Research progress on texture preservation technology of fish meat during hot boiling
-
摘要: 热加工是一种传统的食品加工技术,热煮是其中的重要方式之一。鱼肉经过热煮处理会产生组织脆弱化、结构松散等问题,对其食用品质造成负面影响,因此提高鱼肉的耐煮性是开发水产系列加工产品的基础。文章总结了近几年关于热煮对鱼肉质构影响的研究进展,深入分析了热煮引起质构变化的作用机制,并结合变化原理分别从改善蛋白质热稳定性、提高肌肉持水性和提高肌肉凝胶特性3个方面阐述保持鱼肉质构的方法,提出将食品加工新技术与传统加工方法相结合以提高鱼肉耐煮性的研究方向,旨在为鱼肉热煮过程中的质构保持技术及食用品质控制提供参考。Abstract: Thermal processing is a traditional food processing technology, and hot boiling is one of the important methods. After being boiled, the fish tissue will become fragile and the structure will be loose, which is bad for the edible quality of the fish. This paper summarizes the research progress on the effect of hot cooking on the texture of fish meat in recent years, deeply analyzes the mechanism of the texture change, and combines the principle of texture change expounds the methods of maintaining the texture of fish meat by improving protein thermal stability, muscle water retention and muscle gel properties. Then it puts forward the research direction of combining new food processing technology with traditional processing methods to improve the boiling resistance of fish meat in the future, so as to provide reference for the texture preservation technology and edible quality control of fish during hot boiling.
-
Keywords:
- Fish meat /
- Hot boiling /
- Texture preservation /
- Muscle protein
-
克氏原螯虾 (Procambarus clarkii),俗称“小龙虾”,属甲壳纲、十足目、蝲蛄科,原产于北美洲,1929年由日本引入中国[1-2]。近年来,因其肉洁白细嫩,味道鲜美,再加上神奇的加工制作方法而火爆全国,受到广大食客的喜爱和追捧[3]。对克氏原螯虾的研究多集中于养殖模式、营养学、免疫学等方面[4-11],而对其蜕壳特征的报道较少[12-13]。蜕壳实则是克氏原螯虾生长和发育的生物节律,贯穿于其个体发育的始终,虾须进行周期性蜕壳才能成长。蜕壳过程可持续十几至几十分钟,此时极易受同类或其他敌害生物的侵袭,而通常死亡时间多发生于蜕壳时和蜕壳后两个时期 (图1)。幼体一般4~6 d蜕壳一次,离开母体进入开放水体的幼体每5~8 d蜕壳一次,后期幼体的蜕壳间隔一般为8~20 d,水温高,食物充足,发育阶段早,则蜕壳间隔短[14]。从幼体到性成熟,虾要进行11次以上的蜕壳。其中蚤状幼体阶段蜕壳2次,有体阶段蜕壳9次以上。在养殖生产中,蜕壳是生与死的考验:1) 易应激死亡;2) 因环境不好,鳃部修复不到位。
虾蟹类的蜕壳状况直接决定后续的养殖效果,而环境则是影响其蜕壳及生长发育的重要因素[15]。虾蟹养殖过程中需要从水体吸收大量的钙来满足生长需求[16];pH诱导在一定范围内会加速中华绒螯蟹 (Eriocheir sinensis) 的蜕壳[17],过高 (pH 10时) 则可能会一定程度抑制其生长;盐度对拟穴青蟹 (Scylla paramamosain) 蜕壳后的存活时间影响较为显著,盐度高于40时青蟹即使可成功蜕壳,其蜕壳后的存活时间与低盐度组相比明显下降[18]。此外,溶解氧 (DO) 浓度也与甲壳动物蜕壳密切相关[19]。克氏原螯虾作为底栖穴居性甲壳类,DO对其生命活动有较大影响。当ρ (DO)高于5 mg·L−1时拟穴青蟹蜕壳率高于70%,低于4 mg·L−1则不利于拟穴青蟹的蜕壳[18]。拟穴青蟹处于即将蜕壳阶段时,需氧量较平时显著增加,供氧量不足会直接导致蜕壳过程受影响,蜕壳成功率降低。
