Study on microstructure and growth characteristics of Uroteuthis edulis statolith in East China Sea
-
摘要:
文章根据2017年和2018年9月至翌年3月在东海采集的剑尖枪乌贼 (Uroteuthis edulis) 样本,对其耳石形态进行观察与测量,并结合日龄信息对耳石微结构及生长特征进行了研究。结果表明,耳石生长纹由明暗相间的环纹组成,依据生长纹的宽度及亮度划分为后核心区、暗区和外围区。通过耳石日龄进行逆推发现春、夏产卵群体为优势群体,优势群体间耳石各形态参数差异显著 (P<0.05)。主成分分析表明,耳石总长 (TSL) 和最大宽度 (MW) 可作为表征春、夏产卵群体耳石长度和宽度的指标。春、夏产卵群体TSL生长模型采样年间差异均显著 (P<0.05),春季产卵群体分别以逻辑斯蒂和对数生长模型拟合最佳,夏季产卵群体以逻辑斯蒂和线性拟合最佳。春、夏产卵群体MW生长模型采样年间差异均不显著 (P>0.05),以逻辑斯蒂生长模型拟合最佳,性别间差异不显著 (P>0.05)。180~240 d,春季产卵群体TSL和MW的生长速率均大于夏季产卵群体。
Abstract:Based on Uroteuthis edulis samples collected from September 2017 to March 2018 and from September 2018 to March 2019, we observed the statolith morphology, and studied the microstructure and growth characteristics of the otolith. The results show that the statolith growth increments were composed of light and dark rings, and could be divided as postnuclear zone, dark zone and peripheral zone according to their width and brightness. According to the statolith age, the spawning population in spring and summer was the dominant cohort, and the morphological variables of the statolith between the two cohorts were significantly different (P<0.05). Principal component analysis shows that the total length (TSL) and maximum width (MW) of the otoliths could be used as indicators to characterize the length and width of statoliths in spring and summer spawning cohorts. The TSL growth function of the spring and summer spawning cohorts was significantly different in the two years (P<0.05). The former best fitted with Logistic and logarithmic growth functions, and the latter best fitted with Logistic and linear functions. The MW growth function of the spawning population in spring and summer showed no significant difference (P>0.05). The logistic growth function was the best fit and the gender difference was not significant (P>0.05). During the 180~240 days, the growth rate of spring and summer spawning cohorts both showed a downward trend, and the growth rates of TSL and MW in spring spawning cohorts were greater than those in summer.
-
Keywords:
- Uroteuthis edulis /
- statolith /
- Microstructure /
- Growth characteristics /
- East China Sea
-
隆背笛鲷 (Lutjanus gibbus) 隶属笛鲷科、笛鲷属,广泛分布于热带和亚热带海域[1],具有性成熟早、生长快、寿命长 (可高达38龄) 等特点,是存在雪卡毒素风险的鱼类[2-3],也是印度-太平洋海域商业渔业、手工渔业、休闲渔业和土著渔业的重要目标物种[2]。隆背笛鲷占西太平洋岛国图瓦卢手钓渔获捕捞的36%[3]和波纳佩渔业生物量的26%[4],也是我国南沙群岛美济礁海域手钓和刺网的优势物种[5]。隆背笛鲷肉质鲜美、经济价值高,促使渔民对其进行高强度捕捞而忽视了种群的可持续性[6];此外,产卵聚集是其生活史中的必须生态过程[7],也导致其被过度捕捞[3]。
