安徽养殖中华绒螯蟹体内砷形态的分布特征及膳食风险评估

刘香丽, 汪倩, 宋超, 范立民, 孟顺龙, 裘丽萍, 陈家长

刘香丽, 汪倩, 宋超, 范立民, 孟顺龙, 裘丽萍, 陈家长. 安徽养殖中华绒螯蟹体内砷形态的分布特征及膳食风险评估[J]. 南方水产科学, 2020, 16(6): 105-114. DOI: 10.12131/20200105
引用本文: 刘香丽, 汪倩, 宋超, 范立民, 孟顺龙, 裘丽萍, 陈家长. 安徽养殖中华绒螯蟹体内砷形态的分布特征及膳食风险评估[J]. 南方水产科学, 2020, 16(6): 105-114. DOI: 10.12131/20200105
LIU Xiangli, WANG Qian, SONG Chao, FAN Limin, MENG Shunlong, QIU Liping, CHEN Jiazhang. Distribution characteristics and dietary risk assessment of arsenic speciations in Chinese mitten crab (Eriocheir sinensis) in Anhui Province[J]. South China Fisheries Science, 2020, 16(6): 105-114. DOI: 10.12131/20200105
Citation: LIU Xiangli, WANG Qian, SONG Chao, FAN Limin, MENG Shunlong, QIU Liping, CHEN Jiazhang. Distribution characteristics and dietary risk assessment of arsenic speciations in Chinese mitten crab (Eriocheir sinensis) in Anhui Province[J]. South China Fisheries Science, 2020, 16(6): 105-114. DOI: 10.12131/20200105

安徽养殖中华绒螯蟹体内砷形态的分布特征及膳食风险评估

基金项目: 中国水产科学研究院院级基本科研业务费专项 (2018HY-ZD0605);国家水产品质量安全风险评估项目 (GJFP2019031)
详细信息
    作者简介:

    刘香丽 (1993—),女,硕士研究生,研究方向为渔业生态环境保护与水产品质量安全。E-mail: 2195019898@qq.com

    通讯作者:

    宋 超 (1985—),男,硕士,研究员,从事环境监测与保护研究。E-mail: songc@ffrc.cn

    陈家长 (1964—),男,硕士,研究员,从事渔业生态环境监测与保护、生态环境评价研究。E-mail: chengjz@ffrc.cn

  • 中图分类号: S 932.5+2

Distribution characteristics and dietary risk assessment of arsenic speciations in Chinese mitten crab (Eriocheir sinensis) in Anhui Province

  • 摘要:

    为评价安徽典型池养中华绒螯蟹 (Eriocheir sinensis) 体内砷 (As)污染水平和膳食风险,该研究利用电感耦合等离子体质谱仪 (ICP-MS) 和高效液相色谱-电感耦合等离子体质谱仪 (HPLC-ICP-MS) 分别检测了安徽8个主要养殖区共计27份中华绒螯蟹样本体内总砷及砷胆碱 (AsC)、砷甜菜碱 (AsB)、一甲基砷酸 (MMA)、二甲基砷酸 (DMA)、亚砷酸盐 (AsⅢ) 和砷酸盐 (AsⅤ) 6种砷形态水平。结果表明,总砷和6种砷形态总和质量分数范围分别为0.073~1.433 mg·kg−1和0.039~0.543 mg·kg−1,且在无为、芜湖、当涂、滁州和蚌埠研究区 6种砷形态总和均达到总砷质量分数的60%以上。AsB为砷元素的主要存在形式,在所有研究地区AsB占6种砷形态总和的55%~91%;除安庆、巢湖、宣城和滁州外,AsB占总砷比例均高于50%,且6种砷形态质量分数比较为AsB>AsC>AsⅢ>DMA>MMA>AsⅤ。以无机砷 (AsⅢ和AsⅤ) 总质量分数和靶标危害系数 (THQ) 值评价中华绒螯蟹的膳食风险,8个地区27份样本中中华绒螯蟹体内无机砷质量分数为0.004~0.040 mg·kg−1,计算THQ值介于0.006~0.065,远低于标准1,说明该批中华绒螯蟹不存在膳食风险。

    Abstract:

    In order to evaluate the arsenic pollution level and dietary risk of Chinese mitten crab (Eriocheir sinensis) cultured in typical ponds in Anhui Province where we collected 27 samples from eight main breeding areas. We detected the arsenocholine (AsC), arsenobetaine (AsB), monomethyl arsenic acid (MMA), dimethyl arsenate (DMA), arsenite (As III) and arsenate (As V) by inductively coupled plasma mass spectrometry (ICP-MS) and high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS). The results show that: 1) The total arsenic and total mass fractions of six arsenicals were 0.073−1.433 mg·kg−1 and 0.039−0.543 mg·kg−1, respectively, and the proportion of total mass fractions of six arsenicals in Wuwei, Wuhu, Dangtu, Chuzhou and Bengbu reached more than 60% of the total arsenic content. 2) AsB was the main arsenical. In all the areas, AsB accounted for 55%−91% of the six arsenicals contents and more than 50% of the total arsenicals contents in Bengbu, Wuwei, Dangtu and Wuhu. The six arsenicals contents were in a descending order: AsB>AsC>As III>DMA>MMA> AsV. 3) According to the evaluation results on the dietary risk of E. sinensis based on the inorganic arsenic (As III and AsV) contents and THQ values, the inorganic arsenic contents in the 27 samples were 0.004–0.040 mg·kg−1. The range of THQ value was 0.006−0.065, much lower than 1, which indicates that there is no dietary risk in these samples.

  • 鲢(Hypophthalmichthys molitrix)是中国重要的淡水养殖鱼种之一,也是目前研发鱼糜制品的一种重要原料[1]。在鱼糜的工业化制品中,通常添加质量分数2%~3%的食盐来生产鱼糜凝胶制品,但食盐摄入量过高可能会引起人体一系列的健康问题(如高血压、冠心病、动脉硬化等),开发低盐产品是鱼糜深加工的重要方向;然而,由于鱼糜盐溶性蛋白质在低盐条件下不能充分溶解、展开及相互作用,导致低盐制品有凝胶强度低、持水性低、口感粗糙等品质问题[2]