环境因子对甲壳类蜕壳有重要影响。因此,研究各种环境因子对机体蜕壳的影响,不仅具有理论意义,也有实际应用价值。刘其根等[20]研究发现只有在适宜的蜕壳环境中克氏原螯虾才能正常顺利地蜕壳,如浅水、弱光、安静、水质清新的环境和营养全面的优质适口饵料等,但对克氏原螯虾蜕壳影响因素及预防对策却少见报道。本文通过研究不同环境因子对克氏原螯虾蜕壳的影响,观察分析克氏原螯虾蜕壳死亡原因,探究其预防对策,以期为其生产应用提供理论参考。
1. 材料与方法
实验在中国水产科学研究院南海水产研究所深圳试验基地“农业农村部斑节对虾遗传育种中心”进行,按照克氏原螯虾的规格不同,各随机挑选同一批次的虾作为实验材料。
1.1 钙镁实验
选取同一批次的克氏原螯虾 [体质量为 (0.05±0.01) g] 为实验材料,参考刘存歧等[21]和岳彩锋[22]研究结果,设置不同钙 (Ca2+)、镁 (Mg2+) 质量浓度。A组:ρ (Ca2+)、ρ (Mg2+) 均为0 mg·L−1;B组:ρ (Ca2+) 为30 mg·L−1,ρ (Mg2+) 为15 mg·L−1;C组:ρ (Ca2+)为60 mg·L−1,ρ (Mg2+)为30 mg·L−1;D组:ρ (Ca2+)为90 mg·L−1,ρ (Mg2+)为45 mg·L−1。每组设3个平行,每个平行放30尾虾,于室内黑桶 (500 L水) 中养殖30 d。实验期间,水温27~31.5 ℃,ρ (DO)为5.6~6.4 mg·L−1,自然采光,24 h充气。每天投喂3次 (8:00、17:00、22:00),投喂量为虾体质量的2%~3%,投料1 h后观察虾的摄食情况,及时调整投料量,每隔48 h更换新鲜实验用水。
1.2 pH和溶解氧实验
选取同一批次的克氏原螯虾[体质量为 (30.12±1.42) g]为实验材料,参考郭春雨等[23]和岳彩锋[24]研究结果,设置不同的pH和溶解氧质量浓度。a组:pH为7.82±0.12,ρ (DO)为 (7.00±0.32) mg·L−1;b组:pH为9.23±0.10,ρ (DO)为 (7.00±0.32) mg·L−1;c组:pH为7.82±0.12,ρ (DO)为 (4.50±0.24) mg·L−1。每组设3个平行,每个平行放30尾虾,于室内水泥池 (1.84 m×1.70 m×1.73 m) 养殖30 d。实验期间水温为26~30 ℃,自然采光。每天投喂3次 (8:00、17:00、22:00),投喂量为虾体质量的2%~3%,投料1 h后观察虾的摄食情况,及时调整投料量,并于每日18:00吸污并补充新鲜淡水。
1.3 盐度实验
选取同一批次的克氏原螯虾体质量为[(1.2±0.34) g]为实验材料,设置不同梯度的盐度,即0 (对照)、3、6、9、12、15、18、21、24、27、30。每组设3个平行,每个平行放30尾虾,于室内长方形桶 (100 L水) 中观察养殖12 d,后期无死亡情况,养殖持续到30 d为止。实验期间,水温27~31.5 ℃,ρ (DO) 为5.6~6.4 mg·L−1,自然采光,24 h充气。每天投喂3次 (8:00、17:00、22:00),投喂量为虾体质量的2%~3%,投料1 h后观察虾的摄食情况,及时调整投料量,并每隔48 h更换新鲜实验用水。
1.4 蜕壳虾数的评估测定
通常克氏原螯虾的单次蜕壳个体数是从上一次蜕壳高峰期结束至此次蜕壳高峰期过程出现的虾蜕壳数量,而蜕壳次数是蜕壳高峰期的出现次数。
蜕壳率=单次蜕壳个体数/单次总个体数×100%
蜕壳死亡率=个体蜕壳死亡数/单次总个体蜕壳数×100%
其中蜕壳个体数为计算蜕壳的数量,个体蜕壳死亡数为因蜕壳而死亡的虾的数量。
1.5 统计分析
用Excel 2013和SPSS 21.0软件处理数据,进行单因素方差分析,Duncan's多重比较分析各组间的差异显著性 (P<0.05) 和差异极显著性 (P<0.01),结果以“平均值±标准差 (
$\overline{X}\pm \rm{SD} $ )”表示。2. 结果
2.1 Ca2+、Mg2+浓度对克氏原螯虾蜕壳的影响
水体中不同Ca2+、Mg2+浓度对克氏原螯虾蜕壳的影响见表1,各实验组虾的末体质量均显著高于对照组 (P<0.05)。B组和C组的成活率和显著高于对照组和D组 (P<0.05),而B组和C组差异不显著 (P≥0.05)。就各组蜕壳率而言,B组 (82.22%) 和C组 (78.89%) 显著高于对照组和D组 (P<0.05),而B组和C组差异不显著 (P≥0.05);B组和A组的蜕壳率差异最大,相差约25.55个百分点。
表 1 不同钙、镁离子浓度对克氏原螯虾生长及蜕壳的影响Table 1. Effects of different Ca2+ and Mg2+ concentrations on decidua of P. clarkii指标
IndexA组
Group AB组
Group BC组
Group CD组
Group D末体质量 Final body mass/g 1.28±0.04b 1.99±0.16a 2.00±0.27a 1.83±0.19a 成活率 Survival rate/% 68.89±3.85b 86.67±3.34a 85.56±5.09a 74.45±3.85b 蜕壳率 Molting rate/% 56.67±3.34b 82.22±1.92a 78.89±1.92a 68.89±1.92b 注:同行数据 (平均值±标准差) 上标字母不同者之间表示存在显著差异 (P<0.05)
