大口黑鲈佛山和台湾群体自交与杂交子代的生长和形态差异分析

李江涛, 杨凯宇, 邱晓桐, 方俊超, 黄菲菲, 邱小龙, 吕晓静, 梁日深, 李清清, 林蠡

李江涛, 杨凯宇, 邱晓桐, 方俊超, 黄菲菲, 邱小龙, 吕晓静, 梁日深, 李清清, 林蠡. 大口黑鲈佛山和台湾群体自交与杂交子代的生长和形态差异分析[J]. 南方水产科学, 2021, 17(5): 1-9. DOI: 10.12131/20200262
引用本文: 李江涛, 杨凯宇, 邱晓桐, 方俊超, 黄菲菲, 邱小龙, 吕晓静, 梁日深, 李清清, 林蠡. 大口黑鲈佛山和台湾群体自交与杂交子代的生长和形态差异分析[J]. 南方水产科学, 2021, 17(5): 1-9. DOI: 10.12131/20200262
Jiangtao LI, Kaiyu YANG, Xiaotong QIU, Junchao FANG, Feifei HUANG, Xiaolong QIU, Xiaojing LYU, Rishen LIANG, Qingqing LI, Li LIN. Comparison of growth and morphological characteristics of inbred and hybrid families of Micropterus salmoides from Foshan and Taiwan populations[J]. South China Fisheries Science, 2021, 17(5): 1-9. DOI: 10.12131/20200262
Citation: Jiangtao LI, Kaiyu YANG, Xiaotong QIU, Junchao FANG, Feifei HUANG, Xiaolong QIU, Xiaojing LYU, Rishen LIANG, Qingqing LI, Li LIN. Comparison of growth and morphological characteristics of inbred and hybrid families of Micropterus salmoides from Foshan and Taiwan populations[J]. South China Fisheries Science, 2021, 17(5): 1-9. DOI: 10.12131/20200262

大口黑鲈佛山和台湾群体自交与杂交子代的生长和形态差异分析

基金项目: 国家自然科学基金项目 (32002375); 广东省基础与应用基础研究基金 (2020A1515410006)
详细信息
    作者简介:

    李江涛 (1988—),男,博士,特聘副教授,从事水产种质资源研究。E-mail: jtaoli@163.com

    通讯作者:

    林 蠡 (1970—),男,博士,教授,从事水产种质资源与病害研究。E-mail: linli@zhku.edu.cn

  • 中图分类号: Q 145+.1;S 917.4

Comparison of growth and morphological characteristics of inbred and hybrid families of Micropterus salmoides from Foshan and Taiwan populations

  • 摘要: 文章以大口黑鲈 (Micropterus salmoides) 佛山群体和台湾群体为亲本,建立了佛山自交、台湾自交、正交子代 (佛山♀×台湾♂)、反交子代 (台湾♀×佛山♂) 4个试验群体,通过6个月的养殖试验,对其生长和形态差异进行了比较。结果显示,正反交子代的生长性能和体质量变异系数均高于2个亲代自交群体。形态分析结果表明,4个试验群体的形态差异主要集中于躯干的中部和尾部。前三主成分累计贡献率达92.9%,第一主成分贡献率为71.3%,主要反映躯体前、中部形态特征;第二主成分贡献率为16.6%,主要反映躯体后部特征。前二主成分因子得分散点图中4个群体重叠区域较小,可以完全区分。将可量性状和框架性状结合在一起所构建的逐步判定模型推测准确率最高 (86.7%~96.0%)。研究结果可为大口黑鲈佛山群体、台湾群体及其杂交子代的生长与形态鉴定提供基础数据。
    Abstract: Taking Foshan and Taiwan populations of Micropterus salmoides as parents, we established four populations including Foshan inbreeding group (Foshan ♀×Foshan ♂), Taiwan inbreeding group (Taiwan ♀×Taiwan ♂), normal progeny (Foshan ♀×Taiwan ♂) and reciprocal progeny (Taiwan ♀×Foshan ♂) , and carried out a 6-month experiment, in order to compare their growth and morphological characteristics. Results show that the growth performance and coefficient of variation for body mass were significantly higher in the hybid groups than in the two inbred groups. The results of morphological analysis show that the morphological differences of the four populations were mainly in the middle part of trunk and tail. The contribution rate of the first three principal components was 92.9%, and that of the first principal component was 71.3%, mainly reflecting the morphological characteristics of the front and middle part of the body. The contribution rate of the second principal component was 16.6%, reflecting the characteristics of the tail region of fish body. In the scatter plot of the scores of the first two principal components, the four populations could be completely distinguished due to the low overlap area. The stepwise discriminant model constructed by combining measurable traits and frame traits showed the highest accuracy (86.7%–96.0%). The results provide references for the growth and morphological identification of hybrid families of M. salmoides from Foshan and Taiwan populations.
  • 物种共现(species co-occurrence)是对许多生态过程获得更好理解的基本模式,生态学家常通过分析两个或多个物种在一组空间位置中共同出现的频率,评估物种共现的正、负相关性和随机性。对物种共现模式的研究是许多生态研究的基本任务[1]