    提高低盐鱼糜制品凝胶品质是鱼糜加工企业研发的一个重要方向,如Cando等[3]发现使用胱氨酸(0.1%)、焦磷酸钠(0.05%)和赖氨酸(0.1%)作为低盐狭鳕(Theragra chalcogramma)鱼糜 [0.3% 氯化钠 (NaCl)] 的凝胶促进剂,有效地改善了鱼糜的凝胶品质。付湘晋等[4]研究发现采用微波加热法可显著提高低盐鲢鱼糜(1% NaCl)凝胶强度和持水性;然而,微波加热的不均匀性易导致鲢鱼糜内部温度不均一,而影响最终产品的品质[5]。超高压(ultra-high pressure,UHP)处理能够引起鱼糜蛋白质的四级、三级、甚至二级结构发生变化,从而影响鱼糜制品的凝胶品质[6]。有研究表明,300 MPa压力可以诱导阿拉斯加狭鳕鱼糜的肌原纤维蛋白在低盐条件下的(0.3% NaCl)充分展开,有效地改善了低盐狭鳕鱼糜凝胶的强度和持水性,说明超高压技术可有效地改善低盐海水鱼糜凝胶的品质特性[7]。然而,关于超高压技术改善低盐淡水鱼糜凝胶品质的相关报道较少,尤其是凝胶能力较差的低盐鲢鱼糜。低盐鲢鱼糜热凝胶的微观结构及水分状态直接影响着制品的凝胶强度和持水性,进而影响低盐产品的凝胶品质。差示扫描量热法(differential scanning calorimeter,DSC)可用来测定凝胶体系中的可冻结水(自由水)含量,再由总水分含量(直接干燥法)减去冻结水含量,得出结合水含量[8]。而低场核磁共振(low field nuclear magnetic resonance,LF-NMR)技术可以通过自旋-弛豫时间 (T2) 来定性定量分析低盐鱼糜中水分分布情况及流动性,是研究鱼糜水分状态的有效手段[9]。傅里叶红外光谱(fourier transform infrared spectroscopy,FT-IR)可用来分析蛋白凝胶的二级结构变化和分子内的氢键作用情况[10]。扫描电镜(scanning electron microscope,SEM)常被用来观察鱼糜凝胶制品的微观形貌[3]

    鉴于此,本文先采用单因素实验考察100~500 MPa、10 min、室温对低盐鲢鱼糜热凝胶强度和持水性的影响,得出超高压制备低盐鲢鱼糜热凝胶的最佳压力;然后比较超高压低盐(300 MPa,1.5% NaCl)鱼糜凝胶与常压低盐(0.1 MPa,1.5% NaCl)以及常压普通盐(0.1 MPa,2.5% NaCl)鱼糜凝胶的水分状态和微观结构,旨在为超高压技术在低盐鱼糜加工中的应用提供参考。

    生鲜鲢采购自合肥市包河区家乐福超市,体质量为(1.0±0.2 ) kg,体长为(35.0±3.0 ) cm;PVDC塑料肠衣,折叠直径为45~47 mm,填充后直径约30 mm。NaCl、蔗糖、山梨醇及复合磷酸盐等均为食品级,其他试剂均为分析纯,购于合肥美丰生物科技有限公司。

    S2-5斩拌机(广州旭众食品机械有限公司);HZ-2两孔数显水浴锅(江苏金坛市环宇科学仪器厂);HPP. L2-600/0.6超高压实验机(天津华泰森淼生物工程技术股份有限公司);TA-XT plus质构仪(英国Stable Micro System公司);Q2000差示扫描量热仪(美国TA公司);Nicolet 6700傅立叶变换红外光谱仪(美国热电集团);CT15RT型台式高速冷冻离心机(上海天美生化仪器工程有限公司);JSM-6490LV扫描电子显微镜(日本电子株式会社);PQ001-20-025核磁共振成像分析仪(纽迈电子科技有限公司)。

    冷冻鱼糜4 ℃条件下解冻,先空斩3 min,再添加NaCl盐斩8 min,将斩拌好的鱼糜灌入肠衣,采用水浴二段式加热,35 ℃加热1 h后90 ℃加热0.5 h,使用冰水(约2 ℃)迅速冷却鱼糜热凝胶,将冷却后的鱼糜置于4 ℃、24 h得到样品,依据盐斩中NaCl添加量的不同(1.5%和2.5%)分别得到常压低盐鱼糜和常压普通鱼糜[1]

    将灌肠之后的低盐(1.5% NaCl)鱼糜真空包装后,放入超高压设备,加入室温水,设置参数,进行升压、保压、卸压,之后取出样品,再进行上述的二段式水浴加热处理,得到超高压低盐鱼糜凝胶,4 ℃下冷藏,待测。考察压力100 MPa、200 MPa、300 MPa、400 MPa和500 MPa处理(10 min,室温约20 ℃)对凝胶强度和持水性的影响,选取最佳压力下的鱼糜凝胶进行后续测定。

    参照陆剑锋等[11]的方法,将4 ℃过夜的鱼肠取出,室温环境下剥去肠衣,切成高2.5 cm的圆柱体,使用直径5 mm球形探头(P/5S)在质构仪上测定其凝胶强度,包括破断力(breaking force,g)和凹陷深度(破断距离breaking distance,mm)。凝胶强度(gel strength,g·cm)以破断力与凹陷深度的乘积表示。测试参数为:触发类型Auto (Force),预压速度3 mm·s–1,下压速度1.5 mm·s–1,测试速度1.0 mm·s–1,回复速度1.0 mm·s–1,下压距离15 mm,感应力5 g,每组样品平行测6次。

    将鲢鱼糜凝胶切成约为2 mm厚的薄片,将其8等分后,取1.5~2.0 g样品,用滤纸包裹好后置于离心管中,8 000 r·min–1离心10 min后按照以下公式计算持水性 (water holding capacity,WHC)[2]

    $$ {\rm WHC} = \frac{{{W_2}}}{{{W_1}}} \times 100\% $$ (1 )

    式中W1为离心前质量(g);W2为离心后质量(g)。

    准确称取鱼糜凝胶样品(约15 mg)置于氧化铝坩埚中密封,氮气(N2)作为保护气体,密封坩埚置于DSC设备中,测定参数为:温度 –60~30 ℃,升温速率10 ℃·min–1,N2流速40~50 mL·min–1。可冻结水(包括自由水和不易流动水)含量可通过鱼糜凝胶在0 ℃附近的焓变测出,非冻结水含量为总含水量与可冻结水含量之差[12]。总水分含量通过美国分析化学协会 (AOAC) 标准方法在103~105 ℃进行恒重来测出。可冻结水含量的计算公式为:

    $$ {W_ {\text{可冻结水}}} = \frac{{{H_1}}}{{{H_0}}} \times 100\% $$ (2)

