四指马鲅性逆转过程初步研究

蓝军南, 区又君, 温久福, 李俊伟, 牛莹月, 李加儿

蓝军南, 区又君, 温久福, 李俊伟, 牛莹月, 李加儿. 四指马鲅性逆转过程初步研究[J]. 南方水产科学, 2020, 16(6): 67-74. DOI: 10.12131/20200091
引用本文: 蓝军南, 区又君, 温久福, 李俊伟, 牛莹月, 李加儿. 四指马鲅性逆转过程初步研究[J]. 南方水产科学, 2020, 16(6): 67-74. DOI: 10.12131/20200091
LAN Junnan, OU Youjun, WEN Jiufu, LI Junwei, NIU Yingyue, LI Jia'er. A preliminary study on process of sex reversal in Eleutheronema tetradactylum[J]. South China Fisheries Science, 2020, 16(6): 67-74. DOI: 10.12131/20200091
Citation: LAN Junnan, OU Youjun, WEN Jiufu, LI Junwei, NIU Yingyue, LI Jia'er. A preliminary study on process of sex reversal in Eleutheronema tetradactylum[J]. South China Fisheries Science, 2020, 16(6): 67-74. DOI: 10.12131/20200091

四指马鲅性逆转过程初步研究

基金项目: 国家重点研发计划“蓝色粮仓科技创新”重点专项 (2018YFD0900200);广东省现代农业产业技术体系 (海水鱼产业) 创新团队建设专项资金 (2019KJ143);中国水产科学研究院南海水产研究所中央级公益性科研院所基本业务费专项资金资助项目 (2020TD55);广东省省级乡村战略专项资金项目
详细信息
    作者简介:

    蓝军南(1994—),男,硕士研究生,研究方向为海水鱼类繁殖发育和基础生物学。E-mail: ljn009@126.com

    通讯作者:

    区又君(1964—),女,研究员,从事鱼类生物学、发育生物学与水产养殖技术研究。E-mail: ouyoujun@126.com

  • 中图分类号: S 917.4

A preliminary study on process of sex reversal in Eleutheronema tetradactylum

  • 摘要:

    该研究测量和统计了人工养殖四指马鲅 (Eleutheronema tetradactylum) 的形态及性别比例,并观察其性腺的组织学和形态学特征。结果显示,当盐度为10.8~13.0、水温为28.0~30.7 ℃时,在228尾7月龄四指马鲅样本中检测到雄性、雌性和雌雄同体3种个体,其比例分别为85.53%、5.70%和8.77%;3种个体的体质量、全长、体长和体高等形态性状无明显差异。解剖学观察显示,雌雄同体性腺的两背内侧为精巢,呈白色,两腹外侧为卵巢,呈浅黄偏红色。组织学显示精巢侧已有成熟精子形成,为典型精巢的Ⅳ或Ⅴ期特征,卵巢侧具卵巢腔,主要为卵原细胞和早期Ⅱ时相卵母细胞,为典型卵巢的Ⅱ期特征,可判断四指马鲅为雄性先熟雌雄同体;其性逆转过程可分为早、中、晚3个阶段,主要组织结构变化特征为卵巢结构逐渐形成并发育成Ⅱ期卵巢,而精巢组织则逐渐退化消失,在整个性逆转过程均检测到精巢的细胞凋亡信号。

    Abstract:

    In this study, we studied the morphological and sex ratio statistics of artificially cultured Eleutheronema tetradactylum, and observed their gonads by morphological and histological methods. The results show that when the salinity was 10.8–13.0 and the water temperature was 28.0–30.7 ℃, male, female and hermaphrodite accounted for 85.53%, 5.70% and 8.77%, respectively in the 228 samples at age of 7 months. Besides, there was no significant difference in the body mass, total length, body length and body height among the three individuals. Anatomic observation shows that the two dorsolateral sides of androgynous gonads were white testis, and the two ventrolateral sides were ovaries which were yellowish and reddish. Histology shows that the mature sperm formed on the testis side, which is Stage IV or V feature of typical testis, and the ovary side had an ovarian cavity, mainly oocytes and early phase II oocytes, which were typical phase II characteristics of ovary. Thus, it can be concluded that E. tetradactylum is a protandrous hermaphrodite. The process of sex reversal can be divided into three stages: early, middle and late. The ovary structure gradually formed and developed into Stage II ovary, which is the main feature of tissue structure change. However, the testis structure gradually degenerated and disappeared. The apoptotic cell signal of the testis has been detected during the whole sex reversal process.