    传统生态位构建理论认为,物种在群落中的共现是以生态位分化为前提的,生态位相同的物种可能因竞争共同的资源而发生竞争排除,不能稳定共现[2],同科属的种类往往表现出较接近的生态位,受空间和食物资源的影响,在时间上出现明显的错位分布[3]。而中性理论认为,物种共现与生态位分化无关,物种在扩散限制的边界内随机聚合形成群落[4-5]。虽然生态位理论和中性理论在物种共现方面存在争议,但近年来更多的生态学家倾向于生态位理论和中性理论并非对立,将生态位理论和中性理论整合可以更好地理解群落构建的机理[6-7]。近年来的研究主要集中于环境筛选和生物相互作用在群落构建中的相对重要性。群落物种特征是群落构建的直接作用对象,所以生态学家通过构建群落零模型(null model)、数据随机化(data randomization)等方法来分析实际群落中物种的分布特征与随机过程导致的特征相似和离散性的异同[8-10]。但是这种用于产生随机化矩阵的方法受随机过程本身的影响往往会产生“一类”或“二类”错误,而概率模型不依赖于数据随机化过程,“一类”或“二类”错误的发生率相对较低[11-12]

    网络分析方法(networks theory)可以获得生物过程与生物群落构建之间的关系,利用网络的属性特点可以反映群落中物种之间的相互关系,并能够通过对物种联结节点赋予不同的权重反映物种之间相互作用的强度[13-14]。该理论已经广泛应用在不同层次的群落构建机制研究中,包括对基因和蛋白质相互作用、代谢路径、共现关系以及食物网的分析[13]。另外,共现网络(co-occurrence networks)也被应用在对不同生物群落的构建模式分析中,在网络中可以通过分析种间联结数量和权重识别群落结构中的核心物种[15-17]

    长江口是我国最大的河口,大量淡水和陆源物质注入为海洋鱼类和其他海洋生物提供了良好的生存环境。受河口冲淡水以及潮汐等多种环境因素的影响,长江口生态系统具有较大的时空变化,栖息环境的差异导致了鱼类群落组成的差异[18]。本研究以长江口鱼类群落为研究对象,使用概率模型和网络分析方法,1) 探讨鱼类群落的种间共现模式;2)分析在栖息环境具明显季节差异的河口水域,鱼类种间共现模式和群落聚集程度的变化;3) 识别群落中的核心物种。进而了解长江口鱼类群落构建和生物多样性维持的机制。

    于2012—2014年每年的2月(冬季)、5月(春季)、8月(夏季)和11月(秋季),对长江口中华鲟自然保护区及附近海域渔业资源进行了定点采样调查,共15个站点(图1)。

    图  1  调查站点图分布图
    Figure  1.  Distribution of sampling sites

    调查船为沪崇渔1511号,渔具为双囊底拖网,网口宽6 m,网高2 m,网纲长6 m,囊网网目20 mm。根据GPS定位,当调查船到达站位后,放下拖网,以约2 km·h−1的航速拖曳30 min,随即收网并整理2个囊袋中的渔获物。当渔获物数量较少时,记录全部渔获物的种类、数量、质量、体长等统计量数据,渔获物数量较多时随机抽取一定比例的渔获物进行统计,最后换算成全部渔获物的数量,种类鉴定参考《长江口鱼类》[19]

    随机共现表示2个物种之间的相对分布模式是随机的或独立的,并不表示每个物种的分布都是随机的;正关联的2个物种的分布在空间位置上重叠的可能性更高,负关联的2个物种相反。因此一对物种可能存在的潜在共现关系有3种,即随机、正关联和负关联。这种关联模式的存在可以间接的证明存在某些不确定的生态过程或影响因子导致了特定的种间共现模式[1]。本研究根据每个物种在不同月份和不同站点的渔获数据建立物种出现(1)—不出现(0)的关联矩阵,利用成对概率分析(pair-wise probabilistic analyses)方法验证物种共现的假设[12]。分析在R语言co-occur程序包中进行[20]。该方法可以获得每个种对共现关系的显著性(α>0.05),并能够识别显著聚集和显著分离的物种。

    观察到的种对共现数据用于构建不同季节的种间共现网络,以观察到的鱼类共现关系为边(edges),以物种作为顶点(nodes)。种间共现网络的构建在R语言igraph程序包中进行[21]。分析物种权度(weighted degree)和中间中心性(betweenness centrality),以物种权度决定顶点大小。在共现网络中,将群落中与某一物种具有显著正关联的所有物种的种数作为该物种的权度;物种对群落内信息交换的控制能力作为物种的中间中心性,它是将通过节点的二进制最短路径除以2个节点之间的二进制路径的数量来计算的,中间中心性越大,物种对群落内信息交换的控制能力越强,对维持群落结构的稳定就越关键[22]。权重和中间中心性的估算都在R语言tnet程序包中进行[23]。利用局部聚类系数 (local clustering coefficients) 分析物种权重密度,聚类系数是当前与中心节点联结的节点之间的链接数量与可能的链接总数的比例。聚类系数较高的网络具有较强的内聚性[24]。同时使用igraph程序包中的intersection.by.name代码分析每个季节的共现关系都是正相关的种对[21]