    式中H0为纯水单位质量的焓变(J·g–1);H1为根据DSC测出的吸热峰面积计算出的单位质量的焓变(J·g–1)。

    取适量鱼糜凝胶样品(约5 g)用无信号纸包裹放于直径25 mm的玻璃管中,使用核磁共振分析软件及CPMG序列对其进行T2信号采集,共振频率18.18 MHz,磁体强度(0.50±0.08) T,线圈直径25 mm,磁体温度32 ℃,参数设为:P 90 (µs)=6,P 180 (µs)=11.4,有效信号起始点D 3=20 (µs),接收机带宽SW=100 kHz,重复采样等待时间TR=8 000 ms,模拟增益RG1=20,循环次数N=4,回波时间220 µs,共扫描15 000个回波,每个样品重复测3次[8]

    将鱼糜凝胶样品冷冻干燥,与纯KBr (大约1∶100)混合后研细均匀,置于模具中,在油压机上压成透明薄片,采用傅里叶变换红外光谱仪测定吸收光谱。检测条件为:波长4 000~400 cm–1,分辨率4 cm–1,扫描次数128次[12]

    将鱼糜凝胶切成的小块(5 mm×5 mm×3 mm),用0.1 mol·L–1的磷酸缓冲液(pH 7.2)清洗5 min,重复4次;再用2.5%的戊二醛溶液在4 ℃条件下固定24 h;再次用磷酸缓冲液(0.1 mol·L–1)清洗10 min,重复4次;然后依次用体积分数为50%、70%、80%、90%、95%和100%的乙醇溶液进行脱水,脱水后冷冻干燥约15 h,真空离子溅射仪喷金后,扫描电镜观察并拍照[2]

    凝胶强度是指凝胶崩裂或断裂时单位面积所受的力,反应出凝胶内部结构的坚实程度,是衡量鱼糜制品品质的一项重要指标[11]。压力对低盐鱼糜凝胶强度的影响呈先增大后减小的趋势(图1-a)。最初施压时,随着压力增大,低盐鱼糜的凝胶强度也逐步增大,在压力300 MPa时达到最大值(258.24 g·cm);继续增大压力,鱼糜凝胶的凝胶强度反而有所降低(P>0.05);压力达到500 MPa时则显著降低(P<0.05)。罗晓玲等[13]报道400 MPa高压处理能够显著提高马鲛(Scomberomorus niphonius)鱼糜凝胶强度,当压力继续增加,凝胶强度减弱,本研究结果与其类似。

    图  1  不同压力下鱼糜凝胶强度(a)和持水性(b)的变化
    0.1(1). 常压对照组1 (0.1 MPa,添加2.5% NaCl);0.1(2). 常压对照组2 (0.1 MPa,添加1.5% NaCl);100~500. 不同高压处理组(100~500 MPa, 10 min,添加1.5% NaCl);不同字母代表样品存在显著差异(P<0.05)
    Figure  1.  Changes of gel strength of (a) and water holding capacity (WHC) (b) surimi gel at different pressures
    0.1(1). normal atmospheric pressure Group 1 (0.1 Mpa, 2.5% NaCl); 0.1(2). normal atmospheric pressure Group 2 (0.1 Mpa, 1.5% NaCl); 100−500. different high pressure groups (100−500 MPa, 10 min, 1.5% NaCl); different letters indicate significant difference (P<0.05).

    超高压前处理能引发肌原纤维蛋白的变性,从而影响后续的鱼糜热凝胶品质。一定压力范围内,随着压力的增大,蛋白构象发生改变,蛋白表面疏水性增强、蛋白活性巯基含量增加,从而有助于后续加热过程中分子间的键合作用,进而形成更加致密的凝胶网状结构[14];当压力大于300 MPa时,能够引起肌原纤维蛋白发生较大程度的变性,并通过氢键、疏水相互作用,甚至分子间的二硫键聚集成蛋白大分子,大分子不利于形成致密、均匀的凝胶网状结构,从而使得鱼糜的凝胶强度下降[15]。常压低盐鱼糜凝胶强度(203.92 g·cm)显著低于常压普通鱼糜凝胶强度(214.87 g·cm,P<0.05),表明减少斩拌过程中NaCl的添加量,使得鱼糜的凝胶强度降低,而300 MPa压力的超高压低盐鱼糜凝胶的强度显著大于常压低盐和常压普通鱼糜凝胶(P<0.05)。因此,超高压处理能够有效地提高低盐鱼糜的凝胶强度。

    鱼糜凝胶持水能力是鱼糜凝胶特性的重要指标之一,它与蛋白质分子间的作用力(静电作用、疏水作用、氢键、范德华力)、凝胶水分状态及微观结构等有关[16]。压力对低盐鱼糜持水性的影响与凝胶强度变化趋势一致,压力在300 MPa时达到最大值(75.38%)。这可能因为适当的超高压处理诱导蛋白质变性而暴露出更多的疏水基团,有利于增强后续热凝胶形成中的疏水相互作用,能形成更加致密、稳定的凝胶网络,致密的凝胶能够捕捉更多的水分[17],从而提高了鲢鱼糜制品的持水性。而当压力为500 MPa,低盐鱼糜的持水性则显著降低(P<0.05),这是因为过高的压力下,肌原纤维蛋白发生聚集而使得热凝胶网络结构有孔洞,不利于水分保持,导致持水性减少[18]。常压低盐鱼糜凝胶的持水性(66.73%)显著低于常压普通鱼糜凝胶(70.34%,P<0.05),而300 MPa处理得到的超高压低盐鱼糜凝胶的持水性显著大于常压低盐和常压普通鱼糜凝胶(P<0.05,图1-b)。因此,300 MPa压力的前处理有助于提高低盐鲢鱼糜凝胶的持水性,为此选用此压力作为最佳压力进行后续研究。

    水分状态分布可以更直观地表现超高压处理后鱼糜凝胶持水能力的变化[9]。低盐鱼糜凝胶中的水分主要以结合水、不易流动水和自由水的形式存在。结合水是水分子以氢键或配位键与鱼糜凝胶中高分子链的极性基团相互作用而存在的,流动性差,且冰点以下不会冻结,又称为非冻结水[19]。不易流动水按照一定的取向包围着聚合物和结合水,冰点比纯水低;自由水存在于鱼糜凝胶的网状结构空隙中,冰点与纯水相差不大,自由水和不易流动水又称为可冻结水[20]。DSC可用来测定鱼糜凝胶中冰的熔化热而得到可冻结水(自由水和不易流动水)的含量,并通过鱼糜的水分含量计算得到鱼糜的非冻结水含量[21]

