珠江中下游草鱼渔业生物学特征研究

何玉洁, 朱书礼, 武智, 李新辉, 李捷

何玉洁, 朱书礼, 武智, 李新辉, 李捷. 珠江中下游草鱼渔业生物学特征研究[J]. 南方水产科学, 2021, 17(5): 110-117. DOI: 10.12131/20200242
引用本文: 何玉洁, 朱书礼, 武智, 李新辉, 李捷. 珠江中下游草鱼渔业生物学特征研究[J]. 南方水产科学, 2021, 17(5): 110-117. DOI: 10.12131/20200242
Yujie HE, Shuli ZHU, Zhi WU, Xinhui LI, Jie LI. Biological characteristics of Ctenopharyngodon idellus in middle and lower reaches of Pearl River[J]. South China Fisheries Science, 2021, 17(5): 110-117. DOI: 10.12131/20200242
Citation: Yujie HE, Shuli ZHU, Zhi WU, Xinhui LI, Jie LI. Biological characteristics of Ctenopharyngodon idellus in middle and lower reaches of Pearl River[J]. South China Fisheries Science, 2021, 17(5): 110-117. DOI: 10.12131/20200242

珠江中下游草鱼渔业生物学特征研究

基金项目: 国家重点研发计划项目(2018YFD0900902);珠江渔业资源调查与评估创新团队项目(2020ZJTD-10, 2020ZJTD-04)
详细信息
    作者简介:

    何玉洁 (1994—),女,硕士研究生,研究方向为渔业资源与生态保护。E-mail: 18738502737@163.com

    通讯作者:

    李 捷 (1979—),男,博士,研究员,从事渔业资源与生态保护研究。E-mail: lijie1561@163.com

  • 中图分类号: S 931.1

Biological characteristics of Ctenopharyngodon idellus in middle and lower reaches of Pearl River

  • 摘要: 根据2019—2020年珠江中下游草鱼 (Ctenopharyngodon idellus) 种群调查数据,对其群体结构和生长现状进行了分析。结果显示,草鱼种群个体体长介于103~665 mm,平均体长为 (347.89±96.73) mm;体质量介于21.4~6 650.0 g,平均体质量为 (986.87±842.96) g。草鱼种群年龄结构为0+~5+龄,优势年龄组为1+、2+和3+龄,占样本总数的92.8%。草鱼体长 (L) 和体质量 (W) 呈显著幂函数关系,为匀速生长类型。Von Bertalanffy生长方程参数:L=1187 mm,k=0.128,t0=−0.282,W=31 344.51 g,生长特征指数φ=5.26,生长拐点年龄为8.29。总死亡系数Z=0.58,自然死亡系数M=0.29,捕捞死亡系数F=0.29,开发率E=0.5。草鱼雌雄个体数的比例为1.07∶1,性腺成熟度以Ⅱ期为主,相对繁殖力为46.28 粒·g−1。与历史资料相比发现,草鱼生长性能下降,种群呈现小型化,繁殖力下降,为促进珠江中下游草鱼资源的恢复,建议降低捕捞强度,开捕体长应大于791 mm,体质量应大于9 279.11 g。
    Abstract: In order to find out the current status of the population structure and growth characteristics of grass carp (Ctenopharyngodon idellus) in the middle and lower reaches of the Pearl River, we have investigated the grass carp population from 2019 to 2020. The results show that the body length of grass carp was 103−665 mm [average: (347.89±96.73) mm]. The body mass was 21.4−6 650.0 g [average: (986.87±842.96) g]. The population age was of 0+−5+, and the dominant age was 1+−3+, accounting for 92.8% of the total number of samples. The body length had a significant power function relation with body mass for uniform motion pattern. The growth could be described by Von Bertalanffy equation with the growth parameters: L=1187 mm, k=0.128, t0=−0.282, W=31 344.51 g. The index of length growth performance (φ) of grass carp was 5.26, and the growth inflection age was 8.29. The total mortality rate, natural mortality rate, fishing mortality rate and exploitation rate were 0.58, 0.29, 0.29 and 0.5, respectively. The sex ratio (Females/Males) was 1.07: 1. The sexual maturation was mainly at Stage II. Compared with the previous data, the growth performance and fecundity of grass carp all showed a decline tendency; the population structure tended to be miniaturized. In order to promote the recovery of grass carp resources in the middle and lower reaches of the Pearl River, it is recommended to reduce the fishing intensity. Besides, the catch body length should be greater than 791 mm and the mass should be greater than 9 279.11 g.
  • 图  1   珠江中下游调查站位示意图

    Figure  1.   Sampling sites in middle and lower reaches of Pearl River

    图  2   草鱼鳞片形态和年轮特征

    数字表示年轮,F表示鳞焦,箭头指示为幼轮。

    Figure  2.   Scale and annuli characteristics of C. idellus

    The numbers represent the annuli; F represents the focus; the arrow indicates the fry check.