  • 热带海参具有丰富的物种多样性,是中国经济海参养殖开发的物种资源库。迄今全球被开发利用的50多种食用经济海参中21种在中国海域有分布记录,除温带种仿刺参(Apostichopus japonicus) 和海地瓜 (Acaudina molpadioides) 外,中国的食用经济海参种类多分布于南海,且主要分布于雷州半岛以南海域,西南中沙海域是中国食用经济海参种类的集中分布区[1]。热带食用经济海参种类主要属于刺参科和海参科,包括5个属:刺参属 (Stichopus)、梅花参属 (Thelenota)、海参属 (Holothuria)、辐肛参属 (Actinopyga) 和白尼参属 (Bohadschia)[2]

    海参没有复杂的消化系统,也无独立的消化腺,其消化道仅由口、咽、食道、胃、肠和排泄腔组成[3]。刺参 (S. japonicus) 的消化道管壁结构主要由黏膜层、黏膜下层、肌层和外膜组成。其中,消化道黏膜层为单层或假复层上皮 (包含柱状细胞、黏液细胞和立方细胞);黏膜下层为疏松的结缔组织;肌层由外环和内纵两部分组成;而扁平细胞及其下方薄层结缔组织组成了外膜[4-6]。研究表明,多种海参具有夏眠现象,在此期间,其消化道的形态学和肠道功能发生显著变化,进而影响其自身生理指标的变化[6]。温度是诱导海参进入休眠状态的主要因素。通过对热带海参不同季节消化道指标和组织学特征的研究,可以初步判断热带海参是否具有冬眠现象。另外,海参的养殖池塘通常建在沿岸浅水区域,围堰塘的面积较小、水体交换量有限,当天气发生剧烈变化时,养殖水体的环境条件 (如温度、盐度等) 会发生较大变化,严重抑制海参的生长,可能出现排脏反应或化皮现象,甚至导致海参大面积死亡[7-8]。通过调控养殖环境 (如温度) 可以减少或消除海参因强烈应激所带来的不利影响,缩短休眠周期[9]。有研究指出,海参在休眠状态下,除形态学发生变化外,其体内消化和免疫相关酶活性也会发生显著变化,如淀粉酶、脂肪酶、纤维素酶、超氧化物歧化酶 (SOD) 和过氧化氢酶 (CAT) 等,进而对消化道功能产生影响[10-11]

    中国的红腹海参 (H. edulis) 主要分布在海南岛和东、中、西、南沙群岛,栖息于岸礁沙底,为沉积食性海参,以珊瑚沙为食,偏好生境存在季节变化[12]。红腹海参的生境也受水深的影响,如9月在水深6~10 m水域种群密度较大(2.65 头·m−2),相比水深3~6 m水域显著增加[13]。斯里兰卡海域的红腹海参主要分布在10 m以浅水域,在水深12~15 m处减少,超过25 m又显著增加[14]。红腹海参在珊瑚礁中具有扰动底质生物、加速营养盐再生和保护、清洁珊瑚礁以及为其他生物提供栖息场所等作用[12]。然而,过度捕捞已导致热带海参的数量急剧下降,人工养殖迫在眉睫。为了揭示热带海参消化道应对不同季节的响应特性,本文探究了红腹海参的摄食和生理状况随时间的变化,通过监测不同季节海参的消化道指标 (活动、饮食、湿质量和消化道内容物)、消化道组织学特征和相关酶活性的变化,为研究其环境适应调节机制及人工增养殖提供科学依据。