    采用相对重要性指数(relative importance index,IRI)作为鱼类优势度的指标:

    $${\rm{IRI}} = \left( {N + W} \right) \times F$$

    式中N为某种鱼类占捕获鱼类个体总数的百分比(%),W为某种鱼类占捕获鱼类总质量的百分比(%),F为某种鱼类在调查中的出现频率(%)。IRI值大于1 000时为优势种,50~1 000为常见种,其余为偶见种,优势种和常见种为长江口的主要经济鱼类[18]

    所有分析均在R 3.4.3中进行。

    调查共发现鱼类38种,属11目18科(表1)。以鲈形目最多(16种),其中虾虎鱼科最多(9种),其次是鲱形目和鲽形目各有4种。优势种和常见种共11种。

    表  1  长江口鱼类组成 (2012—2014年)
    Table  1.  Fish species composition in Yangtze River estuary (2012−2014)

    Order

    Family

    Species
    频次
    frequency
    相对重要性指数
    IRI
    鲱形目 Clupeiformes鳀科赤鼻棱鳀 Thrissa kammalensis30.62
    黄鲫 Setipinna taty20.07
    刀鲚 Coilia nasus56128.20
    凤鲚 Coilia mystus3473.15
    鲑形目 Salmoniformes银鱼科大银鱼 Protosalanx hyalocranius 40.18
    灯笼鱼目 Myctophiformes狗母鱼科龙头鱼 Harpodon nehereus2477.77
    鳗鲡目 Anguilliformes海鳗科海鳗 Muraensox cinereus30.41
    鲤形目 Cypriniformes鲤科贝氏䱗 Hemiculter bleekeri30.27
    长蛇 Saurogobio dumerili30.21
    鲇形目 Siluriformes鲿科光泽黄颡鱼 Pelteobagrus nitidus3158.81
    长吻 Leiocassis longirostris40.48
    鲻形目 Mugiliformes鲻科Mugil cephalus20.13
    Liza haematocheila50.32
    鲈形目 Perciformes马鲅科多鳞四指马鲅 Eleutheronema rhadinum50.35
    鮨科中国花鲈 Lateolabrax maculatus61.23
    石首鱼科黄姑鱼 Nibea albifora1630.26
    白姑鱼 Argyrosomus argentatus3047.78
    Miichthys miiuy83.12
    棘头梅童鱼 Collichthys lucidus481 340.92
    虾虎鱼科髭缟虾虎鱼 Triaenopogon barbatus117.10
    纹缟虾虎鱼 Tridentiger trigonocephalus10.04
    波氏吻虾虎鱼 Ctenogobius cliffordpopei10.01
    狼牙鳗虾虎鱼 Taenioides anguillaris54185.98
    拉氏狼牙虾虎鱼 Odontamblyopus lacepedii51.81
    睛尾蝌蚪虾虎鱼 Lophiogobius ocellicauda53262.44
    矛尾虾虎鱼 Chaeturichthys stigmatias31198.59
    斑尾刺虾虎鱼 Synechogobius ommaturus116.72
    孔虾虎鱼 Trypauchen vagina38120.72
    鲳科银鲳 Pampus argenteus81.50
    䲗科香斜棘䲗 Repomucenus olidus20.04
    鲉形目 Scorpaeniformes鲂鮄科小眼绿鳍鱼 Chelidonichthys spinosus10.88
    鲬科Platycephalus indicus10.01
    鲽形目 Pleuronectiformes舌鳎科日本须鳎 Paraplagusia japonica10.03
    短吻红舌鳎 Cynoglossus joyneri23109.89
    窄体舌鳎 Cynoglossus gracilis75705.37
    鳎科带纹条鳎 Zebrias zebra10.21
    鲀形目 Tetraodontiformes鲀科暗纹东方鲀 Takifugu obscurus10.02
    黄鳍东方鲀 Takifugu xanthopterus10.37
    下载: 导出CSV 
    | 显示表格

    调查期间,38个物种703个种对中,有76个种对呈显著正关联,12个种对为显著负关联,大部分种对(615对,87.5%)为随机关联,且随机关联种对中587对(95.4%)与偶见种有关。与棘头梅童鱼(Collichthys lucidus)有显著正关联的鱼类有13种,与龙头鱼(Harpodon nehereus)、矛尾虾虎鱼(Chaeturichthys stigmatias)和孔虾虎鱼(Trypauchen vagina)正关联的鱼类各有9种;负关联种对中涉及鱼种最多的是光泽黄颡鱼(Pelteobagrus nitidus),共有9对。主要经济鱼类(11种)中正关联种对19对(34.5%),负关联种对8对(14.5%)。同科种对有52对,其中正关联种对11个,负关联种对2个,分别是矛尾虾虎鱼和斑尾刺虾虎鱼 (Synechogobius ommaturus),短吻红舌鳎(Cynoglossus joyneri)和窄体舌鳎 (C. gracilis),其余种对为随机关联(表2图2)。

