留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

投喂乙醇假丝酵母对罗非鱼生长、免疫和肠道菌群的影响

廖庆钊 陈福艳 覃雅 黄婵婵 黄罗冬 申佩弘

廖庆钊, 陈福艳, 覃雅, 黄婵婵, 黄罗冬, 申佩弘. 投喂乙醇假丝酵母对罗非鱼生长、免疫和肠道菌群的影响[J]. 南方水产科学. doi: 10.12131/20200258
引用本文: 廖庆钊, 陈福艳, 覃雅, 黄婵婵, 黄罗冬, 申佩弘. 投喂乙醇假丝酵母对罗非鱼生长、免疫和肠道菌群的影响[J]. 南方水产科学. doi: 10.12131/20200258
Qingzhao LIAO, Fuyan CHEN, Ya QIN, Chanchan HUANG, Luodong HUANG, Peihong SHEN. Effects of feeding Candida ethanolica GXU01 on growth, immunity and intestinal flora of tilapia[J]. South China Fisheries Science. doi: 10.12131/20200258
Citation: Qingzhao LIAO, Fuyan CHEN, Ya QIN, Chanchan HUANG, Luodong HUANG, Peihong SHEN. Effects of feeding Candida ethanolica GXU01 on growth, immunity and intestinal flora of tilapia[J]. South China Fisheries Science. doi: 10.12131/20200258

投喂乙醇假丝酵母对罗非鱼生长、免疫和肠道菌群的影响

doi: 10.12131/20200258
基金项目: 广西科技重大专项 (桂科AA17204081-5)
详细信息
    作者简介:

    廖庆钊 (1989—),男,硕士研究生,研究方向为饲料应用微生物。E-mail: 3035544626@qq.com

    通讯作者:

    黄罗冬 (1989—),男,博士,助理教授,从事水生生物研究。E-mail: ynhuangld@gxu.edu.com

    申佩弘 (1977—),女,博士,研究员,从事资源与环境微生物研究。E-mail: shenpeihong@gux.edu.Com

  • 中图分类号: Q 815

Effects of feeding Candida ethanolica GXU01 on growth, immunity and intestinal flora of tilapia

  • 摘要: 为探究乙醇假丝酵母 (Candida ethanolica GXU01) 在罗非鱼养殖中的益生潜能,为罗非鱼可持续养殖寻找生态友好的饲用添加菌,该研究将乙醇假丝酵母作为饲料添加菌饲喂尼罗罗非鱼 (Oreochroms niloticus),通过测定罗非鱼的生长性能、肠道消化酶、血清非特异性免疫指标、肠道微生物群落结构以及用无乳链球菌 (Streptococcus agalactiae) 对罗非鱼进行攻毒试验,全面评价了乙醇假丝酵母对罗非鱼生长及其免疫力的影响。结果表明,摄食乙醇假丝酵母可以使罗非鱼的生长性能、消化酶活性、血清溶菌酶活性和补体C3含量显著提高 (P<0.05)。投喂乙醇假丝酵母后,罗非鱼肠道中梭杆菌门、鲸杆菌属 (Cetobacterium) 和艾克曼菌属 (Akkermansia) 等有益菌群的丰度显著上调,蓝细菌门大幅减少。攻毒试验中,摄食酵母饲料的罗非鱼成活率增加26.66%。研究表明乙醇假丝酵母对罗非鱼肠道消化能力和免疫抗病能力均有促进作用。
  • 图  1  GXU01对罗非鱼肠道蛋白酶、淀粉酶、木聚糖酶和纤维素酶活性的影响

    CK和T5分别为对照组和GXU01实验组;Day 30、Day60分别表示饲养30和60 d取样;柱上不同字母表示差异性显著 (P<0.05);图2同此

    Figure  1.  Effects of GXU01 on gut proteinase activity, amylase activity, xylanase activity and cellulase activity in tilapia

    CK and T5 indicate control and GXU01 treated group, respectively; samples were marked as Day 30 at 30th day and Day 60 at 60th day of feeding; different letters on the column indicate significant difference (P<0.05); the same case in Figure 2.

    图  2  GXU01对罗非鱼血清超氧化物歧化酶活性、溶菌酶活性、补体C3和补体C4质量浓度的影响

    Figure  2.  Effects of GXU01 on serum SOD activity, lysozyme activity, Complement 3 content and Complement 4 content in tilapia

    图  3  基于16S rDNA基因序列的罗非鱼肠道在门水平和属水平菌群结构及相对丰度图

    CK和T5分别代表对照组和GXU01的实验组;投喂30 d取样标为CK-1、T5-1,投喂60 d取样标为CK-2、T5-2;后图、表同此

    Figure  3.  Structure and relative abundance of intestinal flora in phylum and genus of tilapia based on 16s rDNA sequence

    CK and T5 indicate control and GXU01 treated group, respectively; samples were marked as CK-1, T5-1 at 30th day and CK-2, T5-2 at 60th day of feeding. The same below.