    图  3   珠江中下游草鱼体长、体质量频率分布

    Figure  3.   Frequency distribution of C. idellus body length and body mass in middle and lower reaches of Pearl River

    图  4   珠江中下游草鱼体长与体质量的关系

    Figure  4.   Relationship between body length and mass of C. idellus in middle and lower reaches of Pearl River

    图  5   珠江中下游草鱼体长和体质量的生长方程曲线

    Figure  5.   Growth curve of C. idellus body length and body mass in middle and lower reaches of Pearl River

    图  6   珠江中下游草鱼体长、体质量生长速度与加速度曲线

    Figure  6.   Curves of body length, body mass growth rate and acceleration of C. idellus in middle and lower reaches of Pearl River

    表  1   珠江中下游草鱼种群年龄结构

    Table  1   Age structure of C. idellus populations in middle and lower reaches of Pearl River

    年龄
    Age
    平均体长
    Average body length/mm
    范围
    Range/mm
    平均体质量
    Average body mass/g
    范围
    Range/g
    数量百分比
    Quantity number/%
    0+161.22±30.74103~21481.63±36.1021.4~149.73.8
    1+266.80±45.67172~360384.99±183.1292.8~810.032.2
    2+350.98±40.50262~440848.34±258.26310.2~1 396.035.6
    3+446.83±41.97362~5411 728.19±541.45829.3~3 361.625.0
    4+536.00±41.14505~6002 996.98±718.812 317.2~4 200.02.1
    5+616.33±50.05565~6654 900.17±1 543.823 730.4~6 650.01.3
    下载: 导出CSV

    表  2   珠江中下游草鱼体长、体质量生长指数

    Table  2   Back calculated standard length of C. idellus groups in middle and lower reaches of Pearl River

    年龄
    Age
    推算体长
    Calculated
    body length/
    mm
    年增长量
    Annual growth/
    mm
    相对生长率
    Relative
    growth
    rate
    瞬时生长率
    Instantaneous
    growth rate
    生长指标
    Index of
    growth
    推算体质量
    Calculated
    body mass/g
    年增长量
    Annual growth/g
    相对生长率
    Relative
    growth
    rate
    瞬时生长率
    Instantaneous
    growth rate
    推算体长*
    Calculated
    body length/
    mm
    1 180.35 110.56 193.0
    2 300.37 120.02 0.67 0.51 92.00 510.02 399.46 3.61 1.53 349.0
    3 404.21 103.84 0.35 0.30 89.18 1 241.72 731.70 1.43 0.89 471.0
    4 505.86 101.65 0.25 0.22 90.67 2 432.34 1 190.62 0.96 0.67 547.0
    5 581.31 75.45 0.15 0.14 70.33 3 689.45 1 257.11 0.52 0.42 598.0
    注:*. 20世纪80年代。 Note: *. 1980s.
    下载: 导出CSV

    表  3   不同水域或时期草鱼种群生长参数比较

    Table  3   Comparison of growth parameters of C. idellus populations in different waters or periods

    水域
    Site
    生长指数
    b
    拐点年龄
    ti
    生长系数
    k
    渐进体长
    L/mm
    生长特征指数
    φ
    珠江中下游 (本研究) Middle and lower reaches of the Pearl River (this study) 2.997 8.29 0.128 1187 5.26
    珠江 (1981—1983)[8] Pearl River 2.84 4.75 0.19 1069 5.34
    珠江 (1983—1987)[9] Pearl River 2.86 8.00 0.13 1367 5.39
    长江湖口 (1983—1987)[9] Yangtze Hukou 2.73 5.70 0.19 1215 5.44
    长江中上游 (1981—1984)[10] Upper and middle Yangtze River 2.75 3.23 0.33 959 5.48
    长江中上游 (1996—1999)[27] Upper and middle Yangtze River 2.87 5.38 0.19 1180 5.42
    长江上游江津 (2008—2010)[21] Jiangjin, upper Yangtze River 2.82 6.28 0.17 1029 5.25
    梁子湖 (1997—1999)[28] Liangzi Lake 2.89 4.66 0.22 1065 5.39
    黑龙江 (1983—1987)[9] Heilongjiang River 3.05 7.30 0.16 976 5.18
    博斯腾湖 (2014)[20] Bositeng Lake 2.83 7.50 0.14 1038 3.16
    下载: 导出CSV
  • [1] 帅方敏, 李新辉, 黄艳飞, 等. 珠江水系四大家鱼资源现状及空间分布特征研究[J]. 水生生物学报, 2017, 41(6): 1336-1344. doi: 10.7541/2017.165
    [2] 谭细畅, 李跃飞, 赖子尼, 等. 西江肇庆段鱼苗群落结构组成及其周年变化研究[J]. 水生态学杂志, 2010, 31(5): 27-31.
    [3] 李思发, 陆伟民, 周碧云, 等. 长江、珠江、黑龙江鲢、鳙、草鱼渔业资源状况[J]. 淡水渔业, 1990(6): 15-20.
    [4]