    本研究所用红腹海参于2019年7月采捕自三亚西岛,采捕时水温为25 ℃。采捕后暂养于海南省陵水县新村热带水产研究开发中心。红腹海参养殖过程中水质参数:盐度33±0.8,溶解氧质量浓度大于6.5 mg·L−1,pH 8.0±0.2,亚硝酸盐质量浓度小于0.03 mg·L−1,氨氮质量浓度小于0.01 mg·L−1。暂养期间每天按时定量投喂由鼠尾藻粉、马尾藻粉、海泥、细沙和海参配合饵料按等比例配制而成的人工配合饲料,定期换水并及时清理粪便及残饵,定时检查水温和海参的生长状况。测定各种酶活性所用的试剂盒均购自南京建成生物工程研究所。

    分别在春 (3月)、夏 (6月)、秋 (9月)、冬 (12月) 4个季节对红腹海参的消化道组织进行取样。

    定期称取海参的湿质量 (用毛巾吸干体表水分后称质量)、检测消化道形态学变化 (消化道长度、消化道和内含物质量),并根据公式 (1) 计算消化道相对湿质量。平均湿质量、消化道相对湿质量和消化道与体长比均是当季度所取海参的平均值 (N≥30)。

    $$ R=M_{1} / M_{2} $$ (1)

    式中:R为消化道相对湿质量;M1为去内容物的消化道质量;M2为消化道湿质量。

    对消化道组织取样进行切片,HE染色观察:依次将切片放入二甲苯 (C8H10)Ⅰ 20 min、C8H10 Ⅱ 20 min、无水乙醇Ⅰ 10 min、无水乙醇Ⅱ 10 min,再用95%、90%、80%、70%乙醇清洗5 min,最后蒸馏水洗;将切片入Harris苏木素 (C16H14O6) 染3~8 min,自来水冲洗,1%的盐酸乙醇分化数秒,自来水冲洗,0.6%氨水返蓝,流水冲洗;切片入伊红 (C20H6Br4Na2O5) 染液中染色1~3 min后,将切片依次放入95% 乙醇 Ⅰ、95% 乙醇 Ⅱ、无水乙醇Ⅰ和无水乙醇Ⅱ 5 min,而后放入C8H10 Ⅰ和C8H10 Ⅱ中各5 min脱水透明,将切片拿出来稍晾干,中性树胶封片,显微镜镜检,图像采集分析。

    取红腹海参肠道组织,用0.2 mol·L−1生理盐水将样品按质量体积为1∶3的比例进行研磨,研磨液于4 ℃、5 000 r·min−1离心10 min,取上清液1 mL 于洁净EP管中,置于–80 ℃冰箱待测。利用相应试剂盒测定淀粉酶、胃蛋白酶、纤维素酶、溶菌酶、CAT、碱性磷酸酶(ALP)、总超氧化物歧化酶 (T-SOD) 和过氧化物酶 (POX) 活性,各组均设3个平行。

    利用SPSS 21.0软件对实验数据进行统计分析,通过单因素方差分析 (One-way ANOVA) 判断处理组之间是否具有显著差异,均值间的差异显著性 (P<0.05) 采用Duncan's法进行比较。

    红腹海参在春、夏、秋季 (3、6和9月) 的湿质量均有所上升,冬季 (12月) 可能因水温影响了摄食而呈现轻微下降的趋势 (图1-a)。从湿质量看,其生长极其缓慢;红腹海参消化道相对湿质量在夏、秋季分别为0.62和0.29,而在冬季上升至0.73 (图1-b)。说明夏、秋季红腹海参摄食比较旺盛,未出现像刺参一样的夏季休眠现象;不同季节红腹海参消化道与体长比呈现先上升后下降的趋势 (图1-c),说明不同季节温度下热带海参肠道会发生变化,但未出现严重萎缩等退化现象。

    图  1  不同季节热带红腹海参消化道指标变化
    Figure  1.  Change of digestive tract indexes of H. edulis in different seasons

    红腹海参消化道前肠横切组织HE染色切片显示了不同季节下海参肠壁的形态学变化过程 (图2)。肠壁结构中的柱状上皮 (Columnar epithelium, CE)、横行皱襞 (Circular fold, CF)、纹状缘 (Striated border, SB)、浆膜层 (Serosa, SE)、黏膜上皮层 (Mucosa, MU)、肌层 (Muscular layer, ML)、体腔上皮层 (Coelomic lining, CL) 和凋亡空腔 (Apoptosis antrum, AA) 等结构清晰可见。不同季节实验组红腹海参消化道组织结构发生了变化,春季实验组消化道肠壁结构的横行皱襞中出现部分凋亡空腔 (图2-a);而夏季空腔减少 (图2-b);秋季时,凋亡空腔增加、横行皱襞厚度和柱状上皮密集程度也较夏季减弱 (图2-c);而到冬季时,横行皱襞中出现较多凋亡空腔 (图2-d),肠壁细胞出现严重凋亡,柱状上皮和浆膜层变薄。