隆背笛鲷是一种典型的珊瑚礁鱼类。我国南海珊瑚礁生态系统出现了严重退化[8],而鱼类是珊瑚礁生态系统的顶级消费者,是其关键组成部分[9]。对鱼类资源的保护尤其对优势关键物种的保护是珊瑚礁生态系统保护的重要环节[10]。为更好地制定保护和管理措施,需要了解鱼类的基础生物学信息[11]。然而,国内鲜见有关隆背笛鲷的生物学研究。本研究对2020年于南沙美济礁采集的隆背笛鲷样本的雌雄比、性成熟体长、繁殖力、食性组成、营养级和营养生态位等生物学特征进行了分析,以期为其渔业资源、珊瑚礁生态系统的保护和管理提供理论依据,同时也为其养殖提供有益参考。
1. 材料与方法
1.1 调查方法与生物学测量
隆背笛鲷样本是雇佣渔民于2020年7月在南沙美济礁瀉湖海域潜水捕捞获得。美济礁 (115°32'E、9°54'N) 位于南沙群岛中东部海域,属于典型半封闭环礁,东西长约9 km,南北宽约6 km,瀉湖环礁内水深20~30 m,礁坪面积14.69 km2,潟湖面积 30.62 km2,环礁总面积约56.6 km2。样本经速冻后,由科考船“南锋”号带回,进行生物学测量 (测量体长、体质量、性腺质量等数据)。体长精确至1 mm,体质量和性腺质量精确至0.01 g。性腺发育期采用I—VI期性腺成熟度划分标准,规定性腺发育期达III期及以上个体为性成熟个体;摄食等级采用0~4级划分标准[12]。两性的体长分布差异采用Kolmogorov-Smirnov test (K-S test) 检验。
1.2 繁殖
卡方检验用于检验雌雄比是否偏离1∶1[13],显著性水平为P<0.05。
性腺发育期III—VI期的鱼类均记为成熟个体。将鱼的体长划分为10 mm的区间来计算50%性成熟体长 (L50),以Logistic方程拟合各体长区间性成熟百分比,计算公式为:
$$ P=100/{1+{\rm{exp}}[-a\cdot(L-L_{50})]} $$ (1) 式中:P为成熟百分比;a为参数;L为体长。
卵径测量。先在解剖镜下对随机选取的性腺发育期为IV期的卵母细胞进行拍照,然后用FishBC 3.0软件对所拍照的卵母细胞进行测量。
繁殖力 (F) 的计算采用质量法,对准确称质量后性腺发育期为IV期的卵巢,随机称取0.2 g,并计数所有有卵黄的卵母细胞,计算其繁殖力。体长 (L) 和体质量 (W) 的相对繁殖力分别用F/L和F/W计算。
1.3 食性
鱼类在实验室解剖后,现场识别其胃含物,鉴定区分到大类。
解剖时从鱼类背部选取一块白色肌肉,用清水冲洗干净,然后在60 ℃下烘烤48 h,再将其研磨成均匀粉末用于同位素测量。所有样品的碳、氮稳定同位素 (δ13C、δ15N) 分析均在中国科学院水生生物研究所进行,所用仪器为美国Thermo公司的元素分析仪和 Delta Plus Finnigan MAT 253同位素质谱仪,测定样品中的δ13C和δ15N,计算公式如下:
$$ \delta X=\left(\frac{{R}_{\mathrm{s}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}}}{{R}_{\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{d}}}-1\right)\times 1\;000 $$ (2) 式中:δ表示稳定同位素丰度;X为13C或15N;R为13C/12C或15N/14N;Rsample为样品所测得的同位素比值;Rstandard为标准物质的同位素比值;δ13C和δ15N测定的标准物质分别为PDB (美洲拟箭石) 和大气氮。每测定10个样品插入1个标准样品。Rsample营养级的计算公式为:
$$ {\rm{TL}}=\left(\frac{{\delta }^{15}{\mathrm{N}}_{\mathrm{s}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}}-{\delta }^{15}{\mathrm{N}}_{\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}}}{{\rm{TEF}}}\right)+ λ $$ (3) 式中:TL为计算生物的营养级;δ15Nsample和δ15Nbaseline分别为鱼类样品和选取的基准生物的氮稳定同位素比值;λ为基准生物营养级,本研究选取植食性鱼类灰额刺尾鱼 (Acanthurus glaucopareius) 作为基准生物,发现本海域灰额刺尾鱼 (δ15N=3.93) 是植食性鱼类δ15N最低的鱼类 (λ=2);TEF为相邻营养级的富集度,取值为3.4‰[14]。
利用R软件的SIAR和SIBER[15]软件包计算隆背笛鲷的营养生态位。本研究选取δ13C范围 (CRb)、δ15N范围 (NRb)、凸多边形面积 (Total area of convex hull, TA) [16]和校正标准椭圆 (Corrected standard ellipse area, SEAc) [15] 4种营养生态位定量指标进行分析。CRb和NRb分别为隆背笛鲷的δ13C和δ15N的最大值与最小值之差,描述鱼类利用食物资源碳、氮的范围。TA为所有隆背笛鲷个体δ13C-δ15N二维空间包围构成的凸多边形面积,表示鱼类占据的生态位总大小。SEAc为隆背笛鲷个体δ13C-δ15N二维空间包围大概40%数据点的椭圆面积,表示鱼类占据的核心生态位的大小。
2. 结果
2.1 体长-体质量特征