Note: Values (${\overline{X}\pm \rm{SD} } $) within the same row with different superscript letters are signiifcantly different (P<0.05).水体中不同Ca2+、Mg2+浓度对虾蜕壳死亡率的影响见图2。对比各组虾的蜕壳死亡率,B组 (1.15%) 和C组 (2.16%) 显著性低于D组 (P<0.05),极显著性低于A组 (P<0.01),而B组和C组无显著差异;此外,同样B组和A组的蜕壳死亡率差异最大,相差8.09个百分点。
2.2 不同pH和溶解氧对克氏原螯虾蜕壳的影响
水体中不同pH和溶解氧对克氏原螯虾生长及蜕壳的影响见表2。F组和G组虾的末体质量均显著高于对照E组 (P<0.05)。E组的成活率显著高于F组和G组 (P<0.05),而F组和G组差异不显著 (P≥0.05)。就各组蜕壳率而言,E组 (81.11%) 显著高于F组 (58.89%) 和G组 (44.44%) (P<0.05),而F组和G组的差异不显著 (P≥0.05);E组和G组的蜕壳率差异最大,相差36.67个百分点。
表 2 不同pH和溶解氧对克氏原螯虾生长及蜕壳的影响Table 2. Effects of different pH values and dissolved oxygen concentrations on decidua of P. clarkii指标
IndexE组
Group EF组
Group FG组
Group G末体质量
Final body mass/g42.37±1.10a 35.25±1.31b 33.44±0.99b 成活率
Survival rate/%85.56±5.09a 73.33±3.34b 71.11±5.09b 蜕壳率
Molting rate/%81.11±3.84a 58.89±5.09b 44.44±5.09c 注:同行数据 (平均值±标准差) 上标字母不同者之间表示存在显著差异 (P<0.05)Note: Values (${\overline{X}\pm \rm{SD} } $) within the same row with different superscript letters are signiifcantly different (P<0.05). 水体中不同pH和溶解氧对克氏原螯虾蜕壳死亡率的影响见图3。各实验组虾对比各组虾的蜕壳死亡率,E组 (5.57%) 显著性低于F组 (29.70%) 和G组 (26.37%) (P<0.05),而F组和G组无显著差异;另外同样F组和E组的蜕壳死亡率差异最大,相差24.13个百分点。
2.3 不同盐度对克氏原螯虾蜕壳的影响
盐度在15以上的各组虾比12以下的虾早一天出现蜕壳现象,而盐度18以下的各组虾比盐度21以上虾的蜕壳现象早一天结束 (图4)。此外各组虾的蜕壳率随着盐度的增高总体出现上升的趋势。实验各组虾的蜕壳率显著高于对照组 (P<0.05),其中30组的蜕壳率最高 (24.45%),也与对照组的蜕壳率差异最大,相差23.34个百分点。
水体中不同盐度对克氏原螯虾死亡率的影响见表3。实验各组虾的死亡率随着时间和盐度的增加呈现上升趋势。实验组的死亡率显著高于对照组 (P<0.05),而实验组中盐度6组的死亡率最低 (16.67%),盐度27组和30组的死亡率最高 (100%),而盐度27组和30组差异不显著 (P≥0.05)。就各组死亡率而言,对照组在第4天后虾开始稳定,停止死亡;而盐度介于3~15的各组虾基本在第8天后开始稳定或死亡率降低,但是18以上盐度组一直出现死亡情况,直至实验结束。两个最高盐度组和对照组的死亡率差异最大,相差97.78个百分点,而6盐度组仅相差14.45个百分点。
表 3 不同盐度对克氏原螯虾死亡率的影响Table 3. Effects of different salinities on mortality rate of P. clarkii% 盐度
Salnity1天
1 d2天
2 d4天
4 d6天
6 d8天
8 d10天
10 d12天
12 d0 0.00±0.00 1.11±1.11CD 2.22±1.11F 2.22±1.11E 2.22±1.11F 2.22±1.11H 2.22±1.11H 3 0.00±0.00c 1.11±1.11cCD 5.56±2.94cEF 13.33±1.93bD 23.33±1.95aCD 25.57±2.94aF 25.57±2.94aF 6 0.00±0.00c 0.00±0.00cD 8.89±1.11bDE 8.89±1.11bD 16.67±3.34aE 16.67±1.93aG 16.67±1.93aG 9 0.00±0.00d 0.00±0.00dD 3.33±1.93cdEF 7.78±1.11cDE 20.00±3.33cDE 26.67±1.93aF 26.67±1.94aEF 12 0.00±0.00d 0.00±0.00dD 2.22±1.11dF 8.89±1.11cD 25.56±1.11bCD 31.11±1.11aEF 31.11±1.11aDE 15 0.00±0.00c 0.00±0.00cD 4.44±1.11cEF 12.22±3.85bD 25.56±2.94aCD 30.00±1.92aEF 30.00±1.92aDEF 18 0.00±0.00e 1.11±1.11deCD 4.44±1.11dEF 12.22±3.85cD 20.00±1.92bDE 