y, KAO H Y. Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001[J]. J Geophys Res-Atmos, 2007, 112(D13): 106.
[9] LEE T, MCPHADEN M J. Increasing intensity of El Niño in the central-equatorial Pacific[J]. Geophys Res Lett, 2010, 37(14): 603.
[10] 李政纬. ENSO现象对中西太平洋鲣鲔围网渔况之影响[D]. 基隆: 台湾海洋大学, 2005: 20-28. [11] 周甦芳, 沈建华, 樊伟. ENSO现象对中西太平洋鲣鱼围网渔场的影响分析[J]. 海洋渔业, 2004, 26(3): 167-172. doi: 10.3969/j.issn.1004-2490.2004.03.002 [12] YEN K W, LU H J. Spatial-temporal variations in primary productivity and population dynamics of skipjack tuna Katsuwonus pelamis in the western and central Pacific Ocean[J]. Fish Sci, 2016, 82(4): 563-571. doi: 10.1007/s12562-016-0992-x
[13] 唐浩, 许柳雄, 陈新军, 等. 基于GAM模型研究时空及环境因子对中西太平洋鲣鱼渔场的影响[J]. 海洋环境科学, 2013, 32(4): 518-522. [14] ZHANG J, ZHANG Y, LIU L, et al. Predicting potential distribution of Tibetan spruce (Picea smithiana) in Qomolangma (Mount Everest) National Nature Preserve using Maximum Entropy Niche-based model[J]. Chin Geogr Sci, 2011, 21(4): 417-426. doi: 10.1007/s11769-011-0483-z
[15] ELITH J, PHILLIPS S J, HASTIE T, et al. A statistical explanation of MaxEnt for ecologists[J]. Divers Distrib, 2011, 17(1): 43-57. doi: 10.1111/j.1472-4642.2010.00725.x
[16] DUQUE-LAZO J, van GILS H, GROEN T A, et al. Transfer ability of species distribution models: the case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia[J]. Ecol Model, 2016, 320: 62-70. doi: 10.1016/j.ecolmodel.2015.09.019
[17] 张嘉容, 杨晓明, 田思泉. 基于最大熵模型的南太平洋长鳍金枪鱼栖息地预测[J]. 中国水产科学, 2020, 27(10): 1222-1233. [18] 陈芃, 陈新军. 基于最大熵模型分析西南大西洋阿根廷滑柔鱼栖息地分布[J]. 水产学报, 2016, 40(6): 893-902. [19] 薛嘉伦, 樊伟, 唐峰华, 等. 基于最大熵模型预测西北太平洋公海鲐潜在栖息地分布[J]. 南方水产科学, 2018, 14(1): 92-98. doi: 10.3969/j.issn.20950780.2018.01.012 [20] BUI D T, LOFMAN O, REVHAUG I, et al. Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression[J]. Nat Hazards, 2011, 59(3): 1413-1444. doi: 10.1007/s11069-011-9844-2
[21] 何珊, 王学昉, 戴黎斌, 等. 人工集鱼装置禁渔期措施对中国大陆金枪鱼围网船队捕捞努力量特征的影响[J]. 大连海洋大学学报, 2018, 33(1): 102-107. [22] 温健, 贡静雯, 李婷, 等. 异常气候条件下秘鲁外海茎柔鱼栖息地的时空变动[J]. 海洋学报, 2020, 42(10): 92-99. [23] RODHOUSE P G. Managing and forecasting squid fisheries in variable environments[J]. Fish Res, 2001, 54(1): 3-8. doi: 10.1016/S0165-7836(01)00370-8
[24] XIE R H, HUANG F, REN H L. Subtropical air-sea interaction and development of central Pacific El Niño[J]. J Ocean Univ, 2013, 12(2): 260-271. doi: 10.1007/s11802-013-2143-7
[25] 夏飞, 黎鑫, 杨明浩, 等. 两类开始型厄尔尼诺事件与次表层海温异常的联系[J]. 厦门大学学报(自然科学版), 2020, 59(3): 381-393. [26] KAO H Y, YU J Y. Contrasting Eastern-Pacific and Central-Pacific types of ENSO[J]. J Clim, 2 009, 22(3): 615-632.
