鱼肉热煮过程中质构保持技术研究进展

黄卉, 熊雅雯, 李来好, 杨贤庆, 陈胜军, 魏涯, 吴燕燕, 杨少玲

黄卉, 熊雅雯, 李来好, 杨贤庆, 陈胜军, 魏涯, 吴燕燕, 杨少玲. 鱼肉热煮过程中质构保持技术研究进展[J]. 南方水产科学, 2021, 17(3): 122-128. DOI: 10.12131/20200247
引用本文: 黄卉, 熊雅雯, 李来好, 杨贤庆, 陈胜军, 魏涯, 吴燕燕, 杨少玲. 鱼肉热煮过程中质构保持技术研究进展[J]. 南方水产科学, 2021, 17(3): 122-128. DOI: 10.12131/20200247
HUANG Hui, XIONG Yawen, LI Laihao, YANG Xianqing, CHEN Shengjun, WEI Ya, WU Yanyan, YANG Shaoling. Research progress on texture preservation technology of fish meat during hot boiling[J]. South China Fisheries Science, 2021, 17(3): 122-128. DOI: 10.12131/20200247
Citation: HUANG Hui, XIONG Yawen, LI Laihao, YANG Xianqing, CHEN Shengjun, WEI Ya, WU Yanyan, YANG Shaoling. Research progress on texture preservation technology of fish meat during hot boiling[J]. South China Fisheries Science, 2021, 17(3): 122-128. DOI: 10.12131/20200247

鱼肉热煮过程中质构保持技术研究进展

基金项目: 财政部和农业农村部国家现代农业产业技术体系资助 (CARS-46);“扬帆计划”引进创新创业团队专项资助项目 (2015YT02H109);广东省重点领域研发计划项目 (2019B020225001);中国水产科学研究院基本科研业务费专项资金 (2020TD69);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助(2021SD06)
详细信息
    作者简介:

    黄 卉 (1980—),女,博士,副研究员,从事水产品加工与质量安全研究。E-mail: huanghuigd@aliyun.com

    通讯作者:

    李来好 (1963—),男,博士,研究员,从事水产品加工与质量安全研究。E-mail: laihaoli@163.com

  • 中图分类号: TS 254.4

Research progress on texture preservation technology of fish meat during hot boiling

  • 摘要: 热加工是一种传统的食品加工技术,热煮是其中的重要方式之一。鱼肉经过热煮处理会产生组织脆弱化、结构松散等问题,对其食用品质造成负面影响,因此提高鱼肉的耐煮性是开发水产系列加工产品的基础。文章总结了近几年关于热煮对鱼肉质构影响的研究进展,深入分析了热煮引起质构变化的作用机制,并结合变化原理分别从改善蛋白质热稳定性、提高肌肉持水性和提高肌肉凝胶特性3个方面阐述保持鱼肉质构的方法,提出将食品加工新技术与传统加工方法相结合以提高鱼肉耐煮性的研究方向,旨在为鱼肉热煮过程中的质构保持技术及食用品质控制提供参考。
    Abstract: Thermal processing is a traditional food processing technology, and hot boiling is one of the important methods. After being boiled, the fish tissue will become fragile and the structure will be loose, which is bad for the edible quality of the fish. This paper summarizes the research progress on the effect of hot cooking on the texture of fish meat in recent years, deeply analyzes the mechanism of the texture change, and combines the principle of texture change expounds the methods of maintaining the texture of fish meat by improving protein thermal stability, muscle water retention and muscle gel properties. Then it puts forward the research direction of combining new food processing technology with traditional processing methods to improve the boiling resistance of fish meat in the future, so as to provide reference for the texture preservation technology and edible quality control of fish during hot boiling.
  • 黄鳍金枪鱼 (Thunnus albacares) 属硬骨鱼纲、辐鳍鱼亚纲、鲈形目、鲭亚目、鲭科、金枪鱼属,是名贵的海洋暖水性上层鱼类。因其背鳍和臀鳍呈黄色 (成年后尤为明显) 而得名,属于金枪鱼中产量最高的一种。黄鳍金枪鱼具有高度洄游的特性,广泛分布于世界三大洋的热带和温带水域,最大体长可达3 m,体质量可达225 kg。因营养价值丰富、味道鲜美可口而深受消费者喜爱[1]。目前,关于黄鳍金枪鱼的研究主要集中在营养成分、捕捞、鱼群分布、开发利用、保鲜运输等方面。澳大利亚、日本、墨西哥、巴拿马等国已开展黄鳍金枪鱼的网箱养殖作业并取得良好效果[2-9]。我国关于黄鳍金枪鱼养殖研究的公开报道较少。Ma等[10]研究了美济礁深水网箱养殖的黄鳍金枪鱼幼鱼驯化过程中摄食水深的变化;方伟等[11]开展了5月龄黄鳍金枪鱼幼鱼形态性状对体质量的相关性及通径分析。目前黄鳍金枪鱼养殖方式主要为网箱养殖,养殖所需幼鱼主要来自于野生苗种诱捕。我国黄鳍金枪鱼网箱及陆基循环水驯化养殖技术仍处于起步阶段[12]