    CHEN Y, QU X, XIONG F, et al. Challenges to saving China's freshwater biodiversity: fishery exploitation and landscape pressures[J]. Ambio, 2020, 49(4): 926-938. doi: 10.1007/s13280-019-01246-2

    [5]

    REID A J, CARLSON A K, CREED I F, et al. Emerging threats and persistent conservation challenges for freshwater biodiversity[J]. Biol Rev, 2019, 94(3): 849-873. doi: 10.1111/brv.12480

    [6]

    ZHANG H, KANG M, SHEN L, et al. Rapid change in Yangtze fisheries and its implications for global freshwater ecosystem management[J]. Fish Fish, 2020, 21(3): 601-620. doi: 10.1111/faf.12449

    [7]

    TAN X, LI X, LEK S, et al. Annual dynamics of the abundance of fish larvae and its relationship with hydrological variation in the Pearl River[J]. Environ Biol Fish, 2010, 88(3): 217-225. doi: 10.1007/s10641-010-9632-y

    [8] 陆奎贤. 珠江水系渔业资源[M]. 广州: 广东科技出版社, 1990: 136-139.
    [9] 李思发, 吴力钊, 王强, 等. 长江、珠江、黑龙江鲢、鳙、草鱼种质资源研究[M]. 上海: 上海科学技术出版社, 1990: 1-228.
    [10] 田见龙, 王东. 长江野生草鱼性状和生长的研究[J]. 河南师范大学学报 (自然科学版), 1989(2): 60-65.
    [11] 李新辉, 李跃飞, 张迎秋, 等. 珠江肇庆段漂流性鱼卵、仔鱼监测日志 (2006)[M]. 北京: 科学出版社, 2020: 7-102.
    [12] 陈新军, 刘必林. 渔业资源生物学[M]. 北京: 科学出版社, 2017: 32-45.
    [13] 殷名称. 鱼类生态学[M]. 北京: 中国农业出版社, 2003: 51-55.
    [14]

    FROESE R, TSIKLIRAS A C, STERGIOU K I. Editorial note on weight-length relations of fishes[J]. Acta Ichthyol Piscat, 2011, 41(4): 261-263. doi: 10.3750/AIP2011.41.4.01

    [15]

    ABU EL-NASR T M A. Age and growth of the fish, Gerres filamentosus (Cuvier, 1829) from Hurghada Red Sea, Egypt[J]. Egypt J Aquat Res, 2017, 43(3): 219-227. doi: 10.1016/j.ejar.2017.07.003

    [16] 詹秉义. 渔业资源评估[M]. 北京: 中国农业出版社, 2005: 124-130.
    [17]

    PAULY D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks[J]. ICES J Mar Sci, 1980, 39(2): 175-192. doi: 10.1093/icesjms/39.2.175

    [18] 朱书礼, 李新辉, 李跃飞, 等. 西江广东肇庆段赤眼鳟的年龄鉴定及生长研究[J]. 南方水产科学, 2013, 9(2): 27-31. doi: 10.3969/j.issn.2095-0780.2013.02.005
    [19] 陈得仿, 王腾, 刘永, 等. 大亚湾黑鲷繁殖特征的生物学研究[J]. 南方水产科学, 2019, 15(5): 41-47. doi: 10.12131/20190051
    [20] 陈朋, 马燕武, 谢春刚, 等. 博斯腾湖草鱼生长特征的研究[J]. 淡水渔业, 2016, 46(4): 38-43. doi: 10.3969/j.issn.1000-6907.2016.04.006
    [21] 熊飞, 刘红艳, 段辛斌, 等. 长江上游草鱼种群结构与生长特征[J]. 湖南师范大学自然科学学报, 2014, 37(4): 16-22.
    [22]

    FROESE R. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations[J]. J Appl Ichthyol, 2006, 22(4): 241-253. doi: 10.1111/j.1439-0426.2006.00805.x

    [23]

    HANIF M A, ISLAM M A, SIDDIK M A B, et al. Length-weight relationships of three estuarine fish species from Bangladesh[J]. J Appl Ichthyol, 2018, 34(4): 1065-1067. doi: 10.1111/jai.13707

    [24]

    MEHANNA S F, OSMAN A G M, FARRAG M M S, et al. Age and growth of three common species of goatfish exploited by artisanal fishery in Hurghada fishing area, Egypt[J]. J Appl Ichthyol, 2018, 34(4): 917-921. doi: 10.1111/jai.13590

    [25]

    GUBIANI E A, GOMES L C, AGOSTINHO A A. Estimates of population parameters and consumption/biomass ratio for fishes in reservoirs, Paraná State, Brazil[J]. Neotrop Ichthyol, 2012, 10: 177-188. doi: 10.1590/S1679-62252012000100017

    [26]

    PAULY D, MUNRO J L. Once more on the comparison of growth in fish and invertebrates[J]. Fishbyte, 1984, 2(1): 21-23.