    表  2  长江口鱼类共现模式呈正相关、负相关和随机性的种对数量
    Table  2.  Number of pairs of fish species with positive, negative and random co-occurrence patterns in Yangtze River estuary
    月份
    month
    物种数
    number of species
    共现模式
    pattern of co-occurrence
    正相关
    positive
    负相关
    negative
    随机
    random
    2月 Feb.1833147
    5月 May24114261
    8月 Aug.27514296
    11月 Nov.27266319
    总体 total387612615
    下载: 导出CSV 
    | 显示表格
    图  2  长江口鱼类种间共现模式
    Figure  2.  Co-occurrence patterns of fish species in Yangtze River estuary

    鱼类共现模式存在季节差异。随机关联的种对占绝对优势。8月正关联种对最多,其次是11月,2月最少;负关联种对不论是各个季节还是总体,均占比很小 (表2图3)。共现网络中物种权度和边线数量以8月最为复杂,2月最简单(图4)。

    图  3  长江口鱼类种间共现模式季节变化
    Figure  3.  Seasonal variance of fish species co-occurrence patterns in Yangtze River estuary
    图  4  长江口鱼类种间共现网络季节变化
    Figure  4.  Seasonal variation of fish species co-occurrence networks in Yangtze River estuary

    物种权度的季节变化较大。平均物种权度最高的是8月,其次是11月,最低的是2月(图4图5)。2月物种权度最高的为髭缟虾虎鱼(Triaenopogon barbatus) (2);5月除了棘头梅童鱼(4)和矛尾虾虎鱼(4)之外,其他种类都小于4;8月物种权度大于5的种类有8种,其中龙头鱼11,棘头梅童鱼10,短吻红舌鳎、鮸鱼(Miichthys miiuy)和髭缟虾虎鱼均为9,矛尾虾虎鱼8,多鳞四指马鲅(Eleutheronema rhadinum) 和孔虾虎鱼为7;11月物种权度除了棘头梅童鱼(5)和龙头鱼(3)之外,其余种类均≤3。

    图  5  长江口鱼类群落各季节权度和局部聚类系数 (均值±标准误)
    Figure  5.  Bar plots of $\overline X$±SE of weight degrees and local clustering coefficients in different seasons in Yangtze River estuary

    与物种权度相似,物种的中间中心性也存在季节差异。2月最高的为髭缟虾虎鱼(1.00);5月最高的为棘头梅童鱼(4.50);8月最高的为龙头鱼(23.26),其余种类超过5的有棘头梅童鱼(18.87)、髭缟虾虎鱼(18.66)、睛尾蝌蚪虾虎鱼(Lophiogobius ocellicauda,18.46)、短吻红舌鳎(17.01)、矛尾虾虎鱼(16.48)、鮸鱼(13.17)和孔虾虎鱼(7.73);11月最高也为棘头梅童鱼(13.17),其余超过5的有龙头鱼(6.33)、白姑鱼(Argyrosomus argentatus,6.00)和凤鲚(Coilia mystus,6.00)。

    平均局部聚类系数8月和11月较高,2月最低(图4图5)。

    调查期间长江口发现的鱼类虽然有38种,但不存在每个季节都显著正关联的物种。在3个季节(5月、8月和11月)均正关联的有3个种对,分别为矛尾虾虎鱼与短吻红舌鳎、矛尾虾虎鱼与棘头梅童鱼以及棘头梅童鱼与白姑鱼。

    传统的河口鱼类群落结构研究多采用多元统计分析(包括聚类分析、多维标度排序、主成分分析、对应分析、冗余分析和典范对应分析等)描述变量间的相关关系,以及环境变量对各个物种的影响,这类研究一般不包括物种间的相互作用[25]。本研究利用成对概率模型和网络分析方法分析鱼类种间共现关系,对了解生物时空分布规律和评估种间作用关系具有重要意义。

    部分研究认为鱼类共现主要是物种在生物和环境因素作用下的非随机关联[26-27],环境因素的作用要大于生物间相互作用[28-29]。本研究证实长江口鱼类群落模式主要是物种的随机共现[16-17]。94.5%的随机共现种对涉及偶见种,表明这种随机共现模式受偶见种影响较大。主要经济鱼类中49%的种间非随机共现模式,说明长江口主要经济鱼类在某些不确定因素的影响下形成了较为稳定的种间共现模式。

    一般在环境因子变化较大的环境中,相似性较高的物种表现出相似的生态位,往往是生境过滤共现机制占据主要地位[30]。也有研究认为同科或同属鱼类在时间上出现明显的错位分布,因为生态位接近,时间错位分布可以减少对空间和食物资源的竞争,因而竞争排斥对群落的影响超过环境过滤[3]。但长江口鱼类同科种对仍然以随机共现模式为主。长江口水温、盐度等环境因素的空间梯度较大,对鱼类的环境过滤作用较高,且资源(如小型浮游动物等饵料生物)分布密度较大[18]。以上分析一定程度上说明在调查期间种间对空间和食物资源的竞争对长江口鱼类共现模式的影响较小,环境因子季节变化驱动的随机因素可能是导致长江口鱼类随机共现模式的主要原因,种间共现的正关联性则能够说明物种间对环境需求的相似性[9]

