我国热带典型海草床潜在致病菌群落结构及其毒力基因丰度的空间特征

邓益琴, 刘松林, 冯娟, 江志坚

邓益琴, 刘松林, 冯娟, 江志坚. 我国热带典型海草床潜在致病菌群落结构及其毒力基因丰度的空间特征[J]. 南方水产科学, 2020, 16(5): 1-9. DOI: 10.12131/20200068
引用本文: 邓益琴, 刘松林, 冯娟, 江志坚. 我国热带典型海草床潜在致病菌群落结构及其毒力基因丰度的空间特征[J]. 南方水产科学, 2020, 16(5): 1-9. DOI: 10.12131/20200068
DENG Yiqin, LIU Songlin, FENG Juan, JIANG Zhijian. Spatial characteristics of potential pathogenic bacteria community structure and their virulence gene abundance in typical tropical seagrass meadows of China[J]. South China Fisheries Science, 2020, 16(5): 1-9. DOI: 10.12131/20200068
Citation: DENG Yiqin, LIU Songlin, FENG Juan, JIANG Zhijian. Spatial characteristics of potential pathogenic bacteria community structure and their virulence gene abundance in typical tropical seagrass meadows of China[J]. South China Fisheries Science, 2020, 16(5): 1-9. DOI: 10.12131/20200068

我国热带典型海草床潜在致病菌群落结构及其毒力基因丰度的空间特征

基金项目: 国家自然科学基金项目 (31902415, 41806147);广东省自然科学基金项目 (2019A1515011833);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助 (2019TS04);中国水产科学研究院基本科研业务费专项资金 (2019ZD0707);广东省渔业生态环境重点实验室开放基金 (FEEL-2017-5)
详细信息
    作者简介:

    邓益琴 (1990—),女,博士,助理研究员,从事鱼类细菌病及防治技术研究。E-mail: yiqindd@126.com

    通讯作者:

    冯 娟 (1973—),女,博士,研究员,从事鱼类细菌病及防治技术研究。E-mail: jannyfeng@163.com

  • 中图分类号: Q 89

Spatial characteristics of potential pathogenic bacteria community structure and their virulence gene abundance in typical tropical seagrass meadows of China

  • 摘要:

    该研究利用16S rRNA扩增子测序技术分析了中国热带 (新村、黎安、潭门) 典型海草床水体潜在致病菌的群落结构,通过选择性培养基分析可培养弧菌和肠球菌的丰度,进一步利用定量PCR分析弧菌 (Vibrio) 和肠球菌 (Enterococcus) 典型毒力基因含量。结果发现,新村、黎安海草床水体潜在致病菌与潭门有显著差异;可培养弧菌和肠球菌及其典型毒力基因vhhtoxRaspAespgelE均呈现新村>黎安>潭门的趋势,而弧菌典型毒力基因ctxAtlhtrhvvp呈现黎安>新村>潭门的趋势。新村和黎安较高的人类活动强度如营养负荷,可能是导致其海草床致病菌和毒力基因丰度较高的重要原因,而新村和黎安的差异可能与不同的人类活动方式有关。

    Abstract:

    In this study, 16S rRNA gene sequencing was used to analyze the community structure of potential pathogenic bacteria in the typical tropical (Xincun, Li'an, Tanmen) seagrass meadows of the South China Sea. The abundances of Vibrio and Enterococcus were counted by selective medium analysis, and their typical virulence genes abundances were quantified by quantitative PCR. The results show that the putative bacterial pathogens in Xincun and Li'an clustered and then separated from those of Tanmen. Abundances of cultured Vibrio and Enterococcus, and the typical virulence genes contents of vhh, toxR, aspA, esp, and gelE followed a descending order of Xincun>Li'an>Tanmen, while the contents of Vibrio typical virulence genes of ctxA, tlh, trh, and vvp followed a descending order of Tanmen>Xincun> Li'an. Higher intensity human activities, such as nutrient load, probably are responsible for the higher abundance of pathogens and virulence genes of seagrass meadows in Xincun and Li'an, while the differences between Xincun and Li'an may be attributed to different types of human activities.