    高价值经济鱼类新品种的开发需要详细的基础研究数据,体质量能反映同批鱼苗的生长状况,通常用作优质品种选育的常规手段[13-16]。鱼类为低等变温脊椎动物,特异性免疫力较低,主要依靠非特异性免疫对外来入侵病原生物、异物或机体产生的有害物质进行清除[17],因此非特异性免疫对其生存具有重要意义[18]。而免疫相关酶的活性变化能够有效反映黄鳍金枪鱼幼鱼免疫能力的变化。鱼体肠道在营养物质的消化和吸收中发挥着重要作用,消化酶活性与鱼类消化系统的功能相适应[19],在一定程度上反映了鱼体消化道的生理状态,鱼体内消化酶活性及其肠道的形态结构受到多种因素影响[20]。有研究表明,投喂策略、投喂饵料种类、发育阶段等均会影响鱼体内的消化酶活性[20-21]。因此测定不同体质量黄鳍金枪鱼幼鱼的各种消化酶活性对研究其食性偏好有重要意义。目前关于黄鳍金枪鱼幼鱼陆基循环水养殖的基础数据较少,尚未见不同体质量黄鳍金枪鱼幼鱼酶活指标差异的研究。本研究测定了不同体质量黄鳍金枪鱼幼鱼的基础数据,为其陆基养殖积累基础数据,有利于构建设施化金枪鱼养殖技术体系,为我国后续开展金枪鱼深远海养殖和陆基循环水养殖推广奠定基础。

    黄鳍金枪鱼幼鱼共60尾,由中国水产科学研究院深远海养殖技术与品种开发创新团队于2020年11月—2021年2月在海南陵水黎族自治县新村镇附近海域诱捕,并转运至基地后进行驯化养殖,驯养池规格为长8.6 m×宽5.6 m×高2.8 m。各项水质指标为:水温 (22.5±0.5) ℃,溶解氧质量浓度>8.50 mg·L−1,pH 7.93±0.12,盐度33,氨氮<0.1 mg·L−1,亚硝态氮质量浓度<0.1 mg·L−1,实验用鱼体质量410~2 580 g。驯化期间投喂新鲜杂鱼。

    经过1个月的驯养,野生黄鳍金枪鱼幼鱼能正常摄食人工投料视为驯化成功。驯化成功后,将其按照体质量分为4组 [500 g (250~750 g)、1 000 g (750~1 250 g)、1 500 g (1 250~2 000 g)、2 500 g (2 000~3 000 g)],每组15尾,每组随机抽取5尾进行麻醉。黄鳍金枪鱼幼鱼使用丁香酚 (10~30 μg·L−1) 麻醉后,用一次性注射器 (注射器用抗凝剂肝素润洗) 从幼鱼尾部抽取血液样品 (每尾取血4 mL) 并按照比例加入抗凝剂 [(每mL血液肝素用量为(15±2.5) U],于4 ℃保存并静置30 min,然后用台式高速冷冻离心机 (型号EXPERT 18K-R) 4 ℃、3 000 r·min−1离心10 min。提取上清液后测定血液样品酶活。采血完成后的黄鳍金枪鱼幼鱼解剖取肌肉、胃、前肠、肝脏等组织用于样品测定。测定酸性磷酸酶 (ACP)、碱性磷酸酶 (AKP)、淀粉酶、脂肪酶、蛋白酶等数据,数据精确到小数点后两位。

    称量各实验组样品后,与0.2 mol·L−1生理盐水按指定比例进行研磨,研磨液2 ℃,研磨后4 ℃、15 000 r·min−1离心10 min,取上清,置于−80 ℃备测,各消化酶及免疫酶活性分别采用相关试剂盒进行测定 (南京建成生物工程研究所)。本实验中酶活性以每毫克可溶解蛋白酶活性值 (U·mg−1)、每克可溶解蛋白酶活性值 (U·g−1)、每升可溶解蛋白酶活性值 (U·L−1) 表示。

    采用Excel 2010软件整理数据并作图,利用SPSS 19.0软件进行显著性差异分析,P<0.05为差异显著。

    不同体质量的黄鳍金枪鱼幼鱼不同组织中的ACP活性存在一定差异,均表现为肠道>肌肉>肝脏>血清 (图1)。血清中的ACP活性在体质量500 g时达到最高 [(1 655.99±194.95) U·L−1],而后随着体质量的增加逐渐降低,而当体质量达1 500 g时降至最低 [(763.67±38.14) U·L−1],当体质量达2 500 g时又轻微回升 [(929.64±86.85) U·L−1],且相邻两组之间差异显著 (P<0.05) 。仅在体质量为1000 g时,肠组织中ACP活性 [(420 382.21±37 313.08) U·L−1],显著低于其余体质量组 (P<0.05) ,其余组间差异不显著 (P>0.05)。肌肉组织和肝脏中ACP活性在不同体质量组间差异不显著 (P>0.05),未见规律性变化。

    图  1  黄鳍金枪鱼幼鱼不同组织中酸性磷酸酶活性差异
    Figure  1.  Difference of ACP activity in various tissues of juvenile T. albacares