共采集隆背笛鲷样本67尾,体长介于115~270 mm (平均198.08 mm);体质量介于51.41~665.43 g (平均256.7 g) (表1)。独立样本t检验表明,雌、雄隆背笛鲷体长和体质量的差异均不显著 (P>0.05),但雌性的平均体长和体质量均大于雄性 (表1)。隆背笛鲷两性的体长分布差异显著 (P<0.05),雌性以大个体分布为主,而雄性的中大型个体较多且分布较均匀 (图1)。
表 1 美济礁海域隆背笛鲷体长、体质量特征Table 1. Body length and body mass of L. gibbus from Meiji Reef群体
Group数量
Number体长范围
Body length range/mm平均体长
Average body length/mm体质量范围
Body mass range/g平均体质量
Average body mass/g雌性 Female 30 140~250 215.63 72.51~411.79 303.92 雄性 Male 15 160~270 203.33 120.99~665.43 282.87 雌雄不辨 Unsex 22 115~240 170.55 51.41~465.58 174.46 总体 Total 67 115~270 198.08 51.41~665.43 256.7 2.2 性比与性成熟体长
美济礁海域共鉴别雌、雄隆背笛鲷分别为30和15尾,无法鉴别雌、雄性样本22尾 (表1),雌雄比为2∶1,不符合1∶1的理论值 (P<0.05)。
美济礁隆背笛鲷雌、雄性的L50分别为204.757和201.623 mm,雌性略大于雄性 (图2)。
2.3 卵径特征
本研究随机挑选了2尾性腺发育期为IV期的个体性腺进行卵径测量 (共测量306粒),卵径介于0.176~0.419 mm (平均0.296 mm)。卵径频率分布显示,美济礁隆背笛鲷的卵径频率分布为典型单峰型分布 (图3)。
2.4 繁殖力
本研究共获取了21尾性腺发育期达到IV期的隆背笛鲷性腺,计算了所有个体的繁殖力。繁殖力为51 858 粒 (体长215 mm)~276 205粒 (体长230 mm),平均139 145 粒。体长的相对繁殖力为241.20 粒∙cm−1 (体长215 mm)~1 200.89 粒∙cm−1 (体长230 mm),平均611.61粒∙cm−1。体质量的相对繁殖力为164.48 粒∙g−1 (体长215 mm)~763.53 粒∙g−1 (体长230 mm),平均407.72粒∙g−1。
美济礁隆背笛鲷的繁殖力与体长、体质量成显著的幂函数关系 (图4)。
2.5 食性
本研究67尾鱼中仅有7尾存在胃含物,空胃率高达89.56%。胃含物分析表明,螃蟹出现率最高 (4次),是美济礁隆背笛鲷最主要的食物,其他胃含物均仅出现1次,分别是鱼、螺、贝、虾和珊瑚沙。
随机选取了15尾隆背笛鲷 (体长140~236 mm) 进行稳定同位素分析,δ15N介于7.13‰~9.27‰,平均8.44‰;δ13C介于−15.75‰~−14.11‰,平均−14.11‰ (表2)。独立样本t检验表明,美济礁隆背笛鲷性成熟 (7尾) 与未性成熟 (8尾) 个体δ15N和δ13C均无显著性差异 (P>0.05)。δ15N与体长呈现显著正相关性 (P<0.05),即随体长的增加而增加;δ13C与体长无相关性 (P>0.05,图5),说明隆背笛鲷食性随个体的发育发生了转变。通过营养级计算公式,使用δ15N计算得到隆背笛鲷营养级介于2.94~3.57 (平均3.33),性成熟个体营养级均值为3.40,未性成熟个体营养级均值为3.27,较性成熟个体小了0.13个营养级。
表 2 美济礁隆背笛鲷的δ13C、δ15N和营养生态位指标Table 2. δ13C, δ15N values and trophic niche metrics for L. gibbus from Meiji Reef群体
Group数量
Number碳稳定同位素 δ13C/‰ 氮稳定同位素δ15N/‰ δ13C范围 CRb/‰ δ15N范围 NRb/‰ 凸多边形面积TA/‰2 校正标准椭圆SEAC/‰2 未性成熟 Immature 8 −14.27 8.24 2.49 1.15 2.79 2.30 性成熟 Mature 7 −13.94 8.68 2.91 1.30 1.82 1.61 总体 Total 15 −14.11 8.44 3.41 2.14 4.51 2.17 从TA来看,美济礁隆背笛鲷占据的营养生态宽幅为4.51‰2,性成熟个体为1.82‰2,未性成熟个体为2.79‰2;从SEAC的面积来看,整体营养生态宽幅为2.17‰2;性成熟个体为1.61‰2,未性成熟个体为2.30‰2 (表2)。这说明性成熟个体的营养生态宽幅较未性成熟个体明显变窄,食性变得更加专一。
3. 讨论
L50是渔业管理的重要参数,也是制定鱼类最小可捕规格的重要参考依据。本研究中隆背笛鲷雌、雄性L50均约为200 mm,与其他水域的研究结果较相似,如密克罗尼西亚水域雌、雄分别为188.77和182.62 mm[17];新喀里多尼亚水域分别为235.30和226.52 mm[3];美属萨摩亚水域未区分雌雄,为218.62 mm[18]。此外,所有研究结果均显示雌性性成熟体长大于雄性,雌性更大个体参与繁殖有利于后代的成活。
卵径频率分布一般可以说明鱼类的产卵类型。本研究发现美济礁隆背笛鲷的卵径频率分布为单峰型,说明其为同步发育卵巢[19]。West[20]指出卵径频率分布只能是繁殖方式的一个佐证,最终需要通过性腺组织切片来验证。Nanami等[21]通过对隆背笛鲷性成熟性腺进行组织切片分析,发现大量未被吸收的产后卵泡,这一结果充分证实隆背笛鲷为分批繁殖鱼类。而其性腺为同步发育,因此可以认为隆背笛鲷是同步分批产卵鱼类。