34.44±1.11aDE 34.44±1.11aCD 21 0.00±0.00f 7.78±1.11eAB 17.78±1.11dC 20.00±3.33dC 30.00±1.92cC 40.00±1.92bC 50.00±1.92aB 24 0.00±0.00e 5.57±2.94eB 13.33±1.93dCD 21.11±5.09cC 28.89±1.11bC 36.67±1.93aCD 36.67±1.93aC 27 0.00±0.00g 11.11±1.11fA 24.44±1.11eB 38.89±1.92dB 54.44±1.11cB 90.00±1.92bB 100.00±0.00aA 30 1.11±1.11e 4.44±1.11eBC 35.56±2.94bA 68.89±5.09cA 86.67±3.85bA 100.00±0.00aA 100.00±0.00aA 注:上标小写字母不同者表示同行数据 (平均值±标准差) 之间存在显著差异 (P<0.05),上标大写字母不同者表示同列数据 (平均值±标准差) 之间存在显著差异 (P<0.05)Note: Values (${\overline{X}\pm \rm{SD} } $) with different lowercase letters within the same row are signiifcantly different (P<0.05), while those with different uppercase letters within the same column are signiifcantly different (P<0.05). 不同盐度对克氏原螯虾实验末期蜕壳死亡率的影响见图5。随着盐度升高,蜕壳死亡率呈现先上升后下降趋势。盐度3组和盐度6组并未出现因蜕壳而造成死亡的虾,两组差异不显著(P≥0.05),而盐度9组开始虾出现蜕壳死亡情况。此外,15~30盐度组的蜕壳死亡率均显著高于0~12盐度组(P<0.05),其中盐度21组的蜕壳死亡率最高(P<0.05),达到49.18%。
3. 讨论
3.1 水体中Ca2+、Mg2+、pH和DO对克氏原螯虾蜕壳的影响
Ca2+浓度、盐度等水环境因子对克氏原螯虾的蜕壳有显著影响[25]。慕峰[25]指出水体中缺乏Ca2+会显著影响幼虾的生长、存活及蜕壳状况。本实验中,水体中ρ (Ca2+)为30 mg·L−1、ρ (Mg2+)为15 mg·L−1时,克氏原螯虾的成活率最高,蜕壳率最高,而蜕壳死亡率最低。
克氏原螯虾在蜕壳过程中,将老壳中的钙质吸收转移至贲门胃前侧壁内,累积形成一对“胃石”,蜕壳后胃石分解,再积淀到新壳中使新壳变硬[14]。因为克氏原螯虾在蜕壳前生长过程中缺乏摄食钙磷等微量元素,会使虾在蜕壳时丧失大量的钙、磷等微量元素,虾无力而使头胸甲或螯部外壳无法蜕出,即使有些虾勉强蜕壳后又无法立即大量补充钙、磷等微量元素,使虾体内正常生理机能被打破而死亡。因此,水体中及时补充适量的Ca2+、Mg2+不仅有促进虾生长发育,还可以促进蜕壳,降低蜕壳死亡率,提高产量,对克氏原螯虾生产应用具有重要意义。
本实验用不同梯度pH及DO养殖克氏原螯虾成虾,结果显示当水体中pH为9.23时,虾的成活率会显著降低,蜕壳比例减少,蜕壳中虾的死亡率增高,这与陶易凡等[26]的研究结果一致。其原因可能是水体中pH过高会对克氏原螯虾的代谢产生影响,同时导致氧化应激,并对鳃和肝胰腺的组织结构造成损伤,影响其生物学功能;再者,由于虾池内水质突然恶化,特别是底质变酸,水体pH过高或有害气体增加等会导致蜕壳后的软壳虾无法适应此种环境,因其通体柔软又无快速迁移能力而中毒死亡。
任信林等[27]指出当水中DO过低时,虾易出现浮头或中毒现象,影响其生长发育及蜕壳等。本实验中,当水体ρ (DO)为4.5 mg·L−1时,虾的成活率显著降低,蜕壳比例减少,蜕壳中虾的死亡率增高,该结果与任信林等[27]的结果一致。其原因可能是水体中一系列的氧化还原反应都需有氧气参与[28],一旦水体供氧不足,会造成虾生长缓慢,生命活动迟缓。此外,克氏原螯虾在头部蜕壳时有1~2 s是缺氧的,鳃被壳全部封闭,若虾池水中DO低,蜕壳时易造成虾窒息死亡。即使蜕壳后的软壳虾同样无法适应此种环境,因其通体柔软又无快速恢复能力而缺氧死亡。
3.2 盐度对克氏原螯虾蜕壳的影响
克氏原螯虾生活于淡水环境下[29],如果受到高盐度刺激,虾体内渗透压会失衡,部分蜕壳或体质较差的虾会应激死亡。盐度变化 (0~20) 对克氏原螯虾血淋巴渗透压、鳃丝Na+-K+-ATPase活力和生物胺等影响显著[30]。
本实验用不同梯度盐度急性胁迫克氏原螯虾,结果表明盐度变化会影响虾的蜕壳率和蜕壳死亡率,盐度上升两者出现一定程度的升高趋势。而虾在盐度介于0~6的蜕壳死亡率为零,这与李庭古[31]的研究结果一致,其原因可能是仔虾对盐度6以下具有较强的适应性的结果[32]。当盐度超过此范围时,随着盐度增加,幼虾的成活率下降,生长变慢[31]。盐碱地养殖克氏原螯虾易造成大面积死亡,有些种类即使能存活,但生长差,产量较低而且不稳定[33]。
盐度的急性变化会影响虾的蜕壳,一方面环境不适应,虾不会蜕壳,或者延长蜕壳时间,另一方面虾在外在因素刺激下又容易发生蜕壳现象。本实验中当水体中盐度为21时,虾的蜕壳死亡率最高,而虾的死亡率却低于盐度27组和盐度30组,说明高盐度超出了虾的耐受性,而蜕壳后的虾自身的免疫力较低,加上机体调节能力严重削弱,最终导致死亡[34]。