    不同体质量黄鳍金枪鱼幼鱼各组织中AKP活性存在差异,均表现为肠道>肝脏>肌肉>血清 (图2)。血清中AKP活性在体质量为500、1 000、1 500 g 组中差异不显著,当体质量为2 500 g时血清中AKP活性骤降 [(29.97±3.56) U·g−1],与其他体质量组之间差异显著 (P<0.05)。肠组织中AKP活性在体质量为1 000 g时有所下降 [(29.97±3.56) U·g−1],与其他体质量组之间差异显著 (P<0.05),其他各组间差异不显著 (P>0.05)。肌肉组织中AKP活性随着体质量的增加呈先下降后逐渐稳定的趋势,500 g体质量组中AKP活性 [(411.62±49.32) U·g−1] 显著高于1 000和2 500 g组 (P<0.05),1 500 g体质量组与其他各组间差异不显著 (P<0.05)。肝脏中AKP活性随着体质量的增加呈先轻微下降后缓慢增加的趋势,当体质量为1 000 g时,活性最低[(74 883.05±991.00) U·g−1],体质量为2 500 g时活性最高 [(116 359.06±1 295.10) U·g−1],相邻两组间差异显著 (P<0.05)。

    图  2  黄鳍金枪鱼幼鱼不同组织中碱性磷酸酶活性差异
    Figure  2.  Difference of AKP activity in various tissues of juvenile T. albacares

    随着体质量的增加,黄鳍金枪鱼幼鱼消化器官中各消化酶活性出现一定波动,但整体较稳定 (图3)。肠道中3种消化酶活性依次为胰蛋白酶>淀粉酶>脂肪酶;胃中2种消化酶活性为淀粉酶>胃蛋白酶。黄鳍金枪鱼幼鱼各体质量之间肠道淀粉酶、肠道脂肪酶、胃淀粉酶、胃蛋白酶活性差异均不显著 (P>0.05)。肠道胰蛋白酶活性呈波动性变化,体质量为500 g时活性最高 [(3 230.51±628.91) U·mg−1],显著高于体质量1 000和2 500 g 组 (P<0.05),其他3组间差异不显著 (P>0.05)。

    图  3  黄鳍金枪鱼幼鱼不同器官中消化酶活性差异
    Figure  3.  Difference of digestive enzyme activities in various tissues of juvenile T. albacares

    磷酸酶包括ACP和AKP 两种,是重要的磷代谢酶,具有促进含磷 (P) 物质消化吸收、代谢、转化、转运、再利用等的功能,同时是重要的免疫反应酶及重要的解毒酶类[22]。有研究表明,ACP和AKP是细胞磷酸化和去磷酸化可逆性调节机制的重要参与者,也是细胞增殖启动的重要参与者[23-24],因此其活性高低可有效反映鱼类对P或含P物质的分解、吸收、再利用、转运等功能的有效性,反映对外来入侵物的分解能力,起到免疫的效果[25]

    ACP是溶酶体的标志酶之一,其反应颗粒分布之处表明溶酶体和其他水解酶的存在,细胞内消化过程在此处进行[18]。4个体质量组4种组织中ACP活性均表现为肠道>肌肉>肝脏>血清。研究结果与茴鱼 (Thymdlus grube) 相似 (肾脏>肌肉>肝脏),且活性均高于茴鱼[18]。说明本实验中黄鳍金枪鱼幼鱼溶酶体和其他水解酶丰富,细胞内消化过程活跃,其中肠道、肌肉和肝脏代谢速率较高,对含P物质的分解、吸收和利用效率高,对外来入侵物质或入侵生物的清理能力强。外在表现为免疫力强、生长速度快和运动量大。其中肠道的ACP活性在所有质量组中均最高,表明本实验中肠道ACP更活跃,而其高活性代表对含P物质分解、消化和吸收能力更强。可能因为肠道是与食物直接接触的重要器官,需要更强的免疫力来分解细菌、病毒或有毒有害物质,保证自身的内环境稳态。而肌肉和肝脏中ACP活性较高可能是因为在本实验中黄鳍金枪鱼幼鱼处于快速生长阶段,需要大量的营养物质参与机体构建,因此通过提高ACP活性的方式提高细胞对含P物质的吸收利用能力。而血清中ACP活性最低,可能与血液的主要功能为转运有关。肠道、肌肉、肝脏3种组织中的ACP活性保持稳定,同时血清中ACP活性稳步地降低,表明无明显的外界刺激,黄鳍金枪鱼内环境稳定,养殖过程中生活环境及饵料供给较稳定,未发生突发性疾病印证了这一点。