卵径大小是鱼类繁殖策略的重要组成部分,是鱼类对单个后代的繁殖投入。本研究发现隆背笛鲷的卵径特别小,平均卵径不到0.3 mm,这一结果与同属鱼类金焰笛鲷 (L. fulviflamma) 类似,其IV期卵母细胞的最大卵径为0.42 mm[22],与本研究的0.419 mm基本一致。
卵径小一般意味着繁殖力大。本研究的最大繁殖力为276 205粒。繁殖力是鱼类种群评估的重要参数和评估鱼类补充量的重要计算依据。有关隆背笛鲷繁殖力的研究较少,仅Longenecker和Langston[17]对2尾隆背笛鲷性腺进行了繁殖力评估。本研究对21尾隆背笛鲷进行了繁殖力分析,发现其体长和体质量均与繁殖力呈显著幂函数关系,这一规律与其他笛鲷属鱼类一致,如金焰笛鲷[22]、西大西洋笛鲷 (L. campechanus)[23]、画眉笛鲷 (L. vitta)[24]等。笛鲷为繁殖力很强的鱼类,其最大与最小的繁殖力可相差2个数量级[25]。本研究的最大繁殖力和最小繁殖力相差1个数量级,但最大个体远小于Fishbase记录的最大全长 (500 mm),因此也符合这一规律。这也证实了大个体鱼类在繁殖中起主导和决定性的作用。Barneche等[26]通过分析342种海洋鱼类发现,79.1%的鱼类繁殖能量输出随个体大小呈超比例的增加,成幂函数关系。体长61 cm的美国红鱼 (L. campechanus) 怀卵量为9.3×106粒,相当于212尾体长为42 cm小个体的总怀卵量[27]。此外,像隆背笛鲷这一类具有季节性集群产卵的鱼类,大个体在繁殖过程中占据主导地位,可通过抑制小个体同类繁殖来维护种群结构的稳定[27]。
食性研究可以了解鱼类在生态系统中的能量流动,确定鱼类在生态系统中的位置[28]。美济礁隆背笛鲷主要摄食蟹类,这一结果与Nanami和Shimose[29]的研究吻合,其分析了4种笛鲷属鱼类食性,并从形态学方面证实了隆背笛鲷以蟹类为食的原因。隆背笛鲷拥有较高的体高、短的圆锥状牙齿和较小的颌结构,这决定其不具备较大的咬合力,也导致其更容易捕获底栖生物如螃蟹和虾类等[28]。
食性转变是鱼类生活史中的普遍现象[30]。本研究通过稳定同位素分析发现,隆背笛鲷食性随个体大小发生了转变,这一结果不仅与其他隆背笛鲷的研究[31]相似,也与墨西哥笛鲷 (L. guttatus)[32]、L. peru[33]、巴哈马笛鲷 (L. synagris)[17]、双色笛鲷 (L. analis)[34]、西大西洋笛鲷[35]等研究结果一致。无论是隆背笛鲷还是其他笛鲷属鱼类,其摄食鱼类比例均随着个体发育逐渐增加。本研究也证实了这一观点,美济礁隆背笛鲷性成熟的个体营养生态位宽度较未性成熟个体窄,说明其食性来源更窄,更多摄食鱼类。另外,摄食高营养级的鱼类也导致了性成熟个体的营养级比未性成熟个体高。这一结果与墨西哥笛鲷[32]研究相似,小个体的营养级为3.8,大个体为4.0,同时生态位宽度也明显较小个体窄。食性的转变与个体的形态、行为、栖息地等的改变息息相关[30]。Valle-Lopez等[32]研究表明,笛鲷食性的转变是因为不同大小的鱼类形态学存在差异。笛鲷捕食选择性与嘴的直径相关,小个体鱼类只有较小口裂,导致其只能捕食小的食物如甲壳类,而大个体鱼类口裂较大,能够捕食鱼类等大个体食物;此外,大个体鱼类的游泳和捕食猎物的能力也会明显增加。食性的转变是鱼类为了减少竞争、增加共存的一种潜在捕食生存策略[33]。
本文对隆背笛鲷繁殖和食性进行了初步研究,为其生物学研究提供了基础资料,并为其资源的保护、管理和可持续发展提供理论依据,也为今后这一优质种质物种的养殖提供基础的理论参考。
-
表 1 剑尖枪乌贼采样信息
Table 1 Sampling information of U. edulis
采样时间
Sampling time样本量
Number/尾胴长分布
Mantle range/mm2017年9月 September 2017 65 69~198 2017年10月 October 2017 28 75~135 2017年11月 November 2017 40 110~234 2017年12月 December 2017 49 86~223 2018年1月 January 2018 61 93~180 2018年2月 February 2018 30 70~158 2018年3月 March 2018 40 92~154 2018年9月 September 2018 101 62~198 2018年10月 October 2018 78 74~223 2018年11月 November 2018 30 95~170 2018年12月 December 2018 36 86~222 2019年1月 January 2019 44 60~227 2019年2月 February 2019 36 64~143 2019年3月 March 2019 80 58~164 表 2 剑尖枪乌贼耳石形态参数范围
Table 2 Range of statolith morphological variables of U. edulis
种群
Population形态变量
Statolith morphological variable2017年 2018年 最大值
Maximum最小值
Minimum平均值
Average最大值
Maximum最小值
Minimum平均值
Average春季产卵群体