3.3 克氏原螯虾因蜕壳死亡的预防对策
克氏原螯虾在养殖过程中,经常出现蜕壳期死亡现象,造成养殖产量降低,使养殖户蒙受经济损失。在克氏原螯虾的人工养殖中,为预防虾因蜕壳造成死亡现象的发生,笔者提出以下对策:
1) 及时补充Ca2+、Mg2+等元素,保证水体中ρ (Ca2+)为30 mg·L−1、ρ (Mg2+)为15 mg·L−1,以促进虾的蜕壳生长;
2) 定期排加水,保持水体pH值稳定在7.82左右,ρ (DO)稳定在7.00 mg·L−1左右,降低有害气体在养殖水中的毒副作用,以便蜕壳后软壳虾能生存;
3) 水体盐度最好保持在6以下,超过此范围,幼虾的成活率会下降,生长也会变慢;
4) 定期检测水体各项指标,及时做好防护措施,为克氏原螯虾顺利渡过蜕壳期做好准备工作。
4. 结论
本研究初步探讨了克氏原螯虾在蜕壳期的几点死亡原因及相应的预防对策,发现水体中适当的Ca2+、Mg2+浓度不仅可以促进虾生长发育,还可以促进蜕壳,降低蜕壳死亡率;当水体中pH为9.23,或者ρ (DO)为4.5 mg·L−1时,虾的成活率显著降低,蜕壳比例减少,蜕壳中虾的死亡率增高;此外克氏原螯虾仔虾对低盐度有较强的适应性,过高盐度易影响虾的正常蜕壳,也极易引起死亡,而当盐度为21时虾的蜕壳死亡率最高。该结果对克氏原螯虾生产应用、提高产量具有重要意义。但是目前尚不清楚环境因子的交互作用对克氏原螯虾蜕壳的机制、机理影响,因此在多重对比实验及分子水平、蛋白水平等层面对蜕壳机制机理的研究有待开展,这也是下一步研究的重要方向。
-
表 1 鱼肉热处理的质构变化
Table 1 Texture changes of fish meat by heat treatment
鱼类
Fish热处理方式
Heat treatment method质构测定方法或参数
Texture determination method or parameter质构变化
Texture change金枪鱼[2] Tuna 蒸煮 测前速度2 mm·s−1;测试速度1 mm·s−1;测后速度5 mm·s−1;压缩程度30%;时间间隔5 s;压缩次数2次 硬度、弹性、内聚性和咀嚼性均上升 鲣[3] Skipjack tuna 蒸煮 测前速度1 mm·s−1;测试速度1 mm·s−1;测后速度1 mm·s−1;应变比75%;时间间隔5 s;压缩次数2次 随着温度升高,硬度、咀嚼性和内聚性总体上升,弹性略下降 鳙[4] Bighead carp 水煮 测前速度2 mm·s−1;测试速度1 mm·s−1;测后速度5 mm·s−1;压缩程度30%;时间间隔5 s 随着温度升高,硬度、咀嚼性、胶黏性先升高后下降,弹性、凝聚性和回复性先下降后升高再下降 草鱼[5] Grass carp 水煮 测前速度2 mm·s−1;测试速度1 mm·s−1 ;测后速度5 mm·s−1;压缩程度35%;压缩次数2次;时间间隔5 s;自动触发力5 g 随着温度升高,硬度和咀嚼性先升高后下降,弹性和内聚性总体呈上升趋势,黏性和回复性基本不变 罗非鱼[6] Tilapia 水煮 测试速度1 mm·s−1;循环次数2次;触发点负载5 g;下压距离5 mm 硬度、咀嚼性、弹性和胶着性明显下降,内聚性明显上升 汽蒸 硬度、咀嚼性、弹性和胶着性明显下降,内聚性明显上升 空气炸 硬度、咀嚼性和胶着性下降,内聚性和弹性上升 鲈[7] Largemouth bass 水煮 测前速度5 mm·s−1;测试速度5 mm·s−1;测后速度5 mm·s−1;压缩程度50%;时间间隔5 s 硬度和咀嚼性下降,弹性略微下降 汽蒸 硬度和咀嚼性下降,弹性上升 真空低温烹饪 硬度和咀嚼性下降,弹性上升 鲤[8] Carp 水煮 测前速度1 mm·s−1;测试速度1 mm·s−1;测后速度1 mm·s−1;压缩距离5 mm;时间间隔5 s;感应力为5 g 随着加热时间延长,硬度、咀嚼性和内聚性总体呈上升趋势,弹性和回复性基本保持不变 鲫[9] Crucian carp 水煮 测前速度30 mm·min−1;测试速度60 mm·min−1;测后速度30 mm·min−1;形变量35%;时间间隔5 s 随着加热时间延长,硬度和咀嚼性明显上升,弹性和内聚性上升变化不明显 表 2 常见蛋白质稳定剂的研究进展
Table 2 Research progress of common protein stabilizers
蛋白质稳定剂
Protein stabilizer作用机制
Mechanism种类
Type作用效果
Effect有机渗透剂
Organic penetrant通过对大分子物质的空间排阻作用和对溶剂分子结构的影响来稳定蛋白质的结构[21] 卡拉胶和果胶[22] 在球状蛋白表面形成一层“保护膜”作为静电屏障,改善蛋白质热稳定性 魔芋低聚葡甘露聚糖[23] 改变肌球蛋白的氨基酸组成,降低糖蛋白复合物的表面疏水性,提高肌球蛋白的结构稳定性 氨基酸
Amino acid提高蛋白质溶解度,抑制蛋白质聚集,辅助变性蛋白复性[24] 精氨酸[25] 优先与肌球蛋白结合,显著扰乱肌球蛋白主链的氢键,并通过两个氨基与肌球蛋白分子形成新的氢键,明显抑制鳙鱼肌球蛋白热诱导聚集 赖氨酸[26] 在不同pH和离子强度条件下对罗非鱼肉肌球蛋白有明显的增溶效果,抑制热处理后肌肉蛋白质的热聚集 组氨酸[27-28] 在低离子强度条件下会发生肌丝解体,导致溶出率、热凝胶硬度和保水性提高,蛋白质的聚集程度下降 表面活性剂