    对环境因子需求的相异性、躲避捕食者或种间对空间或饵料竞争等因素都有可能导致种间共现负关联[11]。光泽黄颡鱼是长江口常见的淡水鱼类,物种出现矩阵显示,光泽黄颡鱼在调查期间的各月均有出现,但光泽黄颡鱼与和其呈负关联的种类(如棘头梅童鱼、龙头鱼和矛尾虾虎鱼等)相比有明显的栖息地选择性差异[18]。鉴于负关联种对间的这种差异以及不明显的捕食关系[31],本研究认为环境过滤可能是导致种间负关联的主要因素。

    种间共现模式的季节差异反映了鱼类群落构建季节变动的动力机制[1]。长江口鱼类空间共现模式的季节变化,反映了其鱼类群落组成明显的季节差异。季节性水文变化、自然资源变动可能导致种间共现模式的变化[11]。如夏秋季节长江栖息环境更适合鱼类索饵育肥,其物种丰度、生物多样性要高于其他季节[32-33],相应的8月和11月的鱼类共现网络复杂程度和群落聚集程度都较高,2月和5月则相对较低。高权度和高中间中心性物种的季节更替进一步证明长江口鱼类群落较大的季节波动,这种更替一定程度上影响了种间共现的随机性[3]。溯河洄游鱼类和海洋洄游鱼类分别在不同时空尺度上的优势导致了长江口鱼类群落出现明显的时空差异[18],本研究发现这种更替主要与海洋洄游和河口定居型鱼类有关(如2月的髭缟虾虎鱼,5月的棘头梅童鱼和矛尾虾虎鱼,8月的龙头鱼、棘头梅童鱼和髭缟虾虎鱼以及11月的棘头梅童鱼、龙头鱼和白姑鱼等),说明海洋洄游鱼类和河口定居型鱼类在长江口鱼类共现网络中占主导地位,在生物多样性维持中发挥重要作用。

    在维护群落结构稳定性中,核心物种起着决定作用。控制模拟实验法、物种相互作用相对重要性法、群落重要性指数法、网络分析法和Ecopath with Ecosim模型法是常见的核心种识别方法[15]。本研究以种间共现关系为基础构建鱼类种间关系网,确定了棘头梅童鱼、矛尾虾虎鱼为长江口鱼类核心物种,其中棘头梅童鱼具有较高的IRI和中间中心性,说明其对群落内信息交换的控制能力较强,对维持长江口鱼类群落结构的稳定起关键作用。

    由于长江口鱼类群落受环境过滤影响较大,并且长江口又是棘头梅童鱼、刀鲚、凤鲚等重要经济鱼类的产卵场和育肥场,季节性洄游鱼类变化对长江口鱼类生物多样性有较大影响。因此为保护长江口鱼类生物多样性,除了采取合理措施保护长江口生态环境(如减少污染物排放,建立海洋牧场以修复河口底栖生态环境、保护底栖生物等)外,还应采取措施降低邻近海域的捕捞强度、实施经济种类的增殖放流、保持长江口与邻近海域的连通性及种群密度。

  • 图  1   大口黑鲈形态度量框架

    可量性状:① 体长;② 头长;③ 头高;④ 体高;⑤ 头宽;⑥ 体宽;⑦ 叉长;⑧ 尾高;框架结构:A. 吻端;B. 枕骨后末端;C. 胸鳍基点;D. 臀鳍基点;E. 背鳍基点;F. 背鳍末端;G. 臀鳍基点;H. 臀鳍末端;I. 尾鳍起点。

    Figure  1.   Morphological measures of M. salmoides

    Measurable trait: ① Body length; ② Head length; ③ Head depth; ④ Body depth; ⑤ Head breadth; ⑥ Body breadth; ⑦ Fork length; ⑧ Tail depth; Frame structure: A. Tip of snout; B. Terminus of occipital bone; C. Origin of pectoral fin; D. Origin of anal fin; E. Origin of dorsal fin; F. Terminus of dorsal fin; G. Origin of anal fin; H. Terminus of anal fin; I. Origin of tail fin.

    图  2   大口黑鲈4个交配组合子代前二主成分因子得分平均值

    Figure  2.   Average factor scores of first two axes for four mating combinations of M. salmoides

    图  3   大口黑鲈4个交配组合子代主成分分析二维散点图

    Figure  3.   Two-dimensional scatter plot of principal component analysis for four mating combinations of M. salmoides

    表  1   大口黑鲈4个交配组合的子代生长指标

    Table  1   Growth indices of four mating combinations of M. salmoides

    交配组合
    Mating combination
    佛山自交
    F
    台湾自交
    T
    正交
    FT
    反交
    TF
    方差分析
    ANOVA (Sig.)
    样本数 Number 30 30 30 30
    体长 Body length/cm 范围 Range 15.4~20.7 17.5~26.3 20.0~33.3 19.4~28.7
    平均值±标准误 $ \overline { X}\pm { \rm {SE}}$ 18.4±0.5c 21.5±0.9b 24.7±1.3a 23.5±1.1a <0.001
    体质量 Body mass/g 范围 Range 81.3~137.1 103.4~195.9 130.3~271.3 123.1~222.1
    平均值±标准误 $ \overline { X}\pm { \rm {SE}}$ 112.7±5.2c 145.3±9.3b 168.5±14.2a 156.5±11.2a <0.001
    特定生长率 SGR/% 范围 Range 0.94~1.23 1.08~1.43 1.21~1.61 1.17~1.50
    平均值±标准误 $ \overline { X}\pm { \rm {SE}}$ 1.12±0.03c 1.26±0.03b 1.33±0.04a 1.29±0.04a <0.001
    绝对增重率 AGR/(g·d−1) 范围 Range 0.37~0.68 0.49~1.00 0.64~1.42 0.60~1.15
    平均值±标准误 $ \overline { X}\pm { \rm {SE}}$ 0.54±0.03c 0.72±0.05b 0.85±0.08a 0.79±0.06a <0.001
    体质量变异系数 Body mass CV/% 15.3 21.0 27.7 24.6
    注:同行不同字母表示差异显著 (P<0.05);后表同此。 Note: Different letters within the same line indicate significant difference (P<0.05); the same case in the following table.
    下载: 导出CSV