[27] 李崇银. 关于ENSO本质的进一步研究[J]. 气候与环境研究, 2002, 7(2): 160-174. doi: 10.3878/j.issn.1006-9585.2002.02.04 [28] 叶泰豪, 冯波, 颜云榕, 等. 中西太平洋鲣渔场与温盐垂直结构关系的研究[J]. 海洋湖沼通报, 2012(1): 49-55. doi: 10.3969/j.issn.1003-6482.2012.01.007 [29] 杨胜龙, 周甦芳, 周为峰, 等. 基于Argo数据的中西太平洋鲣渔获量与水温、表层盐度关系的初步研究[J]. 大连水产学院学院, 2010, 25(1): 34-40. [30] PICAUT J, IOUALALEN M, MENKES C, et al. Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO[J]. Science, 1996, 274(5292): 1486-1489. doi: 10.1126/science.274.5292.1486
[31] ZHENG F, ZHANG R H. Interannually varying salinity effects on ENSO in the tropical Pacific: a diagnostic analysis from Argo[J]. Ocean Dyn, 2015, 65(5): 691-705. doi: 10.1007/s10236-015-0829-7
[32] 范秀梅, 杨胜龙, 张胜茂, 等. 基于栖息地指数的阿拉伯海鲐鱼渔情预报模型构建[J]. 南方水产科学, 2020, 16(4): 8-17. doi: 10.12131/20190255 [33] 杨晓明, 王学昉, 田思泉, 等. 赤道太平洋中部围网自由群的空间点模式的影响因子[J]. 水产学报, 2018, 42(8): 1220-1228. [34] 郭爱, 陈新军, 范江涛. 中西太平洋鲣鱼时空分布及其与ENSO关系探讨[J]. 水产科学, 2010, 29(10): 591-596. doi: 10.3969/j.issn.1003-1111.2010.10.006 [35] SATIBI M, OSAWA T, ARTHANA I W. Evaluation of tuna fishing ground in southern coast of Java-Sumbawa Sea using satellite observer data[J]. J Environ Sci, 2012, 4(1): 25-30.
[36] MUGO R, SAITOH S I, NIHIRA A, et al. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: a remote sensing perspective[J]. Fish Oceanogr, 2010, 19(5): 382-396. doi: 10.1111/j.1365-2419.2010.00552.x
[37] 王凡, 刘传玉, 胡石建, 等. 太平洋暖池冷舌交汇区盐度变异机制及气候效应研究[J]. 地球科学进展, 2018, 33(8): 775-782. doi: 10.11867/j.issn.1001-8166.2018.08.0775 [38] LEHODEY P, SENINA I, CALMETTES B, et al. Modelling the impact of climate change on Pacific skipjack tuna population and fisheries[J]. Clim Change, 2013, 119(1): 95-109. doi: 10.1007/s10584-012-0595-1
[39] 陈洋洋, 陈新军, 郭立新, 等. 基于不同气候条件的中西太平洋鲣鱼渔场预报[J]. 上海海洋大学学报, 2019, 28(1): 145-153. -
期刊类型引用(2)
1. 朱海晨,汤建华,吴磊,施金金,王储庆,王燕平,闫欣,葛慧. 黄海南部海域鱼类群落结构及生物量粒径谱特征. 中国水产科学. 2023(09): 1102-1111 . 百度学术
2. 王寅,赵静,高春霞,王士聪,叶深. 浙江南部近海春季鱼类群落结构特征及其年际变化. 海洋与湖沼. 2022(06): 1455-1466 . 百度学术
其他类型引用(2)