    图  4  基于属水平上的物种丰度聚类热图

    Figure  4.  Clustering heat map based on species abundance at genus level

    图  5  基于binary_chisq距离算法的属水平PCoA分析图

    Figure  5.  Genus level PCoA analysis diagram based on binary_chisq distance algorithm

    图  6  用无乳链球菌进行攻毒试验后7 d成活率

    Figure  6.  Survival rate of 7 days after challenge test with S. agalactiae

    表  1  GXU01饲料对罗非鱼生长性能的影响

    Table  1.   Effects of GXU01 feed on growth performance of tilapia

    指标   
    Index   
    对照组
    CK Group
    实验组
    T5 Group
    初始体质量 Initial mass/g 108.96±14.29 106.07±13.53
    最后体质量 Final mass/g 287.41±25.98 297.69±27.73
    总增质量 Total mass gain/g 178.45±18.23 196.42±25.62
    饲料转化率 Feed conversion rate/% 1.78±0.2b 1.56±0.3a
    饲料效率 Feed efficiency 0.57±0.06 0.66±0.13
    成活率 Survival rate/% 100 100
    注:同行数据上标不同字母表示差异性显著 (P<0.05) Note: Values in the same row with different superscripts are significantly different (P<0.05).
    下载: 导出CSV

    表  2  Alpha多样性指数分析

    Table  2.   Analysis of Alpha diversity index

    组别
    Group
    OUT数
    OTUs
    Chao1指数
    Chao1
    辛普森指数
    Simpson
    香浓指数
    Shannon
    CK-1590 601.900.045 2b 4.251 7a
    CK-2628 649.480.085 1b 4.001 7a
    T5-1557 615.440.150 3a3.138 6b
    T5-2563 605.900.168 3a3.268 6b
    注:同列数值不同小写字母表示差异性显著 (P<0.05) Note: Values within the same column with different superscripts are significantly different (P<0.05).
    下载: 导出CSV
  • [1] WANG M, LU M. Tilapia polyculture: a global review[J]. Aquac Res, 2016, 47(8): 2 363-2 374. doi: 10.1111/are.12708
    [2] ZHU J, GAN X, AO Q, et al. Basal polarization of the immune responses to Streptococcus agalactiae susceptible and resistant tilapia (Oreochromis niloticus)[J]. Fish Shellfish Immunol, 2018, 75: 336-345. doi: 10.1016/j.fsi.2018.01.022
    [3] LIU L, LI Y W, HE R Z, et al. Outbreak of Streptococcus agalactiae infection in barcoo grunter, Scortum barcoo (McCulloch & Waite), in an intensive fish farm in China[J]. J Fish Dis, 2014, 37(12): 1 067-1 072. doi: 10.1111/jfd.12187
    [4] DAWOOD M A O, KOSHIO S, AAGELES E M. Beneficial roles of feed additives as immunostimulants in aquaculture: a review[J]. Reuv Aquacult, 2018, 10(4): 950-974. doi: 10.1111/raq.12209
    [5] REYES B M, TOVAR R D, ASCENCIO V F, et al. Effects of dietary supplementation with probiotic live yeast Debaryomyces hansenii on the immune and antioxidant systems of leopard grouper Mycteroperca rosacea infected with Aeromonas hydrophila[J]. Aquacult Res, 2011, 42(11): 1676-1686. doi: 10.1111/j.1365-2109.2010.02762.x
    [6] ABDEL T M. Interactive effects of dietary protein and live bakery yeast, Saccharomyces cerevisiae on growth performance of Nile tilapia, Oreochromis niloticus (L.) fry and their challenge against Aeromonas hydrophila infection[J]. Aquacult Int, 2012, 20(2): 317-331. doi: 10.1007/s10499-011-9462-8
    [7] SONMEZ A Y. Evaluating two different additive levels of fully autolyzed yeast, Saccharomyces cerevisiae, on rainbow trout (Oncorhynchus mykiss) growth performance, liver histology and fatty acid composition[J]. Turk J Fish Aquat Sc, 2017, 17(2): 379-385.
    [8] AYIKU S, SHEN J, TAN B, et al. Effects of dietary yeast culture on shrimp growth, immune response, intestinal health and disease resistance against Vibrio harveyi[J]. Fish Shellfish Immunol, 2020, 102: 286-295. doi: 10.1016/j.fsi.2020.04.036
    [9] MOHSEN A T, MAMDOUH A A M, MAALY A M. Use of live baker's yeast, Saccharomyces cerevisiae, in practical diet to enhance the growth performance of galilee tilapia, Sarotherodon galilaeus (L.), and its resistance to environmental copper toxicity[J]. J World Aquacult Soc, 2010, 41: 1-5.