    从超高压处理对鱼糜凝胶水分状态分布影响(图2),可以看出鲢鱼糜凝胶在−40~20 ℃出现一个比较宽的吸热峰,是可冻结水在温度变化过程的焓变。在添加了2.5 % NaCl的普通鱼糜凝胶和1.5% NaCl的低盐鱼糜凝胶中,吸收峰的温度分别为–32.75~15.70 ℃和–32.53~14.69 ℃,而进行了超高压处理的低盐鱼糜凝胶的吸收峰温度为–36.72~12.69 ℃。由此可见,普通鱼糜凝胶吸收峰温度较低盐鱼糜凝胶稍有偏移,且超高压低盐鱼糜凝胶吸收峰温度向低温度段偏移,即冰点温度降低。由图谱信息可计算得到可冻结水含量,各水分含量的具体结果见表1。普通鱼糜凝胶的结合水含量大于低盐鱼糜凝胶;超高压低盐鱼糜凝胶的可冻结水含量(59.38%)显著减少(P<0.05),这与图3中吸热峰面积有所减小相对应,表明更多的水分状态发生变化而形成了不可冻结水。由此可见,超高压处理降低了低盐鱼糜凝胶的冰点温度,并显著提高了结合水含量(17.58%,P<0.05)。

    图  2  超高压及常压鱼糜凝胶的差示扫描量热法图谱
    Figure  2.  DSC spectrum of surimi gel treated with UHP and at normal pressure
    表  1  超高压及常压处理鱼糜凝胶中各种水分含量
    Table  1.  Various water contents in surimi gels treated with UHP and at normal pressure %
    样品
    sample
    总水分
    total water content
    可冻结水
    freezable water content
    结合水
    bound water content
    2.5% 氯化钠 NaCl (0.1 MPa) 76.87±2.39a 65.80±2.01a 11.07±1.03b
    1.5% 氯化钠 NaCl (0.1 MPa) 77.74±3.10a 66.85±1.63a 10.89±1.70b
    1.5% 氯化钠 NaCl (300 MPa, 10 min) 76.96±1.05a 59.38±1.08b 17.58±1.97a
     注:UHP-300 MPa, 10 min;同列不同字母表示差异显著(P<0.05),下表同此  Note: Different letters in the same column indicate significant difference (P<0.05). The same case in the following tables.
    下载: 导出CSV 
    | 显示表格
    图  3  鱼糜凝胶弛豫时间的变化 (T2)
    Figure  3.  Change of relaxation time (T2) of surimi gel

    LF-NMR是用来测定水分含量和分布最直接有效的方法,鱼糜凝胶的水分状态直接影响其持水性,进而影响凝胶品质。T2弛豫性可以反映低盐鱼糜制品中水分子的流动性,弛豫时间越长,表明水分越自由[22];每个峰的面积比例代表凝胶体系中不同状态水的含量大小。T2在1~10 000 ms的弛豫时间分布出现了4个峰T21、T22、T23和T24(图3),此结果与秦影等[23]报道的结果类似。其中T21 (0~2 ms)表示单层水,与蛋白质等大分子表面的极性基团以氢键相结合,占据着亲水基团的第一层;T22 (2~10 ms)表示多层水,比单层水结合强度稍低,占据单层水或第一层剩下的位置,并形成单层水以外的几层。T23 (10~200 ms)表示束缚在鲢鱼糜中凝胶微观网络结构中的水分,是鱼糜凝胶中最主要的水分,约占鱼糜总凝胶水分的90%;T24 (200~800 ms)表示鱼糜凝胶空间网络结构以外,可以自由移动的水分,也称为自由水[24]。从图3表2可以看出,不同鱼糜凝胶样品的水分形态及分布存在一定差异,添加2.5% NaCl的普通鱼糜凝胶比添加1.5% NaCl的低盐鱼糜凝胶的弛豫时间T22、T24有所提前,且超高压处理的低盐鱼糜凝胶的弛豫时间T21、T23、T24时间也均显著提前(P<0.05),弛豫时间有差异表明水的流动性发生了变化,弛豫时间越短,表明水的结合能力越强,持水性越好;弛豫时间越长,则反之。弛豫时间T2所对应的峰面积比例差异见表2,其中P21、P22、P23和P24分别代表以上各弛豫时间所对应的峰面积比例,分别表示不同状态的水分含量。添加2.5% NaCl的普通鱼糜凝胶不易流动水(P23)含量大于添加1.5% NaCl的低盐鱼糜凝胶;超高压低盐鱼糜凝胶中P22、P23和P24有显著性差异(P<0.05),且P22、P23显著增加,P24显著减少。鱼糜制品中致密、有序的凝胶网络结构有助于捕获更多的水分并减弱水分流动性,从而降低鱼糜凝胶的横向弛豫时间[18,22]。这可能由于适当的超高压处理能够形成致密、均匀的凝胶网络结构而改变水分的流动性。此外,压力促使蛋白质发生解聚,溶解性升高,使更多的自由水与蛋白质形成结合水,进而增强了持水性能[25]。在鱼糜凝胶样品中,自由水流动性最大,离心时易损失,自由水含量较高时,鱼糜凝胶的持水能力较小、持水性差。

    表  2  鱼糜凝胶低场核磁共振自旋弛豫时间 (T2) 和峰比例 (P)
    Table  2.  LF-NMR spin-spin relaxation time (T2) and peak proportion (P) of surimi gel
    样品
    sample
    弛豫时间T2分布/ms
    T2 relaxation time distribution
    弛豫时间T2峰面积所占比例/%
    proportion of T2 relaxation time peak area
    T21 T22 T23 T24 P21 P22 P23 P24
    2.5% 氯化钠 NaCl (0.1 MPa) 1.00±0.08a 5.11±0.21c 70.79±2.98a 403.70±19.45a 2.15±0.12a 0.59±0.05c 68.68±3.01b 29.20±1.12a
    1.5% 氯化钠 NaCl (0.1 MPa) 0.86±0.03b 6.64±0.15b 70.65±3.34a 405.12±18.45a 1.93±0.16a 0.98±0.03b 67.29±2.95b 30.10±1.03a
    1.5% 氯化钠 NaCl (300 MPa, 10 min) 0.76±0.05c 7.03±0.35a 65.79±2.67b 371.12±23.16b 1.40±0.07b 1.59±0.11a 76.65±1.97a 20.36±2.05b
    下载: 导出CSV 
    | 显示表格

    根据FT-IR检测结果,鲢鱼糜凝胶有3 295 cm–1 (酰胺带A,N-H或O-H伸缩振动峰,PK1)、2 925 cm–1 (C-H伸缩振动峰,PK2)、1 655 cm–1 (酰胺带I,C=O和N=O伸缩振动峰,PK3)、1 546 cm–1 (酰胺带II,C-N伸缩振动或N-H弯曲振动,PK4)、1 400 cm–1 (C-H弯曲振动,PK5)和1 050 cm–1 (C-O和C-C伸缩振动,PK6)[26]6个红外特征峰(图4表3)。PK1通常被用来评估和分析水分子与蛋白质之间的相互作用[27],陈星[28]研究发现了超高压处理后肌原纤维蛋白热凝胶PK1波数的减少,并认为这可能是由于超高压处理促进了肌原纤维蛋白热凝胶内部的分子间氢键作用。红外光谱中的酰胺I带(1 600~1 700 cm–1)常用来分析蛋白质二级结构的变化[26]