    AKP是一种重要的免疫反应酶,直接参与磷酸基团的转移,具有重要的调控功能,其活性在机体代谢中起着非常关键的作用,在临床医学中通常作为诊断外来病原入侵或环境毒素入侵等的重要指示[26-28]。在本研究中,AKP活性在所有体质量组中均表现为肠道>肝脏>肌肉>血清,这与长丝鲈 (Osphronemus goramy)、茴鱼及草鱼 (Ctenopharyngodon idella) 的研究结果类似,均为肝>肌肉[29-30]。且在本研究中,肠道及肝脏中AKP活性值远大于肌肉和血清 (相差3个数量级),表明与外界食物直接接触的肠道和重要的免疫器官肝脏需要更高活性的AKP来提高免疫能力。同时肠道是含P物质重要的分解、吸收、转运起点,肝脏是磷酸基团重要的中间存储转化合成器官和免疫器官,对AKP活性均有较高的需求。随着体质量的增加,黄鳍金枪鱼幼鱼肠道和肝脏的AKP活性轻微上升,而血清和肌肉中的则逐渐下降。这可能是因为随着体质量的增加,黄鳍金枪鱼幼鱼器官组织发育程度逐渐完善,组织器官功能的定位及功能分化愈发清晰。同时,养殖条件下黄鳍金枪鱼幼鱼摄食难度低,运动量必然小于野生状态,这可能是导致肌肉AKP活性轻微下降的原因之一。在体质量为2 500 g时,血清中AKP活性骤降,且误差值较小,表明活性数值稳定,受突发性环境因素干扰的可能性较小,应与所处生长发育阶段有关,具体机理有待进一步研究。

    AKP和ACP活性在肠道和肝脏中均较高,表明黄鳍金枪鱼对P具有较强的分解和合成能力,对氨基酸、核苷酸等大分子物质具有较好的分解和再利用能力;对外源物质和自身废弃物有较强的分解和再利用能力;对外界环境因子变化和病原体入侵具有较强的免疫能力和抗逆性。血清中AKP和ACP活性的降低可能与免疫器官逐步发育完善有关。

    蛋白酶、脂肪酶和淀粉酶等是参与营养物质消化和吸收的主要酶类,是评估消化吸收能力及功能的重要指标[31]。淀粉酶可将淀粉催化分解成单糖以便吸收利用[32];脂肪酶能够将食物中的脂肪分解为脂肪酸和甘油分子以便吸收利用[33];蛋白酶可将食物中的蛋白质水解为可供机体吸收的氨基酸[34]。因此测定消化器官中各种消化酶的活性,有助于了解养殖鱼类对所摄食饵料的消化状态[35]。鱼类消化酶活性受多种因素影响,包括发育阶段、季节变化、饵料变化、投喂策略、环境变化等。有研究表明鱼类在不同的发育阶段,其口径有较大变化,导致其摄食饵料的种类也发生变化,为充分吸收利用足够的营养,各种消化酶活性随着摄入饵料种类的变化而改变,例如大弹涂鱼 (Boleophthalmus pectinirostris) 幼鱼、成鱼消化酶活性有显著差异[36]。本研究中,不同体质量的黄鳍金枪鱼幼鱼,口径和体型存在一定差异,测定消化酶活性可有效反映其不同体质量之间生理生化及所需营养的变化。本研究中,黄鳍金枪鱼幼鱼消化器官中各消化酶活性随体质量的增加出现一定波动,但整体较稳定。不同体质量之间肠道淀粉酶、肠道脂肪酶、胃淀粉酶、胃蛋白酶活性均无显著差异 (P>0.05)。肠道蛋白酶活性呈波动性变化,体质量为500 g时活性最高 [(3 230.51±628.91) U·mg−1],显著高于体质量为1 000 g和2 500 g两组 (P<0.05),其他体质量组之间差异不显著 (P>0.05)。有研究表明,脂肪酶活性在肉食性鱼类中较高,淀粉酶活性在草食性鱼类中较高[37],如在青鱼 (Mylopharyngodon piceus) 肠道中发现类似的结果,即胰蛋白酶活性>脂肪酶活性>淀粉酶活性[38]。本研究结果与之不同,黄鳍金枪鱼幼鱼肠道中3种消化酶活性排序为胰蛋白酶>淀粉酶>脂肪酶。与青鱼相比,黄鳍金枪鱼的淀粉酶活性更高、胰蛋白酶活性相似、脂肪酶活性较低,表明黄鳍金枪鱼幼鱼对蛋白类营养物质和淀粉类营养物质有较好的吸收利用能力,而对脂肪的需求量相对较少;与大弹涂鱼对比发现,本研究中黄鳍金枪鱼胃蛋白酶、淀粉酶活性更高,而脂肪酶活性差异较小[36],表明黄鳍金枪鱼对蛋白类和淀粉类食物有更好的消化吸收能力。有研究指出黄鳍金枪鱼肌肉脂肪含量较低[4],对脂肪的消化吸收能力相对较差,可能是导致肌肉的脂肪含量较低的原因。而降低对脂肪类食物的消化吸收速率,保持较高的蛋白酶、淀粉酶消化吸收速率,有利于降低体脂率,保持更好的运动能力。