    [10] RUGGIRELLO M, NUCERA D, CANNONI M, et al. Antifungal activity of yeasts and lactic acid bacteria isolated from cocoa bean fermentations[J]. Food Res Int, 2019, 115: 519-525. doi: 10.1016/j.foodres.2018.10.002
    [11] XING X, WANG Y, HUO N, et al. Candida ethanolica strain Y18 enhances aroma of Shanxi aged-vinegar[J]. Food Sci Technol Res, 2018, 24(6): 1069-1081. doi: 10.3136/fstr.24.1069
    [12] COULIBALY W H, BOUATENIN K M J, KOUANE A K, et al. Use of non-Saccharomyces yeast strains as starter cultures to enhance fermented mango juice production[J]. Sci Afr, 2020, 7: 220-226.
    [13] FERNANDES T, CARVALLHO B F, MANTOVANI H C, et al. Identification and characterization of yeasts from bovine rumen for potential use as probiotics[J]. J Appl Microbiol, 2019, 127(3): 845-855. doi: 10.1111/jam.14350
    [14] INOUE S, SUZUKI U K, KOMORI Y, et al. Fermentation of non-sterilized fish biomass with a mixed culture of film-forming yeasts and lactobacilli and its effect on innate and adaptive immunity in mice[J]. J Biosci Bioeng, 2013, 116(6): 682-687. doi: 10.1016/j.jbiosc.2013.05.022
    [15] SAPUTRA F, SHIU Y, CHEN Y, et al. Dietary supplementation with xylanase-expressing B. amyloliquefaciens R8 improves growth performance and enhances immunity against Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus)[J]. Fish Shellfish Immunol, 2016, 58: 397-405. doi: 10.1016/j.fsi.2016.09.046
    [16] ULLAH A, ZUBERI A, AHMAD M, et al. Dietary administration of the commercially available probiotics enhanced the survival, growth, and innate immune responses in Mori (Cirrhinus mrigala) in a natural earthen polyculture system[J]. Fish Shellfish Immunol, 2018, 72: 266-272. doi: 10.1016/j.fsi.2017.10.056
    [17] TAN H Y, CHEN S, HU S. Improvements in the growth performance, immunity, disease resistance, and gut microbiota by the probiotic Rummeliibacillus stabekisii in Nile tilapia (Oreochromis niloticus)[J]. Fish Shellfish Immunol, 2019, 92: 265-275. doi: 10.1016/j.fsi.2019.06.027
    [18] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72: 248-254. doi: 10.1016/0003-2697(76)90527-3
    [19] JIN Y, TIAN L, ZENG S, et al. Dietary lipid requirement on non-specific immune responses in juvenile grass carp (Ctenopharyngodon idella)[J]. Fish Shellfish Immunol, 2013, 34(5): 1202-1208. doi: 10.1016/j.fsi.2013.01.008
    [20] FOYSAO M J, ALAM M, KAWSER A Q M R, et al. Meta-omics technologies reveals beneficiary effects of Lactobacillus plantarum as dietary supplements on gut microbiota, immune response and disease resistance of Nile tilapia (Oreochromis niloticus)[J]. Aquaculture, 2020, 520: 734-749.
    [21] SEWAKA M, TRULLAS C, CHOTIKO A, et al. Efficacy of synbiotic Jerusalem artichoke and Lactobacillus rhamnosus GG-supplemented diets on growth performance, serum biochemical parameters, intestinal morphology, immune parameters and protection against Aeromonas veronii in juvenile red tilapia (Oreochromis spp.)[J]. Fish Shellfish Immunol, 2019, 86: 260-268. doi: 10.1016/j.fsi.2018.11.026
    [22] IWASHITA M K P, NAKANDAKARE I B, TERHUNE J S, et al. Dietary supplementation with Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus oryzae enhance immunity and disease resistance against Aeromonas hydrophila and Streptococcus iniae infection in juvenile tilapia Oreochromis niloticus[J]. Fish Shellfish Immunol, 2015, 43(1): 60-66. doi: 10.1016/j.fsi.2014.12.008