    图  2  红腹海参消化道在不同季节下前肠横切组织HE染色切片光学显微照片
    注:a、b、c、d 分别为实验组 3、6、9、12 月取样,-1 和-2 分别为组织纵切面和横切面。
    Figure  2.  Micrographs of HE-stained sections of transected tissues of foregut of digestive tract of H. edulis in different seasons
    Note: The a, b, c and d represent the samples in March, June, September and December, respectively. The -1 and -2 represent the ongitudinal and transverse sections of the tissue, respectively.

    红腹海参消化道溶菌酶活性在6月最高,全年呈现“先升后降”的变化趋势 (图3-a)。消化道胃蛋白酶和纤维素酶均在3月表现出最高活性,分别为15.55和12.64 U·mg−1,分别在9和12月降至最低 (图3-b、图3-d),这可能与3月海参摄食逐渐恢复有关。而淀粉酶却在9月表现出最高活性,这可能由海参的摄食状态发生改变所致。

    图  3  不同季节红腹海参肠道组织消化酶活性变化
    Figure  3.  Change of digestive enzyme activity in intestinal tissues of H. edulis in different seasons

    红腹海参消化道CAT活性由春季至冬季呈下降的变化趋势 (图4-a);而ALP活性却呈现波动性上升趋势 (图4-b)。另外,T-SOD (图4-c) 和POX (图4-d) 活性呈现一致的变化趋势,均在6月活性最高,但T-SOD活性在春季 (3月) 最低,而POX活性却在冬季 (12月) 最低。

    图  4  不同季节热带红腹海参肠道组织免疫酶活性变化
    Figure  4.  Change of immune enzyme activity in intestinal tissues of H. edulis in different seasons

    海参为适应不同季节水温和食物的变化会做出相应的生理生化反应。本研究发现,红腹海参在春、夏、秋三季湿质量均有所上升,而冬季可能因水温降低影响了摄食而略有下降。红腹海参消化道相对湿质量在夏、秋季有所下降,冬季再次上升,这可能是春、冬季温度较低影响了摄食,导致消化道内容物较少。消化道相对湿质量的变化进一步印证了冬季低温会影响海参的摄食和状态。陈世波[9]研究指出,刺参在夏季休眠状态下体质量显著下降。而本研究中夏季红腹海参摄食比较旺盛,并未像刺参一样出现夏眠现象。可见红腹海参不存在夏眠,可能存在冬眠现象,但目前并无研究佐证。为了进一步探明热带海参的休眠期,本研究对红腹海参消化道前肠形态学变化过程进行观察,发现夏季凋亡空腔最少,而冬季海参消化道肠壁结构的横行皱襞中出现较多凋亡空腔,肠壁细胞出现严重的凋亡,柱状上皮和浆膜层变薄。这种变化特征与刺参夏眠时候极其相似,因此初步判断热海红腹海参可能存在冬眠现象。