    图  4  鱼糜凝胶的傅里叶红外光谱
    Figure  4.  FT-IR spectra of surimi gel
    表  3  鱼糜凝胶的傅里叶红外光谱数据
    Table  3.  FT-IR spectra data of surimi gel cm–1
    样品
    sample
    傅里叶红外光谱各峰值数据 FT-IR spectra peak data
    PK1 PK2 PK3 PK4 PK5 PK6
    2.5% 氯化钠 NaCl (0.1 MPa) 3 295 2 926 1 654 1 546.6 1 400 1 050
    1.5% 氯化钠 NaCl (0.1 MPa) 3 295 2 925 1 655 1 546.6 1 400 1 049
    1.5% 氯化钠 NaCl (300 MPa, 10 min) 3 293.8 2 925.5 1 654.6 1 546.6 1 402 1 051
    下载: 导出CSV 
    | 显示表格

    不同处理的低盐鲢鱼糜凝胶的FT-IR峰型基本一致(图4),各吸收峰位置并未发生明显变化(表3)。结果表明,超高压处理对低盐鱼糜凝胶的蛋白质骨架结构基本没有影响,对蛋白质二级结构的影响可能较小;另外,超高压处理对鱼糜凝胶分子内的氢键作用影响不大。因此,从分子间作用力的角度分析,超高压处理可能会增强鱼糜热凝胶中其他的分子间作用力(如疏水相互作用和二硫键等),从而提高了低盐鱼糜的凝胶特性。超高压改善低盐鲢鱼糜凝胶相关机制还有待进一步研究。

    三维网络结构决定鲢鱼糜制品的凝胶强度、持水性和质地[22]。超高压处理后的低盐鱼糜凝胶网络结构与常压对照组2 (添加1.5% NaCl)和常压对照组1 (添加2.5% NaCl)鱼糜凝胶网络结构明显不同(图5) 。与常压对照组1 (图5-ab)相比,常压对照组2鱼糜凝胶表面相对不平整(图5-c),孔隙较大(图5-d),凝胶结构松散不均匀,凝胶强度较低,持水性差。Cando等[7]研究也发现添加3% NaCl的鱼糜凝胶网络结构比0.3% NaCl的鱼糜凝胶更紧密,可能是较高浓度的NaCl对蛋白质有较好的增溶作用,使得蛋白质的结构更加致密。经300 MPa压力(图5-ef)处理的低盐鱼糜凝胶表面比较均匀平整,结构致密,孔洞数量明显减少,凝胶基质密度增强,说明低盐鲢鱼糜经超高压预处理后能形成光滑、连续、均匀的热凝胶。这可能是由于超高压诱导蛋白质发生适当变性,有助于低盐鱼糜形成网络结构较好的热凝胶[11]。此外,凝胶的网络结构越致密,存储的水分越多,持水性越高,凝胶强度也越大[29]。因此,适当的高压处理能够改善鲢鱼糜的热凝胶网状结构。

    图  5  鱼糜凝胶扫描电镜图 (×2 000,×10 000)
    Figure  5.  Micrographs of surimi gel (×2 000, ×10 000)

    1)采用100~500 MPa的超高压处理低盐鲢鱼糜凝胶,其凝胶强度和持水性随着压力增大呈现先增大后减小的趋势,超高压处理(300 MPa,10 min,室温)有助于提高低盐鲢鱼糜凝胶的凝胶强度和持水性。

    2) DSC和LF-NMR结果表明,300 MPa的超高压处理能够增加低盐鲢鱼糜凝胶中的不易流动水,减少自由水,且能够减弱凝胶中水的流动性,进而增强持水性。

    3)扫描电镜观察发现,超高压处理(300 MPa,10 min,室温)能使低盐鲢鱼糜形成密集的、细致均匀的三维网络结构。

    因此,超高压前处理能够诱导低盐鲢鱼糜热凝胶的水分含量和状态变化,且能改善低盐鲢鱼糜凝胶的网状结构,从而提高低盐鲢鱼糜凝胶的持水性和凝胶强度。

  • 图  1   中华绒螯蟹样本总砷及6种砷形态之和浓度范围

    Figure  1.   Range of total arsenic and sum of six arsenicals concentritions for E. sinensis

    图  2   6种砷形态及总砷在不同地区间的分布差异比较

    Figure  2.   Distribution of total arsenic and six arsenicals

    图  3   6种砷形态质量分数之和占总砷百分比

    Figure  3.   Percentages of six arsenicals of total arsenic

    图  4   砷甜菜碱分别占6种砷形态和总砷比例

    Figure  4.   Proportion of AsB in six arsenicals and total arsenic

    图  5   螃蟹样本的靶标危害系数

    Figure  5.   THQ values of E. sinensis

    表  1   微波消解程序参数

    Table  1   Parameters of microwave digestion procedure

    程序
    Procedure
    过程
    Process
    温度
    Temperature/℃
    反应时间
    Reaction time/min
    功率
    Power/W
    1 快速升温 室温~140 5 600
    2 缓慢升温 140~190 8 800
    3 保持 190 15 1 000
    4 降温 190~室温 10 400
    下载: 导出CSV

    表  2   电感耦合等离子体质谱法及高效液相色谱-电感耦合等离子体质谱法程序参数

    Table  2   Parameters of ICP-MS and HPLC-ICP-MS

    参数
    Parameter
    电感耦合等离子体质谱法
    ICP-MS
    高效液相色谱-电感耦合等离子体质谱法
    HPLC-ICP-MS
    雾化室 Atomizing chamber/℃ 2 2
    采样深度 Sampling depth/mm 7.5 8.0
    IF/BK 真空度 IF/BK vacuum degree/kPa 238 180
    反馈功率 Feedback power/W <3 <10
    雾化器压力 Atomizer pressure/kPa 320 364
    等离子体 (氩气) 流量 Plasma gas (argon) flow/(L·min−1) 15.00 15.00
    辅助气流量 Auxiliary gas flow/(L·min−1) 1.00 1.00
    雾化器流量 Atomized gas/(L·min−1) 1.00 1.00
    补偿/稀释气流量 Compensate/dilute gas flow/(L·min−1) 1.00 1.00
    下载: 导出CSV