    本研究表明,黄鳍金枪鱼幼鱼在陆基循环水养殖条件下不同体质量之间存在免疫酶和消化酶活性差异。AKP和ACP活性在肠道和肝脏中均较高,黄鳍金枪鱼在重要的外源物质接触器官和重要的免疫器官对P或含P类营养物质具有较强的分解、吸收和合成利用的能力,对外源入侵物具有较高的免疫能力。肌肉ACP活性高于AKP,表明肌肉对P的利用功能大于转运。ACP和AKP活性随着体质量的增加在黄鳍金枪鱼幼鱼不同组织中的表达量有所变化。黄鳍金枪鱼幼鱼消化酶活性整体稳定,随着体质量的变化小范围地增加或降低,差异较小。蛋白酶活性最高表明其摄食偏好肉类。黄鳍金枪鱼2种免疫相关酶活性及其相关指标随体质量增加的变化规律有所差异,这可能与免疫器官的逐步发育完善有关,具体机理有待进一步研究。黄鳍金枪鱼幼鱼对蛋白类营养物质和淀粉类营养物质有较好的吸收利用能力,而对脂肪的需求量相对较少,内在原因及机理有待进一步探索。

  • 表  1   鱼肉热处理的质构变化

    Table  1   Texture changes of fish meat by heat treatment

    鱼类
    Fish
    热处理方式
    Heat treatment method
    质构测定方法或参数
    Texture determination method or parameter
    质构变化
    Texture change
    金枪鱼[2] Tuna 蒸煮 测前速度2 mm·s−1;测试速度1 mm·s−1;测后速度5 mm·s−1;压缩程度30%;时间间隔5 s;压缩次数2次 硬度、弹性、内聚性和咀嚼性均上升
    [3] Skipjack tuna 蒸煮 测前速度1 mm·s−1;测试速度1 mm·s−1;测后速度1 mm·s−1;应变比75%;时间间隔5 s;压缩次数2次 随着温度升高,硬度、咀嚼性和内聚性总体上升,弹性略下降
    [4] Bighead carp 水煮 测前速度2 mm·s−1;测试速度1 mm·s−1;测后速度5 mm·s−1;压缩程度30%;时间间隔5 s 随着温度升高,硬度、咀嚼性、胶黏性先升高后下降,弹性、凝聚性和回复性先下降后升高再下降
    草鱼[5] Grass carp 水煮 测前速度2 mm·s−1;测试速度1 mm·s−1 ;测后速度5 mm·s−1;压缩程度35%;压缩次数2次;时间间隔5 s;自动触发力5 g 随着温度升高,硬度和咀嚼性先升高后下降,弹性和内聚性总体呈上升趋势,黏性和回复性基本不变
    罗非鱼[6] Tilapia 水煮 测试速度1 mm·s−1;循环次数2次;触发点负载5 g;下压距离5 mm 硬度、咀嚼性、弹性和胶着性明显下降,内聚性明显上升
    汽蒸 硬度、咀嚼性、弹性和胶着性明显下降,内聚性明显上升
    空气炸 硬度、咀嚼性和胶着性下降,内聚性和弹性上升
    [7] Largemouth bass 水煮 测前速度5 mm·s−1;测试速度5 mm·s−1;测后速度5 mm·s−1;压缩程度50%;时间间隔5 s 硬度和咀嚼性下降,弹性略微下降
    汽蒸 硬度和咀嚼性下降,弹性上升
    真空低温烹饪 硬度和咀嚼性下降,弹性上升
    [8] Carp 水煮 测前速度1 mm·s−1;测试速度1 mm·s−1;测后速度1 mm·s−1;压缩距离5 mm;时间间隔5 s;感应力为5 g 随着加热时间延长,硬度、咀嚼性和内聚性总体呈上升趋势,弹性和回复性基本保持不变
    [9] Crucian carp 水煮 测前速度30 mm·min−1;测试速度60 mm·min−1;测后速度30 mm·min−1;形变量35%;时间间隔5 s 随着加热时间延长,硬度和咀嚼性明显上升,弹性和内聚性上升变化不明显
    下载: 导出CSV

    表  2   常见蛋白质稳定剂的研究进展

    Table  2   Research progress of common protein stabilizers

    蛋白质稳定剂
    Protein stabilizer
    作用机制
    Mechanism
    种类
    Type
    作用效果
    Effect
    有机渗透剂
    Organic penetrant
    通过对大分子物质的空间排阻作用和对溶剂分子结构的影响来稳定蛋白质的结构[21] 卡拉胶和果胶[22] 在球状蛋白表面形成一层“保护膜”作为静电屏障,改善蛋白质热稳定性
    魔芋低聚葡甘露聚糖[23] 改变肌球蛋白的氨基酸组成,降低糖蛋白复合物的表面疏水性,提高肌球蛋白的结构稳定性
    氨基酸
    Amino acid
    提高蛋白质溶解度,抑制蛋白质聚集,辅助变性蛋白复性[24] 精氨酸[25] 优先与肌球蛋白结合,显著扰乱肌球蛋白主链的氢键,并通过两个氨基与肌球蛋白分子形成新的氢键,明显抑制鳙鱼肌球蛋白热诱导聚集
    赖氨酸[26] 在不同pH和离子强度条件下对罗非鱼肉肌球蛋白有明显的增溶效果,抑制热处理后肌肉蛋白质的热聚集
    组氨酸[27-28] 在低离子强度条件下会发生肌丝解体,导致溶出率、热凝胶硬度和保水性提高,蛋白质的聚集程度下降
    表面活性剂
    Surfactant
    与蛋白质发生静电和疏水相互作用,显著改善蛋白质的溶解性,促进蛋白质复性过程中的构象转变[31] 海藻糖脂[29] 提高蛋白质的热解折叠温度,且蛋白质热解折叠温度随添加量的增加而提高,然而大多以牛血清蛋白为研究对象
    硫酸葡聚糖[30] 与肌球蛋白发生强静电相互作用,增大肌球蛋白溶解度,对罗非鱼肌球蛋白热变性具有明显的抑制作用
    十二烷基硫酸钠和β-环糊精[31] 作为“人工分子伴侣”,防止蛋白质分子中巯基被破坏,减弱蛋白质分子间的相互作用,抑制肌球蛋白的热变性聚集
    下载: 导出CSV