    研究表明,外部环境的改变会影响水生动物的生长状态和机体酶活变化,进而影响其摄食、生长和健康[15-17]。因此,海参在休眠状态下,除了形态学发生变化外,其体内消化和免疫相关的酶活性也会发生显著变化,如淀粉酶、纤维素酶、SOD和CAT等[10-11]。水生动物在缺少食物时,主要通过改变机体各种酶的活性来调节代谢水平、能量分配和能源物质消耗,以适应食物缺乏造成的胁迫,维持机体生理活动[18-21]。本研究发现,红腹海参消化道组织在6月具有较高的溶菌酶活性,全年呈现“先升后降”的变化趋势,进一步说明红腹海参在夏季生长依然良好,其消化道组织通过分泌大量溶菌酶来消化摄食过程中所带入的微生物等致病因子。杨宁等[22]研究显示,当水温较高时,环境中的致病因子相对活力上升,促使海参机体溶菌酶活性上升以保证其生长良好。这也解释了红腹海参在夏季具有较高溶菌酶活性的原因。然而,消化道组织中的胃蛋白酶和纤维素酶均在3月表现出最高活性,这可能是由于3月海参从冬季的休眠萎缩逐渐恢复摄食所致。研究指出,消化酶活性与机体的摄食量和所处的状态有关[23-24]。任庆印[25]在研究海参夏眠过程中的生理代谢调控时发现,温度变化对蛋白酶活性影响显著,并在基因的调控下与温度呈一定的正相关。春季水温逐渐上升,红腹海参的生理活动逐渐恢复并受到外界食物刺激,但此时的食物仍无法满足其生长需求,从而刺激机体胃蛋白酶和纤维素酶活性显著上升[10]。饥饿胁迫可促进肠道胃蛋白酶的分泌及其活性[26]。然而,夏季食物充足,其机体的应激反应下降,导致胃蛋白酶和纤维素酶活性有所降低。这可能是因为机体尽可能将代谢保持在一定水平,以保证在重新获取食物或面临其他环境胁迫时能承受相应的应激反应[27]。消化道中淀粉酶活性发生了与机体生长相适应的变化,前3个月缓慢上升,冬季时受环境温度影响而呈下降趋势。Bao等[28]指出,在休眠状态下,海参主要通过消耗体内蛋白质和脂肪来获取代谢底物或能量。Chen等[29]对休眠状态下的刺参进行了蛋白质组学分析,同样表明蛋白质和磷脂可能是低代谢期间的主要能量来源。而且在休眠状态下,海参肠道组织的糖酵解发生抑制,进而影响其生长和代谢[30]。红腹海参湿质量的下降和消化酶活性的降低均表明其在冬季处于休眠状态。

    另外,本研究还测定了不同时期红腹海参消化道组织免疫酶活性的变化。其中,CAT可以将机体产生的过氧化氢 (H2O2) 分解成无毒、无害的水 (H2O) 和氧气 (O2)[31]。红腹海参消化道组织中的CAT活性变化规律表明,春季 (3月) 细胞内CAT的底物H2O2浓度显著增加,进而刺激CAT活性被诱导。而夏季 (6月) CAT活性显著降低,可能与SOD浓度有关。有研究指出,饥饿胁迫下机体CAT活性随着时间的延长而逐渐降低,这可能是机体超氧阴离子自由基在SOD的作用下被还原为 H2O2的含量下降,致使相应CAT活性降低[32]。这与本研究中夏季高SOD活性的结果相吻合。ALP是机体对新陈代谢进行调节以保护自身的另一重要调节酶,通过寡糖磷脂酰肌醇锚定在细胞膜上的结合蛋白,使生物体可以直接参与磷酸基团的转移和代谢,且参与体内的钙 (Ca)、磷 (P) 代谢[17,33]。本研究中,ALP呈现波动上升趋势,表明代谢较旺盛或较弱均会导致机体ALP活性上升,以调节机体代谢的平衡。另外,POX和T-SOD活性表现出一致的变化规律,均在6月最高。而POX以H2O2为电子受体,直接催化酚类或胺类化合物氧化的酶。随着水温的上升,机体的耗氧率也增加,进而促使活性氧类物质的生成,导致抗氧化酶活性的上升[22,34]。肠道内POX活性在冬季最低,可能是机体抗氧化体系不能及时清除自由基,使其氧化与抗氧化平衡被破坏所致[35]

    中国东南沿海是经济海参养殖开发的物种资源库。中国热带海参资源开发利用的当务之急是大力开展热带刺参等高值种类的资源恢复,发展玉足海参 (H. leucospilota) 和红腹海参等中低值海参的人工增养殖,发展热带海参人工增养殖新产业。然而,红腹海参的养殖、培育却受到各种环境因子影响,阐明其应对不同环境因子的响应及调控机制具有重要意义。本研究中红腹海参应对不同季节的生理生化反应有所不同,夏季其生长、摄食较为旺盛,而冬季出现冬眠迹象,体质量下降、消化道萎缩、细胞凋亡,相应的消化酶和免疫酶活性在冬季均处在低值,这种性状与刺参的夏眠特性相一致。因此,判断热带红腹海参具有冬眠现象,但是其对季节的适应机制和休眠机理仍需要进一步研究。