    表  2   大口黑鲈4个交配组合的子代统计检验结果

    Table  2   Results of descriptive statistics of morphological parameters for four mating combinations of M. salmoides

    形态参数
    Morphological parameter
    K-S检验
    K-S test (Sig.)
    佛山自交
    F
    台湾自交
    T
    正交
    FT
    反交
    TF
    方差分析
    ANOVA (Sig.)
    头长/体长 HL/BL 0.557 0.307±0.003 0.308±0.003 0.303±0.001 0.314±0.004 0.171
    头高/体长 HD/BL 0.611 0.238±0.004 0.240±0.003 0.233±0.003 0.232±0.003 0.167
    头宽/体长 HB/BL 0.697 0.128±0.002 0.134±0.002 0.131±0.006 0.141±0.005 0.153
    体高/体长 BD/BL 0.900 0.305±0.003c 0.336±0.003a 0.321±0.004b 0.323±0.005b <0.001
    体宽/体长 BB/BL 0.770 0.149±0.004c 0.187±0.004a 0.168±0.003b 0.171±0.006b <0.001
    叉长/体长 FL/BL 0.926 0.149±0.003a 0.109±0.003c 0.130±0.002b 0.136±0.004b <0.001
    尾高/体长 TD/BL 0.995 0.306±0.005a 0.266±0.005c 0.288±0.006b 0.292±0.003b <0.001
    AB/体长 AB/BL 0.664 0.255±0.007 0.276±0.006 0.268±0.006 0.272±0.011 0.255
    AC/体长 AC/BL 0.728 0.308±0.007 0.313±0.003 0.306±0.003 0.311±0.005 0.757
    AE/体长 AE/BL 0.974 0.410±0.005 0.428±0.003 0.412±0.004 0.416±0.007 0.126
    CE/体长 CE/BL 0.799 0.214±0.005 0.235±0.004 0.229±0.003 0.224±0.012 0.097
    DE/体长 DE/BL 0.733 0.287±0.003c 0.321±0.002a 0.309±0.003b 0.307±0.003b <0.001
    DF/体长 DF/BL 0.708 0.486±0.003c 0.522±0.004a 0.512±0.003b 0.505±0.004b <0.001
    EF/体长 EF/BL 0.852 0.365±0.004 0.373±0.004 0.372±0.002 0.367±0.003 0.307
    EG/体长 EG/BL 0.808 0.374±0.002 0.388±0.007 0.381±0.005 0.376±0.005 0.230
    GF/体长 GF/BL 0.651 0.241±0.004 0.249±0.003 0.244±0.003 0.246±0.006 0.577
    GH/体长 GH/BL 0.914 0.151±0.005 0.148±0.004 0.144±0.003 0.146±0.005 0.263
    FH/体长 FH/BL 0.704 0.169±0.002 0.168±0.003 0.168±0.001 0.170±0.003 0.308
    FI/体长 FI/BL 0.801 0.270±0.005a 0.240±0.004c 0.260±0.002b 0.256±0.007b 0.014
    HI/体长 HI/BL 0.792 0.256±0.003a 0.234±0.004c 0.246±0.003b 0.244±0.009b 0.016
    下载: 导出CSV

    表  3   大口黑鲈形态特征变量主成分分析的负载系数

    Table  3   Load capacity of a principal component analysis on morphological variables of M. salmoides

    形态参数
    Morphological parameter
    负载系数 Factor loading
    第一主成分
    PC1
    第二主成分
    PC2
    第三主成分
    PC3
    头长/体长 HL/BL 0.905 −0.340 0.429
    头高/体长 HD/BL 0.841 −0.450 −0.222
    头宽/体长 HB/BL 0.860 −0.589 0.092
    体高/体长 BD/BL 0.898 0.090 −0.026
    体宽/体长 BB/BL 0.832 −0.084 −0.024
    叉长/体长 FL/BL 0.075 −0.913 0.281
    尾高/体长 TD/BL 0.148 −0.874 0.089
    AB/体长 AB/BL 0.844 −0.422 −0.242
    AC/体长 AC/BL 0.934 −0.558 0.148
    AE/体长 AE/BL 0.796 0.388 −0.334
    CE/体长 CE/BL 0.945 0.026 −0.593
    DE/体长 DE/BL 0.885 −0.169 −0.117
    DF/体长 DF/BL 0.951 0.470 −0.291
    EF/体长 EF/BL 0.721 0.654 0.170
    EG/体长 EG/BL 0.810 0.447 0.367
    GF/体长 GF/BL 0.322 0.205 0.978
    GH/体长 GH/BL 0.110 −0.171 0.831
    FH/体长 FH/BL 0.534 −0.934 0.121
    FI/体长 FI/BL −0.121 0.833 −0.027
    HI/体长 HI/BL −0.206 0.820 0.537
    特征根 Eigenvalue 14.268 3.321 1.006
    贡献率 Contribute rate/% 71.3% 16.6% 5.0%
    累计贡献率
    Cumulative contribute rate/%
    71.3% 87.9% 92.9%
    下载: 导出CSV