    表  3   常用磷酸盐类型及溶解度

    Table  3   Common phosphate types and solubility

    种类
    Type
    磷酸盐
    Phosphate
    分子式
    Molecular
    formula
    溶解度
    Solubility/
    (g·L−1)
    正磷酸盐
    Orthophosphate
    磷酸三钠 Na3PO4 120
    磷酸二氢钠 NaH2PO4 800
    磷酸氢二钠 Na2HPO4 100
    磷酸三钾 K3PO4 900
    磷酸二氢钾 KH2PO4 330
    磷酸氢二钾 K2HPO4 1670
    焦磷酸盐
    Pyrophosphate
    焦磷酸钠 Na2H2P2O7 120
    焦磷酸四钠 Na4P2O7 65
    焦磷酸四钾 K4P2O7 1840
    三聚磷酸盐
    Tripolyphosphate
    三聚磷酸钠 Na5P3O10 150
    三聚磷酸钾 K5P3O10 1800
    六偏磷酸盐
    Hexametaphosphate
    六偏磷酸钠 (NaPO3)n
    下载: 导出CSV
  • [1] 农业农村部渔业渔政管理局. 2020 中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2020: 17.
    [2] 缪函霖, 蒋璐, 王锡昌, 等. 不同新鲜度金枪鱼肉蒸煮品质的研究[J]. 食品工业科技, 2014, 35(13): 80-84,295.
    [3] 徐靖彤, 彭玲玲, 赵丹丹, 等. 蒸煮工艺对鲣鱼鱼柳品质的影响[J]. 食品工业科技, 2016, 37(11): 206-211.
    [4] 姜启兴. 鳙鱼肉热加工特性及其机理研究[D]. 无锡: 江南大学, 2015: 32-34.
    [5] 陈惠, 刘焱, 李志鹏, 等. 热加工对草鱼鱼肉品质及风味成分的影响[J]. 食品与机械, 2017, 33(9): 53-58, 68.
    [6] 李锐, 孙祖莉, 杨贤庆, 等. 加热方式对罗非鱼片质构特性和蛋白质理化特性的影响[J]. 大连海洋大学学报, 2020, 35(4): 577-583.
    [7] 向雅芳, 熊光权, 乔宇, 等. 不同热处理方式对鲈鱼品质的影响[J]. 食品科学, 2019, 40(21): 127-135. doi: 10.7506/spkx1002-6630-20181018-200
    [8] 齐海萍, 胡文忠, 姜爱丽, 等. 热加工对鲤鱼质构的影响研究[J]. 食品科技, 2011(5): 154-156+160.
    [9] 马慧慧, 申永奇, 李雪冬, 等. 烹煮时间对鲫鱼质构的影响[J]. 河北渔业, 2014(12): 8-9.
    [10] 熊舟翼, 卢素芳, 徐洪亮, 等. 熟制工艺对武昌鱼风味、品质及质构特性的影响[J]. 湖北农业科学, 2019, 58(22): 168-178.
    [11] 鞠健, 乔宇, 汪超, 等. 不同温度对白鲢鱼肉在蒸煮过程中品质的影响[J]. 食品工业科技, 2016, 37(24): 121-127.
    [12]

    SUN F Y, HUANG Q L, HU T, et al. Effects and mechanism of modified starches on the gel properties of myofibrillar protein from grass carp[J]. Int J Biol Macromol, 2014, 64: 17-24. doi: 10.1016/j.ijbiomac.2013.11.019

    [13] 路钰希, 林玉海, 李学英, 等. 冻藏温度对鱿鱼品质的影响[J]. 食品与发酵工业, 2015(3): 105-111.
    [14]

    BLIKRA M J, ÅSE V H, FEYISSA A H, et al. Dimensional change and cook loss during heating of fish: problem formulation and semi-empirical modeling approach[J]. J Food Eng, 2020, 281: 110004. doi: 10.1016/j.jfoodeng.2020.110004

    [15] 孙瑜嵘, 范三红, 冯雨薇, 等. 加热处理对3种鱼肉水分分布的影响[J]. 山西农业科学, 2019, 47(4): 99-102.
    [16]

    JOHNSEN C A, HAGEN Ø, BENDIKSEN E Å. Long-term effects of high-energy, low-fishmeal feeds on growth and flesh characteristics of Atlantic salmon (Salmo salar L.)[J]. Aquaculture, 2011, 312(1/2/3/4): 109-116.