  • 图  1   四指马鲅性逆转时全长、体长、体高与体质量的关系

    Figure  1.   Correlation between total length, body length, body height and body mass of E. tetradactylum in sex reversal process

    图  2   四指马鲅性腺的解剖结构和组织结构

    A. 精巢解剖结构;a. 精巢横切面;B. 卵巢;b. 卵巢横切面;C, D. 雌雄同体性腺解剖结构;c, d. 雌雄同体性腺横切面;O. 卵巢;Oc. 卵巢腔;T. 精巢

    Figure  2.   Anatomical and histological structures of gonad in E. tetradactylum

    A. Anatomical structure of testes; a. Cross section of testes; B. Anatomical structure of ovary; b. Cross section of ovary; C, D. Anatomical structure of transitional gonad; c, d. Cross section of transitional gonad; O. Ovary; Oc. Ovarian cavity; T. Testes

    图  3   四指马鲅性逆转过程的组织学观察

    a. 性逆转早期,示性腺横切面;b. a的局部放大,示卵巢腔、产卵板和卵原细胞;c. a的局部放大,示精巢部分;d. c的局部放大,示精小叶;e. 性逆转中期,示性腺横切面;f. e的局部放大,示卵巢;g. e的局部放大,示精小叶和小叶间质;h. g的局部放大,示精子;i. 示性逆转晚期,示性腺横切面;j. i的局部放大,示性腺边缘的精小叶;Bv. 血管;Ct. 结缔组织;O. 卵巢;Oc. 卵巢腔;Oo. 卵原细胞;P2. 第Ⅱ时相卵母细胞;Sb. 产卵板;Sp. 精子;T. 精巢

    Figure  3.   Histological observation of sex reversal in E. tetradactylum

    a. Prophase of sex reversal, showing the gonadal cross section; b. Partial magnification of a, showing the spawning board, oviposition plate and oogonia; c. Partial magnification of a, showing the testis; d. Partial magnification of c, showing the seminiferous lobules; e. Metaphase of sex reversal, showing the gonadal cross section; f. Partial magnification of e, showing theovary; g. Partial magnification of e, showing the seminiferous lobules and intralobular interstitium; h. Partial magnification of e, showing the sperm; i. Telophase of sex reversal, showing the gonadal cross section; j. Partial magnification of I, showing the seminiferous lobules at the margin of the gonads; Bv. Blood vessel; Ct. Connective tissue; O. Ovary; Oc. Ovarian cavity; Oo. Oogonia; P2. Oocyte at Phase II; Sb. Spawning board; Sp. Sperm; T. Testis

    图  4   四指马鲅性逆转过程中的细胞凋亡 (绿色荧光)

    a. 性逆转早期,示精巢侧;b. 性逆转早期,示卵巢侧;c. 性逆转中期,示精巢侧;d. 性逆转中期,示卵巢侧;e. 性逆转晚期,示精巢侧;f. 性逆转晚期,示卵巢侧

    Figure  4.   Apoptosis during sex reversal in E. tetradactylum (Green fluorescence)

    a. Prophase of sex reversal, showing the testis side; b. Prophase of sex reversal, showing the ovary side; c. Metaphase of sex reversal, showing the testis side; d. Metaphase of sex reversal, showing the ovary side; e. Telophase of sex reversal, showing the testis side; f. Telophase of sex reversal, showing the ovary side

    表  1   四指马鲅各形态性状和性别比例统计

    Table  1   Morphometric traits and sex ratio of E. tetradactylum n=228

    性别
    Sex
    体质量
    Body mass/g
    全长
    Total length/cm
    体长
    Body length/cm
    体高
    Body height/cm
    样本量
    Sample size/尾
    比例
    Percentage/%
    雄性 (♂)
    Male
    192.69±74.65 26.40±3.15 21.16±2.51 5.64±0.82 195 85.53
    雌性 (♀)
    Female
    191.34±79.00 26.54±3.80 21.38±2.93 5.46±0.68 13 5.70
    雌雄同体 (♀/♂)
    Hermaphrodite
    193.71±68.76 26.30±2.37 21.32±1.77 5.81±0.85 20 8.77
    下载: 导出CSV
  • [1]