Spring cohort of hatching耳石总长 TSL 1 844.85 1 235.61 1 668.59 1 801.94 1 351.45 1 596.00 翼区长 WL 1 497.33 1 059.71 1 278.37 1 402.94 986.78 1 221.98 吻区长 RL 823.75 420.47 659.79 819.45 467.82 636.64 最大宽度 MW 1 413.10 785.13 1 180.76 1 394.36 849.50 1 110.71 吻区宽 RW 499.52 326.07 419.12 471.94 321.89 392.38 翼区宽 WW 671.52 300.35 510.79 665.01 248.84 475.27 背侧区长 DLL 1 159.45 763.83 1 009.71 1 161.53 731.33 940.48 吻侧区长 RLL 1 550.46 1 007.74 1 336.71 1 522.09 1 121.98 1 313.07 侧区长 LDL 1 266.43 827.60 1 069.12 1 159.16 883.07 1 014.24 夏季产卵群体
Summer cohort of hatching耳石总长 TSL 1 737.59 1 394.36 1 572.81 1 754.75 1 372.90 1 513.06 翼区长 WL 1 308.56 1 003.94 1 166.24 1 385.78 995.36 1 163.41 吻区长 RL 733.66 467.65 621.41 798.05 484.83 583.37 最大宽度 MW 1 240.19 905.27 1 030.70 1 209.87 862.37 993.33 吻区宽 RW 467.67 227.55 351.13 420.45 291.74 342.76 翼区宽 WW 565.67 373.28 469.41 579.19 317.51 425.59 背侧区长 DLL 1 099.44 763.87 885.55 1 010.42 721.09 853.36 吻侧区长 RLL 1 391.98 1 090.39 1 256.22 1 468.65 1 080.02 1 254.73 侧区长 LDL 1 095.17 906.14 985.01 1 065.45 868.01 960.55 表 3 剑尖枪乌贼耳石形态参数的4个主成分负荷值和贡献率
Table 3 Loadings of four principal components for statolith morphological variables of U. edulis
年份
Year形态变量
Statolith morphological variable春季产卵群体-主成分
Principal component of spring hatching夏季产卵群体-主成分
Principal component of summer hatching1 2 3 4 1 2 3 4 2017 耳石总长 TSL 0.97 0.02 0.01 −0.01 0.89 −0.12 −0.22 −0.17 翼区长 WL 0.82 0.31 −0.23 −0.36 0.84 −0.40 −0.07 0.16 吻区长 RL 0.75 −0.58 0.06 −0.20 0.77 −0.20 −0.30 0.16 最大宽度 MW 0.96 −0.05 0.03 0.07 0.83 0.18 0.40 0.02 吻区宽 RM 0.67 −0.26 −0.52 0.43 0.47 0.62 −0.03 0.45 翼区宽 WM 0.66 −0.19 0.66 0.13 0.54 −0.48 0.52 −0.12 背侧区长 DLL 0.93 −0.15 0.00 0.06 0.76 0.20 0.45 0.13 吻侧区长 RLL 0.91 0.25 −0.09 −0.21 0.79 −0.04 −0.52 0.00 侧区长 LDL 0.58 0.73 0.17 0.27 0.60 0.47 −0.05 −0.63 贡献率 Contribution rate/% 66.75 12.85 8.90 5.45 54.09 12.53 11.60 7.87 累计贡献率 Cumulative contribution rate/% 66.75 79.60 88.50 93.95 54.09 66.62 78.22 86.10 2018 耳石总长 TSL 0.97 −0.08 −0.02 −0.07 0.96 −0.09 −0.10 0.16 翼区长 WL 0.85 −0.37 0.16 −0.18 0.89 −0.23 −0.28 0.11 吻区长 RL 0.80 −0.46 −0.09 0.24 0.88 −0.17 0.27 0.24 最大宽度 MW 0.94 0.18 −0.09 0.09 0.92 0.27 0.14 −0.11 吻区宽 RM 0.67 0.30 0.53 0.38 0.72 −0.41 0.43 −0.26 翼区宽 WM 0.71 0.24 −0.61 0.08 0.48 0.81 0.14 0.21 背侧区长 DLL 0.90 0.18 −0.09 0.15 0.88 0.31 0.12 −0.19 吻侧区长 RLL 0.90 −0.27 0.10 −0.18 0.87 −0.40 −0.17 0.11 侧区长 LDL 0.75 0.41 0.15 −0.46 0.78 0.23 −0.46 −0.27 贡献率 Contribution rate/% 70.38 9.04 8.22 5.77 69.27 14.29 7.09 3.84 累计贡献率 Cumulative contribution rate/% 70.38 79.42 87.64 93.41 69.27 83.56 90.65 94.49 表 4 春、夏季产卵群体耳石总长和最大宽度生长模型的参数及赤池信息量比较