    [17] 胡芬, 李小定, 熊善柏, 等. 5种淡水鱼肉的质构特性及与营养成分的相关性分析[J]. 食品科学, 2011, 32(11): 77-81.
    [18]

    KEIKO H, FUJIKO Y, JUICHIRO J M. Role of muscle fibers in contributing firmness of cooked fish[J]. J Food Sci, 2010, 55(3): 693-696.

    [19]

    PERIAGO M J, AYALA M D, LÓPEZ-ALBORS O, et al. Muscle cellularity and flesh quality of wild and farmed sea bass, Dicentrarchus labrax L.[J]. Aquaculture, 2005, 249(1/2/3/4): 175-188.

    [20] 冯雨薇. 3种海水小杂鱼及其罐头制品的营养特性和热加工对鱼肉品质的影响[D]. 太原: 山西大学, 2013: 5.
    [21] 纪络. 渗透剂稳定蛋白质结构的分子动力学模拟研究[D]. 天津: 天津大学, 2009: 4-8.
    [22]

    KUROIWA T, KOBAYASHI I, CHUAN A M, et al. Formulation and stabilization of nano-/microdispersion systems using naturally occurring edible polyelectrolytes by electrostatic deposition and complexation[J]. Adv Colloid Interface Sci, 2015, 226(Pt A): 86-100.

    [23]

    LIU J H, FANG C H, XU X, et al. Structural changes of silver carp myosin glycated with Konjac oligo-glucomannan: effects of deacetylation[J]. Food Hydrocoll, 2019, 91(6): 275-282.

    [24] 时娇娇. 蛋白稳定剂对罗非鱼肌球蛋白热变性聚集的抑制及机理[D]. 湛江: 广东海洋大学, 2016: 4-5.
    [25]

    SHI T, XIONG Z Y, JIN W G, et al. Suppression mechanism of l-arginine in the heat-induced aggregation of bighead carp (Aristichthys nobilis) myosin: the significance of ionic linkage effects and hydrogen bond effects[J]. Food Hydrocoll, 2020, 102: 105596. doi: 10.1016/j.foodhyd.2019.105596

    [26] 周春霞, 时娇娇, 付苇娅, 等. 赖氨酸和精氨酸对三种离子强度下罗非鱼肌球蛋白溶解度及构象的影响[J]. 现代食品科技, 2016, 32(12): 99-104.
    [27]

    TAKAI E, YOSIZAWA S, EJIMA D, et al. Synergistic solubilization of porcine myosin in physiological salt solution by arginine[J]. Int J Biol Macromol, 2013, 62: 647-651. doi: 10.1016/j.ijbiomac.2013.09.035

    [28] 赵晓阳, 李可, 邹玉峰, 等. 组氨酸与氯化钾混合液对兔肉肌球蛋白特性的影响[J]. 食品科学, 2014, 35(9): 6-10. doi: 10.7506/spkx1002-6630-201409002
    [29]

    ZARAGOA A, TERUEL J A, ARANDA F J, et al. Interaction of a Rhodococcus sp. trehalose lipid bio surfactant with model proteins: thermodynamic and structural changes[J]. Langmuir, 2012, 28(2): 1381-1390. doi: 10.1021/la203879t

    [30] 李婷, 周春霞, 冯瑞, 等. 硫酸葡聚糖对低离子强度下罗非鱼肌球蛋白热变性聚集的抑制及其机制[J]. 食品与机械, 2018, 34(12): 5-10.
    [31] 付苇娅, 钟婉玲, 胡亚丽, 等. 人工分子伴侣介导液相体系中肌球蛋白热稳定性的研究[J]. 海南大学学报 (自然科学版), 2016, 34(4): 356-362.
    [32]

    THANGAVELU K P, KERRY J P, TIWARI B K, et al. Novel processing technologies and ingredient strategies for the reduction of phosphate additives in processed meat[J]. Trends Food Sci Technol, 2019, 94: 43-53. doi: 10.1016/j.jpgs.2019.10.001

    [33]

    GLORIEUX S, GOEMAERE O, STEEN L, et al. Phosphate reduction in emulsified meat products: impact of phosphate type and dosage on quality characteristics[J]. Food Technol Biotechnol, 2017, 55(3): 390-397.