    DEVLIN R H, NAGAHAMA Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences[J]. Aquaculture, 2002, 208(3): 191-360. doi: 10.1016/S0044-8486(02)00057-1

    [2]

    ROSS R M. The evolution of sex-change mechanisms in fishes[J]. Envirol Biol Fish, 1990, 29(2): 81-93. doi: 10.1007/BF00005025

    [3]

    SHIHAB I, GOPALAKRISHNAN A, VINEESH N, et al. Histological profiling of gonads depicting protandrous hermaphroditism in Eleutheronema tetradactylum[J]. J Fish Biol, 2017, 90(6): 2402-2411. doi: 10.1111/jfb.13324

    [4]

    FRISCH A. Sex-change and gonadal steroids in sequentially-hermaphroditic teleost fish[J]. Rev Fish Biol Fish, 2004, 14(4): 481-499. doi: 10.1007/s11160-005-3586-8

    [5]

    AVISE J C, MANK J E. Evolutionary perspectives on hermaphroditism in fishes[J]. Sex Dev, 2009, 3(2/3): 152-163.

    [6] 陈淑吟, 张志勇, 刘海林, 等. 池养黑鲷性逆转组织学观察[J]. 海洋科学, 2017, 41(7): 51-58. doi: 10.11759/hykx20161214005
    [7] 李加儿, 区又君. 深圳湾沿岸池养黄鳍鲷的繁殖生物学[J]. 浙江海洋学院学报(自然科学版), 2000, 19(2): 139-143.
    [8]

    OH S, KANG H, LEE C, et al. Sex reversal and masculinization according to growth in longtooth grouper Epinephelus bruneus[J]. Dev Reprod, 2013, 17(2): 79-85. doi: 10.12717/DR.2013.17.2.079

    [9] 施兆鸿, 王建钢, 高露姣, 等. 南海黄鲷性腺发育的初步研究[J]. 台湾海峡, 2006, 25(3): 353-359.
    [10] 杨文云, 顾忠旗, 王春华, 等. 黄鳝性逆转过程中性腺形态学初步观察[J]. 动物医学进展, 2004, 25(6): 113-115. doi: 10.3969/j.issn.1007-5038.2004.06.037
    [11] 孙典荣, 陈铮. 南海鱼类检索[M]. 北京: 海洋出版社, 2013: 380-382.
    [12]

    WANG J, PENG S, FEI Y. Low mtDNA Cytb diversity and shallow population structure of Eleutheronema tetradactylum in the East China Sea and the South China Sea[J]. Biochem Syst Ecol, 2014, 55(2): 268-274.

    [13]

    MOORE B R, STAPLEY J, ALLSOP Q, et al. Stock structure of blue threadfin Eleutheronema tetradactylum across northern Australia, as indicated by parasites[J]. J Fish Biol, 2015, 78(3): 923-936.

    [14]

    BHARADHIRAJAN P, GOPALAKRISHNAN A, RAJA K, et al. Prevalence of copepod parasite (Lernaeenicus polynemi) infestation on Eleutheronema tetradactylum from Pazhayar coastal waters, southeast coast of India[J]. J Coastal Life Med, 2013, 1(4): 278-281.

    [15]

    HENA M K A, IDRIS M H, WONG S K, et al. Growth and survival of Indian salmon Eleutheronema tetradactylum (Shaw, 1804) in brackish water pond[J]. J Fish Aquat Sci, 2011, 6(4): 479-484. doi: 10.3923/jfas.2011.479.484

    [16] 林先智, 区又君, 李加儿, 等. 马鲅科 (Polynemidae) 鱼类的研究现状及展望[J]. 生物学杂志, 2015, 32(4): 83-87. doi: 10.3969/j.issn.2095-1736.2015.04.083
    [17]

    THIRUMARAISELVI R, THANGARAJ M. Genetic diversity analysis of Indian salmon, Eleutheronema tetradactylum from South Asian countries based on mitochondrial COI gene sequences[J]. Not Sci Biol, 2015, 7(4): 417-422. doi: 10.15835/nsb749668