Table 4 Comparison of parameters and AIC for TSL and MW growth models of spring and summer hatching cohort
种群
Population形态变量
Morphological variable年份
Year生长模型
Growth pattern模型参数 Model parameter a b c R2 AIC 春季产卵群体
Spring cohort of hatching耳石总长 TSL 2017 线性 Line 1 150.94 2.39 0.30 369.33 指数 Exponential 1 232.41 0.003 0.29 369.69 对数 Logarithm 536.71 −1216.58 0.31 368.10 幂函数 Power 307.49 0.32 0.31 368.50 逻辑斯蒂 Logistic 1 718.77 0.06 147.68 0.43 360.60 von Bertalanffy 1 673.35 −0.002 9 536.20 0.21 383.95 2018 线性 Line 957.28 3.10 0.53 726.01 指数 Exponential 1 075.81 0.002 0.52 726.77 对数 Logarithm 649.40 −1861.60 0.53 724.64 幂函数 Power 186.10 0.40 0.53 725.10 逻辑斯蒂 Logistic 3 495.23 0.003 256.28 0.52 726.18 von Bertalanffy 1 595.32 −0.002 9 718.77 0.47 791.55 最大宽度 MW 2017—2018 线性 Line 419.87 3.40 0.47 1137.5 指数 Exponential 617.92 0.003 0.45 1140.7 对数 Logarithm 731.21 −2773.46 0.49 1132.6 幂函数 Power 39.57 0.628 0.47 1135.6 逻辑斯蒂 Logistic 4 731.12 0.004 510.74 0.46 1139.7 Von Bertalanffy 1 133.30 −0.002 7 363.71 0.38 1219.0 夏季产卵群体
Summer cohort of hatching耳石总长 TSL 2017 线性 Line 1 029.26 2.75 0.27 461.47 指数 Exponential 1 118.80 0.002 0.27 461.77 对数 Logarithm 553.00 −1349.29 0.28 460.63 幂函数 Power 251.26 0.35 0.30 460.92 逻辑斯蒂 Logistic 1 607.02 0.09 149.93 0.35 454.81 von Bertalanffy 1 571.76 −0.002 9 280.15 0.18 479.48 2018 线性 Line 818.10 3.73 0.57 289.79 指数 Exponential 960.12 0.002 0.57 289.85 对数 Logarithm 700.44 −2146.00 0.57 289.92 幂函数 Power 135.23 0.46 0.57 289.81 逻辑斯蒂 Logistic 3 519.15 0.004 251.78 0.57 289.80 von Bertalanffy 1 521.39 −0.002 9 280.15 0.48 319.92 最大宽度 MW 2017—2018 线性 Line 520.24 2.54 0.42 705.25 指数 Exponential 624.50 0.002 0.42 705.75 对数 Logarithm 489.73 −1 564.90 0.43 704.55 幂函数 Power 79,32 0.48 0.42 704.83 逻辑斯蒂 Logistic 4 108.58 0.003 531.77 0.42 705.58 von Bertalanffy 1 013.12 −0.002 7 511.95 0.39 756.07 注:下划线代表选择的最适宜生长模型
Note: The underlines represent fitted growth model. -
[1] SIN Y M, YAU C, CHU K H. Morphological and genetic differentiation of two loliginid squids, Uroteuthis (Photololigo) chinensis and Uroteuthis (Photololigo) edulis (Cephalopoda: Loliginidae), in Asia[J]. J Exp Mar Biol Ecol, 2005, 369(1): 22-30.
[2] 陈新军, 王尧耕, 钱卫国. 中国近海重要经济头足类资源与渔业[M]. 北京: 科学出版社, 2013: 44-51. [3] JEREB P, ROPER C E. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Myopsid and Oegopsid squids[M]. Rome: Food and Agriculture Organization of the United Nations, 2010: 98-117.