    表  3   不同地区中华绒螯蟹总砷及砷形态质量分数

    Table  3   Total arsenic and arsenic speciation contents in E. sinensis mg·kg−1

    地区
    Site
    砷形态质量分数
    Arsenical content
    6种砷之和
    Sum of six arsenicals
    总砷
    Total arsenic
    砷胆碱
    AsC
    砷甜菜碱
    AsB
    二甲基砷
    DMA
    一甲基砷
    MMA
    三价砷
    As III
    五价砷
    AsⅤ
    蚌埠 Bengbu 0.008±0.004 0.177±0.081 0.010±0.004 0.002±0.000 0.010±0.006 0.002±0.000 0.204±0.082 0.530±0.161
    滁州 Chuzhou 0.026±0.018 0.128±0.053 0.004±0.001 0.003±0.000 0.009±0.005 0.001±0.000 0.172±0.034 0.658±0.156
    当涂 Dangtu 0.169±0.125 0.248±0.135 0.011±0.004 0.002±0.002 0.016±0.010 0.002±0.002 0.449±0.062 0.707±0.459
    芜湖 Wuhu 0.010±0.000 0.300±0.007 0.008±0.002 0.001±0.000 0.010±0.007 0.000±0.000 0.325±0.006 0.363±0.050
    宣城 Xuancheng 0.014±0.006 0.376±0.007 0.008±0.002 0.002±0.000 0.012±0.002 0.001±0.000 0.414±0.014 0.759±0.491
    巢湖 Chaohu 0.014±0.021 0.204±0.118 0.003±0.001 0.006±0.002 0.007±0.004 0.004±0.000 0.238±0.136 0.268±0.180
    无为 Wuwei 0.026±0.040 0.128±0.126 0.003±0.002 0.005±0.003 0.015±0.004 0.001±0.000 0.179±0.127 0.234±0.128
    安庆 Anqing 0.007±0.008 0.107±0.103 0.004±0.000 0.006±0.000 0.009±0.008 0.001±0.000 0.129±0.127 0.536±0.411
    下载: 导出CSV
  • [1] 堵南山. 中华绒螯蟹的同属种类及其英文名称[J]. 水产科技情报, 1998(3): 12-13, 17.
    [2] 王潇, 韩刚, 张小军, 等. 不同水域中华绒螯蟹雄体营养成分及风味成分差异性研究[J]. 大连海洋大学学报, 2019, 34(5): 688-696.
    [3] 王成辉, 李思发. 中华绒螯蟹种质研究进展[J]. 中国水产科学, 2002, 10(1): 82-86. doi: 10.3321/j.issn:1005-8737.2002.01.019
    [4] 包稚群, 丘克强. 关于我国砷污染现状与治理砷建议[J]. 云南冶金, 2019, 48(3): 60-64. doi: 10.3969/j.issn.1006-0308.2019.03.013
    [5] 戴红彦. 砷对机体损害及氧化损伤的研究进展[J]. 中国地方病防治杂志, 2018, 33(5): 516.
    [6] 熊文明, 冯敏玲, 周秀清, 等. 珠江三角洲典型地区水产品中砷形态调查[J]. 现代农业科技, 2013(13): 278-284. doi: 10.3969/j.issn.1007-5739.2013.13.184
    [7] 赵艳芳, 康绪明, 宁劲松, 等. 虾蛄可食组织中镉和砷的形态及分布特征[J]. 食品科学, 2020, 41(8): 282-287. doi: 10.7506/spkx1002-6630-20190119-229
    [8] 严国, 梅光明, 常家琪, 等. 电感耦合等离子体质谱法分析海蟹中的砷元素分布特征[J]. 食品科学, 2019, 40(12): 332-339. doi: 10.7506/spkx1002-6630-20180424-315
    [9] 刘淑晗, 张海燕, 娄晓祎, 等. 高效液相色谱-(紫外) 氢化物发生原子荧光光谱法测定南极磷虾及其制品中6种砷形态[J]. 分析测试学报, 2019, 38(9): 1085-1090. doi: 10.3969/j.issn.1004-4957.2019.09.009
    [10]

    ERRANTE M, NAPOLI S, GRASSO A, et al. Systematic review of arsenic in fresh seafood from the Mediterranean Sea and European Atlantic coasts: a health risk assessment[J]. Food Chem Toxicol, 2019, 126: 322-331. doi: 10.1016/j.fct.2019.01.010

    [11] 吕海燕, 曹小云, 钟冠南. HPLC-ICPMS测定海鱼中六种砷形态方法探讨[J]. 河南预防医学杂志, 2018, 29(8): 594-597, 614.
    [12]

    KALANTZI I, MYLONA K, SOFOULAKI K, et al. Arsenic speciation in fish from Greek coastal areas[J]. J Environ Sci, 2017, 56(6): 300-312.

    [13]

    QIU Z Q, LV Z M, WANG K T, et al. Species distribution characteristics of arsenic in shellfish seafood collected from Fujian Province of China[J]. J Food Compos Anal, 2018, 72: 132-140. doi: 10.1016/j.jfca.2018.07.002

    [14] 王志鹏, 薛长湖, 徐杰, 等. 高效液相色谱碰撞/反应池-电感耦合等离子体质谱测定贝类中砷形态化合物及健康风险评估[J]. 食品工业科技, 2019, 40(17): 244-250.
    [15] 王继霞, 张颜, 叶明德, 等. 超声辅助酶水解-高效液相色谱-氢化物发生-原子荧光光谱测定贝壳类海产品中砷形态[J]. 分析科学学报, 2018, 34(1): 145-148.
    [16] 卢岚, 鲁兵, 李轶, 等. 湖南省中华绒螯蟹中砷、铅、汞、镉、铬检测结果分析[J]. 中国卫生检验杂志, 2019, 29(13): 1610-1612.
    [17] 李智明. HPLC-ICP-MS测定水产品中五种砷形态[J]. 科技创新与应用, 2016(30): 43-44.
    [18] 易路遥, 章红, 李杰, 等. 高效液相色谱-原子荧光光谱法分析水产品中砷的形态[J]. 中国卫生检验志, 2016, 26(21): 3045-3048.
    [19] 王泽邦, 赵学玒. 毛细管电泳-电感耦合等离子体质谱法对砷形态分析[J]. 仪器仪表用户, 2018, 25(7): 24-25, 17. doi: 10.3969/j.issn.1671-1041.2018.07.007
    [20] 杨芬, 刘金鑫, 韦朝阳. HPLC-(UV)-HG-AFS联用技术测定市售紫菜中砷形态[J]. 安全与环境工程, 2016, 23(2): 60-65.
    [21]