    [18] 周慧, 李加儿, 区又君, 等. 四指马鲅视网膜早期发育的组织学研究[J]. 动物学杂志, 2017, 52(3): 458-467.
    [19] 谢木娇, 区又君, 温久福, 等. 四指马鲅消化道黏液细胞的发育规律[J]. 南方农业学报, 2016, 47(7): 1222-1227. doi: 10.3969/j:issn.2095-1191.2016.07.1222
    [20] 谢木娇, 区又君, 温久福, 等. 四指马鲅胚胎发育观察[J]. 应用海洋学学报, 2016, 35(3): 405-411. doi: 10.3969/J.ISSN.2095-4972.2016.03.012
    [21] 蓝军南, 李俊伟, 区又君, 等. 四指马鲅泌尿系统胚后发育组织学研究[J]. 海洋渔业, 2020, 42(1): 35-44. doi: 10.3969/j.issn.1004-2490.2020.01.004
    [22] 区又君, 谢木娇, 李加儿, 等. 广东池塘培育四指马鲅亲鱼初次性成熟和苗种规模化繁育技术研究[J]. 南方水产科学, 2017, 13(4): 97-104. doi: 10.3969/j.issn.2095-0780.2017.04.012
    [23] 刘奇奇, 温久福, 区又君, 等. 急性操作胁迫对四指马鲅幼鱼肝脏组织结构和氧化应激的影响[J]. 南方水产科学, 2017, 13(5): 103-109. doi: 10.3969/j.issn.2095-0780.2017.05.014
    [24] 刘奇奇, 温久福, 区又君, 等. 急性离水操作胁迫对四指马鲅 (Eleutheronema tetradactylum) 幼鱼组织结构和氧化应激的影响[J]. 渔业科学进展, 2017, 38(6): 48-55. doi: 10.11758/yykxjz.20160912002
    [25] 谢木娇, 区又君, 温久福, 等. 四指马鲅 (Eleutheronema tetradactylum) 受精卵和仔鱼对不同盐度的耐受性[J]. 生态学杂志, 2016, 35(5): 1263-1267.
    [26] 李俊伟, 区又君, 温久福, 等. 室内循环水和池塘养殖四指马鲅的生长性能及形态性状与体质量的相关性研究[J]. 南方水产科学, 2020, 16(1): 27-35. doi: 10.12131/20190155
    [27]

    BALLAGH A C, WELCH D J, NEWMAN S J, et al. Stock structure of the blue threadfin (Eleutheronema tetradactylum) across northern Australia derived from life-history characteristics[J]. Fish Res, 2012, 121/122: 63-72. doi: 10.1016/j.fishres.2012.01.011

    [28]

    CHOPELET J, WAPLES R, MARIANI S. Sex change and the genetic structure of marine fish populations[J]. Fish Fish, 2009, 10(3): 329-343. doi: 10.1111/j.1467-2979.2009.00329.x

    [29] 李长有. 温度对剑尾鱼性逆转的影响[J]. 松辽学刊 (自然科学版), 2001(1): 70-72.
    [30] 方永强, 林秋明. 17-α甲基睾酮对赤点石斑鱼性逆转的影响[J]. 台湾海峡, 1996, 12(2): 185-189.
  • 期刊类型引用(2)

    1. 王逗,游锦若,申铉日,李永成,夏光华,何燕富,张雪莹. 橙黄小单孢菌(Micromonospora aurantiaca)几丁质酶基因的克隆、表达、鉴定及应用. 南方水产科学. 2023(05): 143-153 . 本站查看
    2. 权淑静,杨文玲,雷高,王佰涛,刁文涛,梁博,刘德海. 产几丁质酶高原菌的分离鉴定及酶学性质初步研究. 中国酿造. 2023(11): 152-156 . 百度学术

    其他类型引用(1)

图(4)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 3
出版历程
  • 收稿日期:  2020-04-26
  • 修回日期:  2020-06-04
  • 录用日期:  2020-05-29
  • 网络出版日期:  2020-09-28
  • 刊出日期:  2020-12-03

目录

/

返回文章
返回