[4] JEREB P, ROPER C E. Cephalopods of the Indian Ocean. A review. Part I. Inshore squids (Loliginidae) collected during the International Indian Ocean Expedition[J]. P Biol Soc Wash, 2006, 119(1): 91-136. doi: 10.2988/0006-324X(2006)119[91:COTIOA]2.0.CO;2
[5] 丁天明, 宋海棠. 东海剑尖枪乌贼生物学特征[J]. 浙江海洋学院学报(自然科学版), 2000, 19(4): 371-374. [6] 林静远, 刘必林, 王立权. 基于角质颚微结构的剑尖枪乌贼的日龄与生长[J]. 华东理工大学学报(自然科学版), 2019, 45(5): 775-782. [7] 刘宗祐. 利用形态测量法探讨剑尖枪锁管与台湾锁管族群分布结构之研究[D]. 基隆: 台湾海洋大学, 2005: 1-9. [8] WANG K Y, CHANG K Y, LIAO C H, et al. Growth strategies of the swordtip squid, Uroteuthis Edulis, in response to environmental changes in the Southern East China Sea: a cohort analysis[J]. B Mar Sci, 2013, 89(3): 677-698. doi: 10.5343/bms.2012.1044
[9] COLLINS M A, PIERCE G J. Size selectivity in the diet of Loligo forbesi (Cephalopoda: Loliginidae)[J]. J Mar Biol Assoc UK, 1996, 76(4): 1081-1090. doi: 10.1017/S0025315400040972
[10] 刘必林, 陈新军, 陆化杰, 等. 头足类耳石[M]. 北京: 科学出版社, 2011: 23-160. [11] CHEN X J, LU H J, LIU B L, et al. Age, growth and population structure of jumbo flying squid, Dosidicus gigas, based on statolith microstructure off the EEZ of Chilean waters[J]. J Mar Biol Assoc UK, 2010, 91(1): 229-235.
[12] 刘必林, 陈新军, 李建华. 东太平洋茎柔鱼的耳石微结构[J]. 水产学报, 2016, 40(8): 1211-1217. [13] 陆化杰, 陈新军, 方舟, 等. 西南大西洋阿根廷滑柔鱼耳石微结构及生长特性[J]. 渔业科学进展, 2012, 33(3): 15-25. doi: 10.3969/j.issn.1000-7075.2012.03.003 [14] 刘玉, 王雪辉, 杜飞雁, 等. 基于耳石微结构的南海鸢乌贼日龄和生长研究[J]. 热带海洋学报, 2019, 38(6): 62-73. [15] 李建华, 张鑫浩, 金岳, 等. 基于耳石和角质颚微结构的中国枪乌贼年龄与生长比较[J]. 海洋渔业, 2018, 40(5): 513-521. doi: 10.3969/j.issn.1004-2490.2018.05.001 [16] 王凯毅. 台湾东北部陆棚海域剑尖枪锁管生活史之研究[D]. 基隆: 台湾海洋大学, 2009: 22-47. [17] YAMAGUCHI T, AKETAGAWAK T, TAKAYAMA K, et al. Migratory routes of different sized swordtip squid (Uroteuthis edulis) caught in the Tsushima Strait[J]. Fish Res, 2019, 209: 24-31. doi: 10.1016/j.fishres.2018.08.008
[18] YAMAGUCHI T, KAWAKAMI Y, MATSUYAMA M. Migratory routes of the swordtip squid Uroteuthis edulis inferred from statolith analysis[J]. Aquat Biol, 2015, 24(1): 53-60. doi: 10.3354/ab00635
[19] YAMAGUCHI T, KAWAKAMI Y, MATSUYAMA M. Analysis of the hatching site and migratory behaviour of the swordtip squid (Uroteuthis edulis) caught in the Japan Sea and Tsushima Strait in autumn estimated by statolith analysis[J]. Mar Biol Res, 2018, 14(1): 105-112. doi: 10.1080/17451000.2017.1351616
[20] NATSUKARI Y, NAKANOSE T. Age and growth of loliginid squid Photololig edulis (Hoyle, 1885)[J]. J Exp Mar Biol Ecol, 1988, 116(2): 177-190. doi: 10.1016/0022-0981(88)90054-8
[21] 金岳. 基于硬组织的中国近海枪乌贼渔业生物学研究[D]. 上海: 上海海洋大学, 2018: 80-94. [22] NATSUKARI Y, TASHIRO M. Neritic squid resources and cuttlefish resources in Japan[J]. Mar Freshw Behav Phy, 1991, 18(3): 149-226. doi: 10.1080/10236249109378785
[23] 胡贯宇, 陈新军, 刘必林, 等. 茎柔鱼耳石和角质颚微结构及轮纹判读[J]. 水产学报, 2015, 39(3): 361-370. [24] FANG Z, CHEN X, SU H, et al. Exploration of statolith shape variation in jumbo flying squid, Dosidicus gigas, based on wavelet analysis and machine learning methods for stock classification[J]. B Mar Sci, 2018, 94(4): 1465-1482. doi: 10.5343/bms.2017.1176
[25] ARKHIPIKIN A I. Statoliths as ‘black boxes’ (life recorders) in squid[J]. Mar Freshw Res, 2005, 56(5): 573-583. doi: 10.1071/MF04158
[26] JACKSON G D, MOLTSCHZNIWSKYJ N A. The influence of ration level on growth and statolith increment width of the tropical squid Sepioteuthis lessoniana (Cephalopoda: Loliginidae): an experimental approach[J]. Mar Biol, 2001, 138(4): 819-825. doi: 10.1007/s002270000496
[27] DURHOLTZ M D, LIPINSKI M R. Influence of temperature on the microstructure of statoliths of the thumbstall squid Lolliguncula brevis[J]. Mar Biol, 2000, 136(6): 1029-1037. doi: 10.1007/s002270000298
[28] 马金, 陈新军, 刘必林, 等. 环境对头足类耳石微结构的影响研究进展[J]. 上海: 海洋大学学报, 2009, 18(5): 616-622. [29] JACKSON G D, WADLEY V A. Age, growth and reproduction of the tropical squid Nototodarus hawaiiensis (Cephalopoda: Ommastrephidae) off the North West Slope of Australia[J]. Fish Bull, 1998, 96(4): 779-787.