Surfactant与蛋白质发生静电和疏水相互作用,显著改善蛋白质的溶解性,促进蛋白质复性过程中的构象转变[31] 海藻糖脂[29] 提高蛋白质的热解折叠温度,且蛋白质热解折叠温度随添加量的增加而提高,然而大多以牛血清蛋白为研究对象 硫酸葡聚糖[30] 与肌球蛋白发生强静电相互作用,增大肌球蛋白溶解度,对罗非鱼肌球蛋白热变性具有明显的抑制作用 十二烷基硫酸钠和β-环糊精[31] 作为“人工分子伴侣”,防止蛋白质分子中巯基被破坏,减弱蛋白质分子间的相互作用,抑制肌球蛋白的热变性聚集 表 3 常用磷酸盐类型及溶解度
Table 3 Common phosphate types and solubility
种类
Type磷酸盐
Phosphate分子式
Molecular
formula溶解度
Solubility/
(g·L−1)正磷酸盐
Orthophosphate磷酸三钠 Na3PO4 120 磷酸二氢钠 NaH2PO4 800 磷酸氢二钠 Na2HPO4 100 磷酸三钾 K3PO4 900 磷酸二氢钾 KH2PO4 330 磷酸氢二钾 K2HPO4 1670 焦磷酸盐
Pyrophosphate焦磷酸钠 Na2H2P2O7 120 焦磷酸四钠 Na4P2O7 65 焦磷酸四钾 K4P2O7 1840 三聚磷酸盐
Tripolyphosphate三聚磷酸钠 Na5P3O10 150 三聚磷酸钾 K5P3O10 1800 六偏磷酸盐
Hexametaphosphate六偏磷酸钠 (NaPO3)n ∞ -
[1] 农业农村部渔业渔政管理局. 2020 中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2020: 17. [2] 缪函霖, 蒋璐, 王锡昌, 等. 不同新鲜度金枪鱼肉蒸煮品质的研究[J]. 食品工业科技, 2014, 35(13): 80-84,295. [3] 徐靖彤, 彭玲玲, 赵丹丹, 等. 蒸煮工艺对鲣鱼鱼柳品质的影响[J]. 食品工业科技, 2016, 37(11): 206-211. [4] 姜启兴. 鳙鱼肉热加工特性及其机理研究[D]. 无锡: 江南大学, 2015: 32-34. [5] 陈惠, 刘焱, 李志鹏, 等. 热加工对草鱼鱼肉品质及风味成分的影响[J]. 食品与机械, 2017, 33(9): 53-58, 68. [6] 李锐, 孙祖莉, 杨贤庆, 等. 加热方式对罗非鱼片质构特性和蛋白质理化特性的影响[J]. 大连海洋大学学报, 2020, 35(4): 577-583. [7] 向雅芳, 熊光权, 乔宇, 等. 不同热处理方式对鲈鱼品质的影响[J]. 食品科学, 2019, 40(21): 127-135. doi: 10.7506/spkx1002-6630-20181018-200 [8] 齐海萍, 胡文忠, 姜爱丽, 等. 热加工对鲤鱼质构的影响研究[J]. 食品科技, 2011(5): 154-156+160. [9] 马慧慧, 申永奇, 李雪冬, 等. 烹煮时间对鲫鱼质构的影响[J]. 河北渔业, 2014(12): 8-9. [10] 熊舟翼, 卢素芳, 徐洪亮, 等. 熟制工艺对武昌鱼风味、品质及质构特性的影响[J]. 湖北农业科学, 2019, 58(22): 168-178. [11] 鞠健, 乔宇, 汪超, 等. 不同温度对白鲢鱼肉在蒸煮过程中品质的影响[J]. 食品工业科技, 2016, 37(24): 121-127. [12] SUN F Y, HUANG Q L, HU T, et al. Effects and mechanism of modified starches on the gel properties of myofibrillar protein from grass carp[J]. Int J Biol Macromol, 2014, 64: 17-24. doi: 10.1016/j.ijbiomac.2013.11.019
[13] 路钰希, 林玉海, 李学英, 等. 冻藏温度对鱿鱼品质的影响[J]. 食品与发酵工业, 2015(3): 105-111. [14] BLIKRA M J, ÅSE V H, FEYISSA A H, et al. Dimensional change and cook loss during heating of fish: problem formulation and semi-empirical modeling approach[J]. J Food Eng, 2020, 281: 110004. doi: 10.1016/j.jfoodeng.2020.110004
[15] 孙瑜嵘, 范三红, 冯雨薇, 等. 加热处理对3种鱼肉水分分布的影响[J]. 山西农业科学, 2019, 47(4): 99-102. [16] JOHNSEN C A, HAGEN Ø, BENDIKSEN E Å. Long-term effects of high-energy, low-fishmeal feeds on growth and flesh characteristics of Atlantic salmon (Salmo salar L.)[J]. Aquaculture, 2011, 312(1/2/3/4): 109-116.