    表  4   大口黑鲈4个交配组合子代判定模型预测结果

    Table  4   Predicted results of determination model for four mating combinations of M. salmoides

    数据类型
    Data type
    鉴定数量
    Number
    推测准确率 Accuracy rate/%平均推测准确率
    Average accuracy rate/%
    佛山自交
    F
    台湾自交
    T
    正交
    FT
    反交
    TF
    可量性状 Measurable trait 30 80.0 76.7 83.3 76.7 79.1
    框架性状 Frame trait 30 66.7 73.3 70.0 76.7 71.7
    可量性状+框架性状 Measurable trait+Frame trait 30 90.0 93.3 86.7 90.0 90.0
    下载: 导出CSV

    表  5   大口黑鲈4个交配组合子代判定模型结果验证

    Table  5   Validation of determination model for four mating combinations of M. salmoides

    数据类型
    Data type
    鉴定数量
    Number
    推测准确率 Accuracy rate/%平均推测准确率
    Average accuracy rate/%
    佛山自交
    F
    台湾自交
    T
    正交
    FT
    反交
    TF
    可量性状 Measurable trait 25 72.0 80.0 84.0 76.0 78.0
    框架性状 Frame trait 25 68.0 76.0 84.0 80.0 77.0
    可量性状+框架性状 Measurable trait+Frame trait 25 92.0 96.0 88.0 88.0 91.0
    下载: 导出CSV
  • [1]

    FAN J, BAI J, MA D. Isolation and characterization of 40 SNP in largemouth bass (Micropterus salmoides)[J]. Conserv Genet Res, 2020, 12(1): 57-60. doi: 10.1007/s12686-018-1076-2

    [2]

    MA H J, MOU M M, PU D C, et al. Effect of dietary starch level on growth, metabolism enzyme and oxidative status of juvenile largemouth bass, Micropterus salmoides[J]. Aquaculture, 2019, 498: 482-487. doi: 10.1016/j.aquaculture.2018.07.039

    [3] 王佩佩, 周国勤, 陈树桥. 大口黑鲈北方亚种, 佛罗里达亚种及“优鲈3号”杂交F1子代生长性能及遗传多样性分析[J]. 海洋渔业, 2020, 42(4): 403-409. doi: 10.3969/j.issn.1004-2490.2020.04.003
    [4] 梁素娴, 孙效文, 白俊杰, 等. 微卫星标记对中国引进加州鲈养殖群体遗传多样性的分析[J]. 水生生物学报. 2008, 32(5): 694-700.
    [5] 樊佳佳, 白俊杰, 李胜杰, 等. 大口黑鲈微卫星DNA指纹图谱的构建和遗传结构分析[J]. 水生生物学报, 2012, 36(4): 600-609.
    [6] 梁素娴, 白俊杰, 叶星, 等. 养殖大口黑鲈的遗传多样性分析[J]. 大连水产学院学报, 2007, 22(4): 260-263.
    [7] 朱新平, 杜合军, 郑光明, 等. 大口黑鲈养殖群体遗传多样性的分析[J]. 大连水产学院学报, 2006, 21(4): 341-345. doi: 10.3969/j.issn.1000-9957.2006.04.010
    [8] 卢建峰, 白俊杰, 李胜杰, 等. 大口黑鲈选育群体遗传多样性的AFLP分析[J]. 淡水渔业, 2010, 40(3): 3-7. doi: 10.3969/j.issn.1000-6907.2010.03.001
    [9] 孙成飞, 谢汶峰, 胡婕, 等. 大口黑鲈3个养殖群体的遗传多样性分析[J]. 南方水产科学, 2019, 15 (2): 64-71. doi: 10.12131/20180203
    [10] 刘海涌, 李胜杰, 白俊杰. 大口黑鲈养殖群体和引进群体生长性能的比较分析[J]. 水产养殖, 2015, 36(9): 1-5. doi: 10.3969/j.issn.1004-2091.2015.09.001
    [11]

    HWANG E K, YOTSUKURA N, PANG S J, et al. Seaweed breeding programs and progress in eastern Asian countries[J]. Phycologia, 2019, 58(5): 484-495. doi: 10.1080/00318884.2019.1639436

    [12]

    FARRÉ M, LOMBARTE A, RECASENS L, et al. Habitat influence in the morphological diversity of coastal fish assemblages[J]. J Sea Res, 2015, 99: 107-117. doi: 10.1016/j.seares.2015.03.002