[30] 陈姿莹. 台湾东北部不同海域及不同渔法采样下剑尖枪锁管渔业生物学差异[D]. 基隆: 台湾海洋大学, 2013: 16-26 [31] SUKRAMONGKOL N, TSUCHIYA K, TOKAI T. Fishery biology of Loligo edulis in Moroiso Bay, Kanagawa Prefecture, Japan[J]. La Mer, 2006, 44(3/4): 131-143.
[32] 许语婕. 东海南部剑尖枪锁管之资源评估[D]. 基隆: 台湾海洋大学, 2015: 10-21. [33] ARKHIPKIN A I, BIZIKOV V A. Statolith in accelerometers of squids and cuttlefish[J]. Ruthenica, 1998, 8(1): 81-84.
[34] 贾涛, 陈新军, 李纲, 等. 哥斯达黎加外海茎柔鱼个体与耳石间生长关系研究[J]. 上海海洋大学学报, 2011, 20(3): 417-423. [35] FORSYTHE J W. Accounting for the effect of temperature on squid growth in nature: from hypothesis to practice[J]. Mar Freshw Res, 2004, 55(4): 331-339. doi: 10.1071/MF03146
[36] ARKHIPKIN A I, BJORKE H. Statolith shape and microstructure as indicators of ontogenetic shifts in the squid Gonatus fabricii (Oegopsida, Gonatidae) from the Norwegian Sea[J]. Polar Biol, 2000, 23(1): 1-10. doi: 10.1007/s003000050001
[37] 国家海洋局. 2017年中国海洋生态环境状况公告[EB/OL]. (2018-06-06). http://gc.mnr.gov.cn/201806/t20180619_1797652.html. [38] 生态环境部. 2018年中国海洋生态环境状况报告公[EB/OL]. (2019-05-29). https://hbdc.mee.gov.cn/hjyw/201905/W020190529623962003076.pdf. [39] LIU B L, CHEN X J, YI Q. A comparison of fishery biology of jumbo flying squid, Dosidicus gigas outside three Exclusive Economic Zones in the Eastern Pacific Ocean[J]. Chin J Oceanol Limnol, 2013, 31(3): 523-533. doi: 10.1007/s00343-013-2182-3
[40] UNAI M, CASIMIRO Q V, OSCAR S N. Age, growth and maturation of jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae) from the Gulf of California, Mexico[J]. Fish Res, 2004, 66(1): 31-47. doi: 10.1016/S0165-7836(03)00184-X
[41] 刘必林, 刘娜, 李建华, 等. 智利外海茎柔鱼角质颚微结构及其年龄与生长研究[J]. 南方水产科学, 2020, 16(1): 62-68. doi: 10.12131/20190116 [42] 方舟, 陈新军, 金岳. 基于角质颚的东、黄海头足类科类判别[J]. 上海海洋大学学报, 2019, 28(3): 365-372. -
期刊类型引用(3)
1. 王洪浩,陆化杰,何静茹,刘凯,陈炫妤,陈新军. 西北印度洋海域鸢乌贼耳石微结构及生长特性. 应用生态学报. 2022(12): 3419-3426 . 百度学术
2. 李楠,俞骏,方舟,陈新军,张忠. 基于耳石日龄信息的东海海域剑尖枪乌贼日龄、生长及种群结构研究. 水产学报. 2021(06): 887-898 . 百度学术
3. 谢慕原,徐汉祥,张涛,李鹏飞,徐开达,隋宥珍,刘连为,史会来,梁君. 养殖环境下曼氏无针乌贼生长的初步研究. 浙江海洋大学学报(自然科学版). 2021(05): 400-406 . 百度学术
其他类型引用(5)