[17] 胡芬, 李小定, 熊善柏, 等. 5种淡水鱼肉的质构特性及与营养成分的相关性分析[J]. 食品科学, 2011, 32(11): 77-81. [18] KEIKO H, FUJIKO Y, JUICHIRO J M. Role of muscle fibers in contributing firmness of cooked fish[J]. J Food Sci, 2010, 55(3): 693-696.
[19] PERIAGO M J, AYALA M D, LÓPEZ-ALBORS O, et al. Muscle cellularity and flesh quality of wild and farmed sea bass, Dicentrarchus labrax L.[J]. Aquaculture, 2005, 249(1/2/3/4): 175-188.
[20] 冯雨薇. 3种海水小杂鱼及其罐头制品的营养特性和热加工对鱼肉品质的影响[D]. 太原: 山西大学, 2013: 5. [21] 纪络. 渗透剂稳定蛋白质结构的分子动力学模拟研究[D]. 天津: 天津大学, 2009: 4-8. [22] KUROIWA T, KOBAYASHI I, CHUAN A M, et al. Formulation and stabilization of nano-/microdispersion systems using naturally occurring edible polyelectrolytes by electrostatic deposition and complexation[J]. Adv Colloid Interface Sci, 2015, 226(Pt A): 86-100.
[23] LIU J H, FANG C H, XU X, et al. Structural changes of silver carp myosin glycated with Konjac oligo-glucomannan: effects of deacetylation[J]. Food Hydrocoll, 2019, 91(6): 275-282.
[24] 时娇娇. 蛋白稳定剂对罗非鱼肌球蛋白热变性聚集的抑制及机理[D]. 湛江: 广东海洋大学, 2016: 4-5. [25] SHI T, XIONG Z Y, JIN W G, et al. Suppression mechanism of l-arginine in the heat-induced aggregation of bighead carp (Aristichthys nobilis) myosin: the significance of ionic linkage effects and hydrogen bond effects[J]. Food Hydrocoll, 2020, 102: 105596. doi: 10.1016/j.foodhyd.2019.105596
[26] 周春霞, 时娇娇, 付苇娅, 等. 赖氨酸和精氨酸对三种离子强度下罗非鱼肌球蛋白溶解度及构象的影响[J]. 现代食品科技, 2016, 32(12): 99-104. [27] TAKAI E, YOSIZAWA S, EJIMA D, et al. Synergistic solubilization of porcine myosin in physiological salt solution by arginine[J]. Int J Biol Macromol, 2013, 62: 647-651. doi: 10.1016/j.ijbiomac.2013.09.035
[28] 赵晓阳, 李可, 邹玉峰, 等. 组氨酸与氯化钾混合液对兔肉肌球蛋白特性的影响[J]. 食品科学, 2014, 35(9): 6-10. doi: 10.7506/spkx1002-6630-201409002 [29] ZARAGOA A, TERUEL J A, ARANDA F J, et al. Interaction of a Rhodococcus sp. trehalose lipid bio surfactant with model proteins: thermodynamic and structural changes[J]. Langmuir, 2012, 28(2): 1381-1390. doi: 10.1021/la203879t
[30] 李婷, 周春霞, 冯瑞, 等. 硫酸葡聚糖对低离子强度下罗非鱼肌球蛋白热变性聚集的抑制及其机制[J]. 食品与机械, 2018, 34(12): 5-10. [31] 付苇娅, 钟婉玲, 胡亚丽, 等. 人工分子伴侣介导液相体系中肌球蛋白热稳定性的研究[J]. 海南大学学报 (自然科学版), 2016, 34(4): 356-362. [32] THANGAVELU K P, KERRY J P, TIWARI B K, et al. Novel processing technologies and ingredient strategies for the reduction of phosphate additives in processed meat[J]. Trends Food Sci Technol, 2019, 94: 43-53. doi: 10.1016/j.jpgs.2019.10.001
[33] GLORIEUX S, GOEMAERE O, STEEN L, et al. Phosphate reduction in emulsified meat products: impact of phosphate type and dosage on quality characteristics[J]. Food Technol Biotechnol, 2017, 55(3): 390-397.