    [13] 苟盼盼, 王秀利, 窦冬雨, 等. 红鳍东方鲀不同家系群体的形态性状差异与相关性分析[J]. 大连海洋大学学报, 2019, 34(5): 674-679.
    [14] 李江涛, 林小涛, 周晨辉, 等. 实验室条件下唐鱼两性异形及其与游泳能力关系[J]. 应用生态学报, 2016, 27(5): 1639-1646.
    [15] 周家辉, 李胜杰, 姜鹏. 大口黑鲈北方亚种群体和“优鲈1号”群体及其正反杂交子代的遗传和生长性能比较[J]. 海洋渔业, 2020, 42(3): 324. doi: 10.3969/j.issn.1004-2490.2020.03.008
    [16] 黄建盛, 陈刚, 张健东, 等. 褐点石斑鱼不同月龄形态性状的主成分及通径分析[J]. 水产学报, 2017, 41(7): 1105-1115.
    [17] 韩慧宗, 姜海滨, 王斐, 等. 许氏平鲉不同月龄选育群体形态性状的主成分与通径分析[J]. 水产学报, 2016, 40(8): 1163-1172.
    [18] 周惠强, 李芬, 舒琥, 等. 大刺鳅雌雄个体形态差异分析[J]. 广东海洋大学学报, 2019, 39(1): 1-6.
    [19] 马爱军, 王新安, 孙志宾, 等. 红鳍东方鲀 (Takifugu rubripes) 三个不同群体的形态差异分析[J]. 海洋与湖沼, 2016, 47(1): 166-172.
    [20] 蔡磊, 白俊杰, 李胜杰, 等. 大口黑鲈北方亚种, 佛罗里达亚种及其杂交子代的生长和形态差异分析[J]. 水产学报, 2012, 36(6): 801-808.
    [21] 王炳谦, 谷伟, 贾钟贺, 等. 4个品系虹鳟生产性能的比较[J]. 大连水产学院学报, 2007, 22(3): 170-174. doi: 10.3969/j.issn.1000-9957.2007.03.003
    [22] 李思发, 蔡完其. 团头鲂双向选育效应研究[J]. 水产学报, 2000, 24(3): 201-205.
    [23] 孙龙芳, 李姣, 梁旭方, 等. 翘嘴鳜F3~F5群体选育效果分析[J]. 广东农业科学, 2014, 41(13): 114-118. doi: 10.3969/j.issn.1004-874X.2014.13.025
    [24] 周劲松, 曹哲明, 杨国梁, 等. 罗氏沼虾缅甸引进种和浙江本地种及其杂交种的生长性能与 SRAP 分析[J]. 中国水产科学, 2006, 13(4): 667-673. doi: 10.3321/j.issn:1005-8737.2006.04.025
    [25] 陈林, 李思发, 简伟业, 等. 吉奥罗非鱼 (新吉富罗非鱼♀×奥利亚罗非鱼♂) 生长性能的评估[J]. 上海水产大学学报, 2008, 17(3): 257-262.
    [26] 王新安, 马爱军, 陈超, 等. 七带石斑鱼 (Epinephelus septemfasciatus) 两个野生群体形态差异分析[J]. 海洋与湖沼, 2008, 39(6): 655-660. doi: 10.3321/j.issn:0029-814X.2008.06.017
    [27] 马爱军, 王新安, 雷霁霖, 等. 大菱鲆 (Scophthalmus maximus) 四个不同地理群体数量形态特征比较[J]. 海洋与湖沼, 2008, 39(1): 24-29. doi: 10.3321/j.issn:0029-814X.2008.01.004
    [28]

    RICHARD H, EDITORS H C. Black bass biology and management[M]. Washington, D. C.: Sport Fishing Institute, 1975: 67-75.

    [29]

    BAI J, LUTZ-CARRILLO D J, QDUAN Y, et al. Taxonomic status and genetic diversity of cultured largemouth bass Micropterus salmoides in China[J]. Aquaculture, 2008, 278(1/2/3/4): 27-30.

  • 期刊类型引用(3)

    1. 石子玉,韩东燕,高春霞,陈锦辉,吴建辉,王学昉. 调查数据不确定性对崇明岛临近水域鱼类生物完整性指数结果的影响. 上海海洋大学学报. 2023(02): 357-368 . 百度学术
    2. 高淑芳,张金鹏,施永海,袁新程,刘其根. 基于LC-MS技术的海、淡水养殖刀鲚卵巢的代谢组学比较分析. 南方水产科学. 2022(03): 68-75 . 本站查看
    3. Shouhai LIU,Haijing ZHANG,Yanlong HE,Xiangsheng CHENG,Haofei ZHANG,Yutao QIN,Xi JI,Riguang HE,Yaohui CHEN. Interdecadal variability in ecosystem health of Changjiang(Yangtze) River estuary using estuarine biotic integrity index. Journal of Oceanology and Limnology. 2021(04): 1417-1429 . 必应学术

    其他类型引用(5)

图(3)  /  表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-12-24
  • 修回日期:  2021-02-21
  • 录用日期:  2021-03-22
  • 网络出版日期:  2021-04-12
  • 刊出日期:  2021-09-29

目录

/

返回文章
返回