    VILLA-LOJO M C, ALONSO-RODRÍGUEZ E, LÓPEZ-MAHÍA P, et al. Coupled high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry for inorganic and organic arsenic speciation in fish tissue[J]. Talanta, 2002, 57(4): 741-750. doi: 10.1016/S0039-9140(02)00094-2

    [22] 邹春苗, 赵岚, 刘静晶, 等. 高效液相色谱-电感耦合等离子体质谱法检测金枪鱼罐头砷形态学研究[J]. 中国预防医学杂志, 2019, 20(10): 920-924.
    [23] 朱有涛, 张遐, 邵梅, 等. HPLC联用ICP-MS法测定水产品中常见的6种砷形态[J]. 食品工业, 2018, 39(9): 326-329.
    [24] 董欣悦, 宋超, 汪倩, 等. 利用电感耦合等离子体质谱 (ICP-MS) 测定中华绒螯蟹中重金属镉的残留量[J]. 农学学报, 2019, 9(1): 35-40. doi: 10.11923/j.issn.2095-4050.cjas18080011
    [25] 王新程. 中国人群暴露参数手册 (成人卷)[M]. 北京: 中国环境出版社, 2013: 3−4.
    [26]

    United States Environmental Protection Agency. IRIS Assessments[EB/OL]. [1991-09-01]. https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?&substance_nmbr=278#tab-2.

    [27]

    SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Appl Geochem, 2002, 17(5): 517-568. doi: 10.1016/S0883-2927(02)00018-5

    [28] 柳青青, 杨忠芳, 周国华, 等. 中国东部主要入海河流As元素分布、来源及影响因素分析[J]. 现代地质, 2012, 26(1): 114-124. doi: 10.3969/j.issn.1000-8527.2012.01.012
    [29] 吴万富, 徐艳, 史德强, 等. 我国河流湖泊砷污染现状及除砷技术研究进展[J]. 环境科学与技术, 2015, 38(S1): 190-197.
    [30]

    CAI Y, ZHANG H, YUAN G, et al. Sources, speciation and transformation of arsenic in the gold mining impacted Jiehe River, China[J]. Appl Geochem, 2017, 84: 254-261. doi: 10.1016/j.apgeochem.2017.07.001

    [31] 阎秀兰, 温其谦, 申俊峰. 半壁山金矿矿业活动周边农田土壤砷污染特征及来源分析[C]//中国矿物岩石地球化学学会第17 届学术年会论文摘要集. 杭州: 中国矿物岩石地球化学学会, 2019: 954.
    [32]

    WANG S, MULLIGAN C N. Occurrence of arsenic contamination in Canada: sources, behavior and distribution[J]. Sci Total Environ, 2006, 366(2/3): 701-721.

    [33] 丁祥沁. 土壤砷污染及其防治[J]. 江西铜业工程, 1994(2): 38-47.
    [34] 余垚, 朱丽娜, 郭天亮, 等. 我国含磷肥料中镉和砷土壤累积风险分析[J]. 农业环境科学学报, 2018, 37(7): 1326-1331. doi: 10.11654/jaes.2018-0715
    [35] 廖家隆, 张喆秋, 陈丽杰, 等. 含砷废水处理研究进展[J]. 有色金属科学与工程, 2018, 9(1): 86-91.
    [36] 路典敬. 鱼粉在水产饲料中的作用与评价[J]. 畜牧兽医科技信息, 2019(8): 161. doi: 10.3969/J.ISSN.1671-6027.2019.08.148
    [37] 王小城, 张新节, 高巍. 鸡肉粉和猪肉粉在水产饲料中的应用[J]. 饲料博览, 2019(3): 44-46, 50.
    [38] 冯国明. 水产养殖中禁用的药物[J]. 北京农业, 2006(5): 37. doi: 10.3969/j.issn.1000-6966.2006.05.046
    [39] 水产养殖禁用渔药及其替代药物[J]. 农家顾问, 2012(6): 48-49.
    [40] 陈风蔚, 殷悦, 邵俊杰, 等. 电感耦合等离子体质谱法测定中华绒鳌蟹体内的砷、镉、汞、铅[J]. 水产养殖, 2019, 40(7): 35-37, 42.
    [41]

    HOOGENBOOM R L, KOTTERMAN M J, NIEUWENHUIZEN H V, et al. Dioxins, PCBs and heavy metals in Chinese mitten crabs from Dutch rivers and lakes[J]. Chemosphere, 2015, 123: 1-8. doi: 10.1016/j.chemosphere.2014.10.055

    [42] 颜惠芬, 符郁馥, 林志藩, 等. 水产品中砷的形态分布研究[J]. 现代食品, 2019(4): 187-192.
    [43] 覃东立, 汤施展, 白淑艳, 等. 东北地区鲤、鲫、草鱼肌肉中重金属含量评价[J]. 农业环境科学学报, 2014, 33(2): 264-270. doi: 10.11654/jaes.2014.02.009
    [44] 范忠吉, 农蕊瑜, 李洁, 等. 云南滇东地区8个州市鱼类中砷的形态测定分析[J]. 食品安全质量检测学报, 2019, 10(22): 7526-7532.
    [45] 蒋万春. 动物营养中新的必需微量元素——砷[J]. 饲料广角, 1990(6): 20-22.
    [46] 项黎新, 邵健忠, 孟真. 六种重金属离子胁迫诱导鱼类细胞凋亡的研究[J]. 生物化学与生物物理进展, 2001(6): 866-869. doi: 10.3321/j.issn:1000-3282.2001.06.023
    [47]

    SHAH A Q, KAZI T G, ARAIN M B, et al. Accumulation of arsenic in different fresh water fish species: potential contribution to high arsenic intakes[J]. Food Chem, 2009, 112(2): 520-524. doi: 10.1016/j.foodchem.2008.05.095

    [48]

    SLOTH J J, LARSEN E H, JULSHAMN Y, et al. Survey of inorganic arsenic in marine animals and marine certified reference materials by anion exchange high-performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. J Agric Food Chem, 2005, 53(15): 6011-6018. doi: 10.1021/jf047950e

    [49] 付凤富, 孙颖, 王绪盛, 等. 海产品中砷形态分析研究进展[J]. 食品安全质量检测学报, 2020, 11(2): 341-349.
    [50] 乔艺飘, 张龙飞, 刘欢, 等. 高效液相色谱-电感耦合等离子体质谱联用技术测定青蟹中6种砷形态的方法研究[J]. 农产品质量与安全, 2020(2): 31-36. doi: 10.3969/j.issn.1674-8255.2020.02.006
    [51]

    ZHANG W, GUO Z, SONG D, et al. Arsenic speciation in wild marine organisms and a health risk assessment in a subtropical bay of China[J]. Sci Total Environ, 2018, 626: 621-629. doi: 10.1016/j.scitotenv.2018.01.108