[34] 李振铎, 井月欣, 张健, 等. 多磷酸盐在冷冻鳕鱼鲽鱼片加工中的安全应用[J]. 中国食品添加剂, 2019, 30(3): 127-132. doi: 10.3969/j.issn.1006-2513.2019.03.012 [35] 张聪. 利用低声强超声提高罗非鱼片保水效果的研究[J]. 食品科技, 2019, 44(7): 161-166. [36] 张珂. 保水剂和解冻方法对冻藏罗非鱼片品质的影响[D]. 湛江: 广东海洋大学, 2016: 1-4. [37] 祖铁红. 保水剂对海湾扇贝闭壳肌冻藏品质的影响研究[D]. 保定: 河北农业大学, 2014: 6-7. [38] 于淑池, 周海英. 复合无磷保水剂对冷冻金鲳鱼片的保水效果[J]. 食品工业, 2020, 41(1): 120-124. [39] 古霞. 南方大口鲇储藏稳定性研究及系列产品开发[D]. 成都: 西华大学, 2016: 19-28. [40] 张晨芳, 钟秋平. 复合无磷保水剂对冷冻罗非鱼片保水效果的研究[J]. 食品工业, 2016(10): 100-103. [41] FAN M C, HUANG Q L, ZHONG S Y, et al. Gel properties of myofibrillar protein as affected by gelatinization and retrogradation behaviors of modified starches with different crosslinking and acetylation degrees[J]. Food Hydrocoll, 2019, 96: 604-616. doi: 10.1016/j.foodhyd.2019.05.045
[42] YANG S, TU Z C, WANG H, et al. Effects of coagulant promoter on the physical properties and microstructure of the mixed system of ultrafine fishbone and surimi[J]. LWT, 2020, 131: 109792. doi: 10.1016/j.lwt.2020.109792
[43] LI X X, FAN M C, HUANG Q L, et al. Effect of wet-media milling on the physicochemical properties of tapioca starch and their relationship with the texture of myofibrillar protein gel[J]. Food Hydrocoll, 2020, 109: 106082. doi: 10.1016/j.foodhyd.2020.106082
[44] 吴香, 李新福, 李聪, 等. 变性淀粉对肌原纤维蛋白凝胶特性的影响[J]. 食品科学, 2020, 41(2): 22-28. doi: 10.7506/spkx1002-6630-20190227-209 [45] BORDERÍAS A J, TOVAR C A, DOMÍNGUEZ-TIMÓN F, et al. Characterization of healthier mixed surimi gels obtained through partial substitution of myofibrillar proteins by pea protein isolates[J]. Food Hydrocoll, 2020, 107: 105976. doi: 10.1016/j.foodhyd.2020.105976
[46] 杜洪振, 陈倩, 杨振, 等. 预热处理大豆蛋白对鲤鱼肌原纤维蛋白凝胶和流变学特性的影响[J]. 食品科学, 2019, 40(12): 63-69. [47] 李艳青, 陈洪生, 俞龙浩, 等. 氧化大豆分离蛋白对鲤鱼肌原纤维蛋白乳化性和凝胶性的影响[J]. 农产品加工, 2018, 451(5): 13-15,18. [48] FENG J H, CAO A L, CAI L Y, et al. Effects of partial substitution of NaCl on gel properties of fish myofibrillar protein during heating treatment mediated by microbial transglutaminase[J]. LWT, 2018, 93: 1-8. doi: 10.1016/j.lwt.2018.03.018
[49] SANTHI D, KALAIKANNAN A, MALAIRAJ P, et al. Application of microbial transglutaminase in meat foods: a review[J]. Crit Rev Food Sci Nutr, 2015, 57(10): 2071-2076.
[50] YANG N, FAN X R, YU W Y, et al. Effects of microbial transglutaminase on gel formation of frozen-stored longtail southern cod (Patagonotothen ramsayi) mince[J]. LWT, 2020, 128: 109444. doi: 10.1016/j.lwt.2020.109444
[51] 邓思杨, 杨明, 潘男, 等. 淀粉与转谷氨酰胺酶复配引起肌肉蛋白功能特性的变化[J]. 食品科学, 2018, 39(12): 140-146. doi: 10.7506/spkx1002-6630-201812022 [52] 杨华, 娄永江, 杨震峰. 谷氨酰胺转胺酶在水产品中的应用[J]. 食品工业, 2003(4): 48-49. -
期刊类型引用(7)
1. 陈浩,吉宏武,张迪,刘书成,宋文奎,郝记明. 克氏原螯虾虾青蛋白A2基因克隆、组织分布及原核表达. 食品与生物技术学报. 2024(02): 63-72 . 百度学术
2. 苏禹,王力玄,孟泳岐,马源潮,鲁耀鹏,张泽龙,郑佩华,李军涛,冼健安,刘存歧,王冬梅. 环境因素对克氏原螯虾生长与繁育的影响. 中国饲料. 2024(21): 74-82 . 百度学术
3. 赵明光,冯广朋,陈建华,王海华,张燕萍,徐维康. 主要环境因子对克氏原螯虾生长发育的影响研究进展. 江西水产科技. 2023(06): 28-35 . 百度学术
4. 欧琳,张余,陈晓芳,周刚,黄宇宏,陈蕾,肖调义,刘巧林. 基于线粒体Cytb和COⅠ基因的洞庭湖区养殖克氏原螯虾遗传多样性分析. 水产科技情报. 2022(03): 137-142 . 百度学术
5. 黎兰诗,戴习林. 盐度对不同蜕皮时期罗氏沼虾生理生化及蜕皮相关基因表达的影响. 南方农业学报. 2022(08): 2302-2311 . 百度学术
6. 韩财安,李安东,周美玉,廖怀生. 小龙虾幼苗培育关键技术. 江西水产科技. 2022(05): 30-31+34 . 百度学术
7. 韦永春,程顺,贾永义,迟美丽,刘士力,郑建波,李飞,刘一诺,顾志敏. 不同pH对红螯螯虾胚胎离体孵化的影响. 渔业现代化. 2021(06): 64-71 . 百度学术
其他类型引用(6)
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量:
- 被引次数: 13