    [27] 陈大庆, 刘绍平, 段辛斌, 等. 长江中上游主要经济鱼类的渔业生物学特征[J]. 水生生物学报, 2002, 26(6): 618-622. doi: 10.3321/j.issn:1000-3207.2002.06.007
    [28] 崔奕波, 李钟杰. 长江流域湖泊的渔业资源与环境保护[M]. 北京: 科学出版社, 2005: 193-228.
    [29] 徐钢春, 鲍明明, 杜富宽, 等. 鱼类性腺发育及产卵类型研究进展[J]. 长江大学学报 (自然科学版), 2017, 14(6): 43-48.
    [30] 温海深, 林浩然. 环境因子对硬骨鱼类性腺发育成熟及其排卵和产卵的调控[J]. 应用生态学报, 2001, 12(1): 151-155. doi: 10.3321/j.issn:1001-9332.2001.01.035
    [31] 李思发, 周碧云, 吕国庆, 等. 长江鲢、鳙、草鱼和青鱼原种亲鱼标准与检测的研究[J]. 水产学报, 1997, 21(2): 143-151.
    [32] 孔一颖, 粤海渔. 珠江禁渔期增加两个月[J]. 海洋与渔业, 2017(3): 17. doi: 10.3969/j.issn.1672-4046.2017.03.002
    [33]

    PATTERSON K. Fisheries for small pelagic species: an empirical approach to management targets[J]. Rev Fish Biol Fish, 1992, 2(4): 321-338. doi: 10.1007/BF00043521

    [34]

    GRAY C A, BARNES L M, ROBBINS W D, et al. Length- and age-based demographics of exploited populations of stout whiting, Sillago robusta Stead, 1908[J]. J Appl Ichthyol, 2017(6): 1073-1082.

    [35]

    WANG X H, QIU Y S, DU FY, et al. Population parameters and dynamic pool models of commercial fishes in the Beibu Gulf, northern South China Sea[J]. Chin J Oceanol Limn, 2012, 30(1): 105-117.

    [36] 王茂元. 闽江中游鲢的年龄与生长[J]. 中国农学通报, 2020, 36(11): 124-129.
推荐阅读
基于环境dna技术的西江珍稀鱼类省级自然保护区鱼类多样性研究
钟占友 et al., 南方水产科学, 2025
低盐水体so4 2−/cl− 胁迫下凡纳滨对虾生长、肝胰腺与鳃组织结构及酶活力比较
贺铮 et al., 南方水产科学, 2025
3组常用鱼类edna宏条形码通用引物对三亚水环境样品的物种检出效果比较
郭瑶杰 et al., 南方水产科学, 2025
3种常见消毒药物对纤毛虫种群动力学的影响
张欣悦 et al., 南方水产科学, 2024
The effect of saline water and exchange magnetization saline water drip irrigation on salt content and water-saving effect in the chinese wolfberry root zone water-saving effect—taking kashgar region as an example
丽巴哈·吾斯曼 古, 林业世界, 2024
十二烷基苯磺酸钠对黄颡鱼免疫相关酶活性的影响
TIAN Haijun et al., CHINESE JOURNAL OF FISHERIES, 2024
Exogenous hydrogen sulfide alleviates chromium toxicity by modulating chromium, nutrients and reactive oxygen species accumulation, and antioxidant defence system in mungbean (vigna radiata l.) seedlings
Singh, Deepti et al., PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023
Bioelectricity-driven, sulfurized fe species anode in situ generate sulfate radicals from sulfates in antibiotic wastewater for enhanced ciprofloxacin hydrochloride removal: performance and mechanism
Jiang, Shengtao et al., CHEMICAL ENGINEERING JOURNAL, 2024
Study of the process of neutralizing and oxidizing harmful phenol compounds in wastewater using ozone technology
WATER CONSERVATION AND MANAGEMENT, 2024
Research article in vitro and in vivo modulation of postprandial hyperglycemia by solanum incanum l. (bitter apple)
INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2023
Powered by
图(6)  /  表(3)
计量
  • 文章访问数:  1146
  • HTML全文浏览量:  343
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-18
  • 修回日期:  2021-03-02
  • 录用日期:  2021-03-21
  • 网络出版日期:  2021-04-09
  • 刊出日期:  2021-09-29

目录

    /

    返回文章
    返回