    [23] CHEN H, LI J, YAN L, et al. Subchronic effects of dietary selenium yeast and selenite on growth performance and the immune and antioxidant systems in Nile tilapia Oreochromis niloticus[J]. Fish Shellfish Immunol, 2020, 97: 283-293. doi: 10.1016/j.fsi.2019.12.053
    [24] BROWN M R, BARRETT S M, VOLKMAN J K, et al. Biochemical composition of new yeasts and bacteria evaluated as food for bivalve aquaculture[J]. Aquaculture, 1996, 143(3/4): 341-360. doi: 10.1016/0044-8486(96)01286-0
    [25] TUKMECHI A, RAHMATI A H R, MANAFFAR R, et al. Dietary administration of beta-mercapto-ethanol treated Saccharomyces cerevisiae enhanced the growth, innate immune response and disease resistance of the rainbow trout, Oncorhynchus mykiss[J]. Fish Shellfish Immunol, 2011, 30(3): 923-928. doi: 10.1016/j.fsi.2011.01.016
    [26] LARA F M, OLVERA N M A, GUZMAN M B E, et al. Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus)[J]. Aquaculture, 2003, 216: 193-201. doi: 10.1016/S0044-8486(02)00277-6
    [27] ABU E N M, YOUNIS N A, ABUBAKR H O, et al. Efficacy of dietary yeast cell wall supplementation on the nutrition and immune response of Nile tilapia[J]. Egypt J Aquatic Res, 2018, 44(4): 333-341. doi: 10.1016/j.ejar.2018.11.001
    [28] TOVAR R D, ZAMBONINO I J, CAHU C, et al. Influence of dietary live yeast on European sea bass (Dicentrarchus labrax) larval development[J]. Aquaculture, 2004, 234(1/2/3/4): 415-427.
    [29] TOVAR D, ZAMBONINO J, CAHU C, et al. Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvae[J]. Aquaculture, 2002, 204(1/2): 113-123.
    [30] BRATTGJERD S, EVENSEN O, LAUVE A. Effect of injected yeast glucan on the activity of macrophages in Atlantic salmon, Salmo salar L., as evaluated by in vitro hydrogen peroxide production and phagocytic capacity[J]. Immunology, 1994, 83(2): 288-294.
    [31] YUAN X, LIU W, LIANG C, et al. Effects of partial replacement of fish meal by yeast hydrolysate on complement system and stress resistance in juvenile Jian carp (Cyprinus carpio var. Jian)[J]. Fish Shellfish Immunol, 2017, 67: 312-321. doi: 10.1016/j.fsi.2017.06.028
    [32] BUTT R L, VOLKOFF H. Gut microbiota and energy homeostasis in fish[J]. Front Endocrinol, 2019, 10(9): 1-5.
    [33] XIA Y, CAO J, WANG M, et al. Effects of Lactococcus lactis subsp. lactis JCM5805 on colonization dynamics of gut microbiota and regulation of immunity in early ontogenetic stages of tilapia[J]. Fish Shellfish Immunol, 2019, 86: 53-63. doi: 10.1016/j.fsi.2018.11.022
    [34] FERGUSON R M W, MERRIFIELD D L, HARPER G M, et al. The effect of Pediococcus acidilactici on the gut microbiota and immune status of on-growing red tilapia (Oreochromis niloticus)[J]. J Appl Microbiol, 2010, 109(3): 851-862. doi: 10.1111/j.1365-2672.2010.04713.x
    [35] KUEBUTORNYE F K A, WANG Z, LU Y, et al. Effects of three host-associated Bacillus species on mucosal immunity and gut health of Nile tilapia, Oreochromis niloticus and its resistance against Aeromonas hydrophila infection[J]. Fish Shellfish Immunol, 2020, 97: 83-95. doi: 10.1016/j.fsi.2019.12.046
    [36] LIU W, WANG W, RAN C, et al. Effects of dietary scFOS and lactobacilli on survival, growth, and disease resistance of hybrid tilapia[J]. Aquaculture, 2017, 470: 50-55. doi: 10.1016/j.aquaculture.2016.12.013
    [37] ZHANG T, LI Q Q, CHENG L, et al. Akkermansia muciniphila is a promising probiotic[J]. Microb Biotechnol, 2019, 12(6): 11-13.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  23
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-17
  • 修回日期:  2021-03-16
  • 录用日期:  2021-03-23
  • 网络出版日期:  2021-04-12

目录

    /

    返回文章
    返回