    [34] 李振铎, 井月欣, 张健, 等. 多磷酸盐在冷冻鳕鱼鲽鱼片加工中的安全应用[J]. 中国食品添加剂, 2019, 30(3): 127-132. doi: 10.3969/j.issn.1006-2513.2019.03.012
    [35] 张聪. 利用低声强超声提高罗非鱼片保水效果的研究[J]. 食品科技, 2019, 44(7): 161-166.
    [36] 张珂. 保水剂和解冻方法对冻藏罗非鱼片品质的影响[D]. 湛江: 广东海洋大学, 2016: 1-4.
    [37] 祖铁红. 保水剂对海湾扇贝闭壳肌冻藏品质的影响研究[D]. 保定: 河北农业大学, 2014: 6-7.
    [38] 于淑池, 周海英. 复合无磷保水剂对冷冻金鲳鱼片的保水效果[J]. 食品工业, 2020, 41(1): 120-124.
    [39] 古霞. 南方大口鲇储藏稳定性研究及系列产品开发[D]. 成都: 西华大学, 2016: 19-28.
    [40] 张晨芳, 钟秋平. 复合无磷保水剂对冷冻罗非鱼片保水效果的研究[J]. 食品工业, 2016(10): 100-103.
    [41]

    FAN M C, HUANG Q L, ZHONG S Y, et al. Gel properties of myofibrillar protein as affected by gelatinization and retrogradation behaviors of modified starches with different crosslinking and acetylation degrees[J]. Food Hydrocoll, 2019, 96: 604-616. doi: 10.1016/j.foodhyd.2019.05.045

    [42]

    YANG S, TU Z C, WANG H, et al. Effects of coagulant promoter on the physical properties and microstructure of the mixed system of ultrafine fishbone and surimi[J]. LWT, 2020, 131: 109792. doi: 10.1016/j.lwt.2020.109792

    [43]

    LI X X, FAN M C, HUANG Q L, et al. Effect of wet-media milling on the physicochemical properties of tapioca starch and their relationship with the texture of myofibrillar protein gel[J]. Food Hydrocoll, 2020, 109: 106082. doi: 10.1016/j.foodhyd.2020.106082

    [44] 吴香, 李新福, 李聪, 等. 变性淀粉对肌原纤维蛋白凝胶特性的影响[J]. 食品科学, 2020, 41(2): 22-28. doi: 10.7506/spkx1002-6630-20190227-209
    [45]

    BORDERÍAS A J, TOVAR C A, DOMÍNGUEZ-TIMÓN F, et al. Characterization of healthier mixed surimi gels obtained through partial substitution of myofibrillar proteins by pea protein isolates[J]. Food Hydrocoll, 2020, 107: 105976. doi: 10.1016/j.foodhyd.2020.105976

    [46] 杜洪振, 陈倩, 杨振, 等. 预热处理大豆蛋白对鲤鱼肌原纤维蛋白凝胶和流变学特性的影响[J]. 食品科学, 2019, 40(12): 63-69.
    [47] 李艳青, 陈洪生, 俞龙浩, 等. 氧化大豆分离蛋白对鲤鱼肌原纤维蛋白乳化性和凝胶性的影响[J]. 农产品加工, 2018, 451(5): 13-15,18.
    [48]

    FENG J H, CAO A L, CAI L Y, et al. Effects of partial substitution of NaCl on gel properties of fish myofibrillar protein during heating treatment mediated by microbial transglutaminase[J]. LWT, 2018, 93: 1-8. doi: 10.1016/j.lwt.2018.03.018

    [49]

    SANTHI D, KALAIKANNAN A, MALAIRAJ P, et al. Application of microbial transglutaminase in meat foods: a review[J]. Crit Rev Food Sci Nutr, 2015, 57(10): 2071-2076.

    [50]

    YANG N, FAN X R, YU W Y, et al. Effects of microbial transglutaminase on gel formation of frozen-stored longtail southern cod (Patagonotothen ramsayi) mince[J]. LWT, 2020, 128: 109444. doi: 10.1016/j.lwt.2020.109444

    [51] 邓思杨, 杨明, 潘男, 等. 淀粉与转谷氨酰胺酶复配引起肌肉蛋白功能特性的变化[J]. 食品科学, 2018, 39(12): 140-146. doi: 10.7506/spkx1002-6630-201812022
    [52] 杨华, 娄永江, 杨震峰. 谷氨酰胺转胺酶在水产品中的应用[J]. 食品工业, 2003(4): 48-49.
  • 期刊类型引用(4)

    1. 刘雪娇,李洁,郸彩霞,海强,刘浩,刘哲,朱利瑞,王建福. 氨氮胁迫对虹鳟幼鱼IHNV易感性的影响. 中国水产科学. 2025(02): 246-257 . 百度学术
    2. 张宁璐,周胜杰,陈成勋,于刚,马振华,孙金辉. 急性低盐胁迫对黄鳍金枪鱼幼鱼渗透调节影响研究. 天津农学院学报. 2024(04): 55-65+73 . 百度学术
    3. 刘鸿雁,付正祎,于刚,马振华. 黄鳍金枪鱼幼鱼体质量与血液指标关系研究. 南方水产科学. 2023(01): 173-178 . 本站查看
    4. 王文雯,胡静,周胜杰,杨蕊,马振华. 小头鲔幼鱼不同消化器官中消化酶活性分析. 天津农学院学报. 2023(04): 27-31 . 百度学术

    其他类型引用(3)

表(3)
计量
  • 文章访问数:  904
  • HTML全文浏览量:  364
  • PDF下载量:  69
  • 被引次数: 7
出版历程
  • 收稿日期:  2020-11-27
  • 修回日期:  2021-03-22
  • 录用日期:  2021-03-28
  • 网络出版日期:  2021-04-02
  • 刊出日期:  2021-06-04

目录

/

返回文章
返回