    [52] 赵艳芳, 尚德荣, 宁劲松, 等. 水产品中不同形态砷化合物的毒性研究进展[J]. 海洋科学, 2009, 33(9): 92-96.
    [53]

    AMLUND H, INGEBRIGTSEN K, HYLLAND K, et al. Disposition of arsenobetaine in two marine fish species following administration of a single oral dose of [14C] arsenobetaine[J]. Comp Biochem Physiol C, 2006, 143(2): 171-178. doi: 10.1016/j.cbpb.2005.11.005

    [54]

    MOLIN M, ULVEN S M, MELTZER H M, et al. Arsenic in the human food chain, biotransformation and toxicology: review focusing on seafood arsenic[J]. J Trace Elem Med Biol, 2015, 31: 249-259. doi: 10.1016/j.jtemb.2015.01.010

    [55]

    ZHANG W, CHEN L, ZHOU Y, et al. Biotransformation of inorganic arsenic in a marine herbivorous fish Siganus fuscescens after dietborne exposure[J]. Chemosphere, 2016, 147: 297-304. doi: 10.1016/j.chemosphere.2015.12.121

    [56] 陈甫华, 张相如. 海洋动物中的砷甜菜碱[J]. 海洋环境科学, 1993(2): 58-67.
    [57] 吕达. 铜陵市冬瓜山铜矿区土壤重金属污染现状与评价[J]. 湖北理工学院学报, 2019, 35(1): 18-22, 44.
    [58] 王广林. 芜湖市冶炼厂污灌区农田土壤重金属污染及杂草修复研究[D]. 芜湖: 安徽师范大学, 2005: 10−15.
    [59] 赵云霞, 林超, 叶逵, 等. 2013-2016年芜湖市5类食品重金属污染监测[J]. 江苏预防医学, 2019, 30(3): 328-330.
    [60] 徐智, 黄可龙. 砷的代谢及其毒性机制的相关性研究[J]. 中国药业, 2009, 18(12): 19-21. doi: 10.3969/j.issn.1006-4931.2009.12.015
    [61] 江兴林, 刘立亚, 黄雪梅, 等. 无机砷对人皮肤成纤维细胞增殖毒性的实验观察[J]. 实用预防医学, 2008, 15(1): 25-26. doi: 10.3969/j.issn.1006-3110.2008.01.007
    [62] 吴顺华, 陈文军, 李静. 无机砷及其代谢物对人成纤维细胞的毒性作用[C]//中国毒理学会, 广东省疾病预防控制中心. 中国毒理学会第六届全国毒理学大会论文集. 广州: 中国药理学与毒理学杂志, 2013: 393−393.
    [63] 牛晨谷, 张莹, 周晋. 无机砷甲基化及其毒性的研究进展[J]. 医学综述, 2017, 23(24): 4954-4959. doi: 10.3969/j.issn.1006-2084.2017.24.032
    [64] 申卉, 李述刚, 牛强, 等. 砷暴露人群的砷甲基化水平及其影响因素的Meta分析[J]. 中华地方病学杂志, 2016, 35(12): 869-874. doi: 10.3760/cma.j.issn.2095-4255.2016.12.003
    [65] 尚德荣, 赵艳芳, 郭莹莹, 等. 食品中砷及砷化合物的食用安全性评价[J]. 中国渔业质量与标准, 2012, 2(4): 21-32.
    [66] 汪倩, 宋超, 裘丽萍, 等. 中国养殖中华绒螯蟹中重金属铬的残留现状及膳食风险评估[J]. 生态环境学报, 2019, 28(8): 1650-1655.
  • 期刊类型引用(11)

    1. 张婷娟,吴风超,周纷. 市售生姜油对白鲢鱼糜凝胶品质特性的影响. 食品科技. 2025(01): 146-153 . 百度学术
    2. 金铮,于婉莹,赵文宇,刘宇轩,祁立波,白帆,董秀萍. 鲟鱼重组鱼排3D打印特性的研究. 食品与发酵工业. 2024(03): 241-249 . 百度学术
    3. 步营,程亚佳,厉寒,朱文慧,励建荣,李学鹏,季广仁. 发芽糙米匀浆对带鱼鱼糜凝胶特性的影响. 农业工程学报. 2024(18): 292-301 . 百度学术
    4. 林雅文,刘佳晨,李艾靑,高月,励建荣,李学鹏. 不同干燥方法对南美白对虾理化特性和微观结构的影响. 食品科学. 2023(19): 74-81 . 百度学术
    5. 邹怡茜,陈海强,潘卓官,肖苏尧,周爱梅. 超高压耦合热处理对鳙鱼鱼糜凝胶特性和水分迁移的影响. 现代食品科技. 2022(12): 272-280 . 百度学术
    6. 宋春勇,洪鹏志,周春霞,陈艾霖,冯瑞. 大豆油和预乳化大豆油对金线鱼鱼糜凝胶品质的影响. 食品科学. 2021(08): 90-97 . 百度学术
    7. 梁雯雯,杨天,郑志红,郭建,陈胜军,汪秋宽,丛海花. 升温方式对二段加热鲢鱼糜水分分布和品质的影响. 大连海洋大学学报. 2021(04): 646-652 . 百度学术
    8. 刘芳芳,林婉玲,李来好,吴燕燕,杨少玲,黄卉,杨贤庆,林织. 海鲈鱼糜加工及凝胶形成过程中蛋白质的变化机理. 食品科学. 2020(14): 15-22 . 百度学术
    9. 郑静静,林琳,张艳凌,陆剑锋,姜绍通. 不同解冻方式对熟制小龙虾理化特性的比较分析. 现代食品科技. 2020(09): 188-194+108 . 百度学术
    10. 李钊,李宁宁,刘玉,赵圣明,康壮丽,朱明明,计红芳,何鸿举,马汉军. 超高压对肌原纤维蛋白结构及其凝胶特性影响的研究进展. 食品与发酵工业. 2020(21): 304-309 . 百度学术
    11. 王菲,隋好林. 不同水产养殖区福寿鱼的鱼糜凝胶品质研究. 江西水产科技. 2019(06): 10-14 . 百度学术

    其他类型引用(14)

图(5)  /  表(3)
计量
  • 文章访问数:  2784
  • HTML全文浏览量:  1120
  • PDF下载量:  56
  • 被引次数: 25
出版历程
  • 收稿日期:  2020-05-11
  • 修回日期:  2020-06-09
  • 录用日期:  2020-07-01
  • 网络出版日期:  2020-09-27
  • 刊出日期:  2020-12-03

目录

/

返回文章
返回