  • 藻毒素主要由海洋藻类产生,包括多种具有生物活性的化合物。这些化合物经食物链传递至贝类,并进一步威胁人类健康。根据化学结构,藻毒素分为以下类型:氮杂螺环酸毒素类 (Azaspiracids, AZAs)、环亚胺类 (Cyclic imines, CIs)、软骨藻酸类 (Domoic acids, DAs)、大田软海绵酸类 (Okadaic acid, OA)、裸甲藻毒素 (Brevetoxins, BTXs)、蛤毒素 (Pectenotoxins, PTXs)、石房蛤毒素 (Saxitoxins, STXs) 和虾夷扇贝毒素类 (Yessotoxins, YTXs)[1]。其中,除软骨藻酸类和石房蛤毒素外,其余6类均为脂溶性藻毒素。脂溶性藻毒素分布广泛,约占已发现藻毒素的90%,而脂溶特性使其更易在脂肪组织内富集,给人类健康带来更多潜在危害,因此脂溶性藻毒素引起了越来越多的关注。

    我国是世界上最重要的贝类增养殖国家,由于贝类增养殖海域与有毒有害赤潮高发区存在高度重叠[2],有毒赤潮频发给我国贝类带来藻毒素沾染风险。由脂溶性藻毒素引起的贝类中毒事件在我国时有发生[3]。例如,2011年宁波和宁德两地发生的因食用污染贝类导致的群体中毒事件,涉及200多人,社会和经济效益损失巨大。因此,分析贝类体内藻毒素污染情况,评估其安全性,可有效预测贝类食用风险,防范藻毒素带来的危害效应。

    北部湾是我国重要的牡蛎产区和最大的近江牡蛎 (Crassostrea rivularis) 养殖基地。“中国大蚝之乡”——广西钦州市年产近江牡蛎近60万吨,产值20多亿元,畅销广东、上海、湖南等地。近江牡蛎的安全对消费者健康和广西经济发展有重要意义。以往调查发现该区域贝类存在脂溶性藻毒素污染,并且环亚胺毒素 (GYM) 的含量高于我国其他海域[4]。因此,本文采集不同季节养殖近江牡蛎,应用高效液相色谱-质谱联用 (High-performance liquid chromatography-tandem mass spectrometry, HPLC-MS/MS) 技术[5],分析脂溶性藻毒素沾染情况并进行安全评价,为区域海产品质量评价与食用安全控制提供理论依据。

    所用溶剂均为色谱纯。脂溶性藻毒素标准OA、YTX、Dinophysistoxin (DTX) 1、homo-YTX、AZA1、AZA2、AZA3、spirolide (SPX) 1、GYM和PTX2,均购自加拿大国家研究院海洋生物科学研究所。

    超高效液相色谱仪 (Thermo Fisher UltiMate 3000, USA),三重四极杆线性离子阱质谱仪(AB Sciex, Qtrap®-4500, USA),C18反相色谱柱 (Waters, X-bridge C18, 3.5 μm, 3 mm×150 mm, USA),组织匀浆机 (IKA, T10BS25, GER)、固相萃取仪 (奥特赛恩斯仪器有限公司,ASE-12)、Strata™-X 聚合物固相萃取 (Solid phase extraction, SPE) 柱 (60 mg/3 cc, Phenomenex, USA)、针式滤膜 (0.22 µm, ANPEL, SCAA-104)。

    近江牡蛎样品于2017年4月 (春季)、7月 (夏季)、10月 (秋季) 和2018年1月 (冬季)采集自广西北部湾养殖场 (108.97°E,21.55°N)。选取养殖场四周及中心区域5根养殖柱,取身长11~13 cm,体质量150~250 g的2龄贝个体 (上市规格),每柱取3只。现场以海水冲洗牡蛎外壳附着物,将样品放入冰盒运回实验室−20 ℃保存。

    贝类样品前处理参考陈建华[6]和Liu等[7]的方法。具体操作为:样品解冻后分离贝肉匀浆。称取1 g匀浆组织,加入3 mL甲醇混匀,经2 000 g离心5 min取上清。重复上述操作,将3次上清液合并定容至10 mL备用。

    利用SPE固相萃取小柱对上述甲醇粗提液进行净化。先后加入3 mL甲醇和3 mL去离子水交替活化SPE柱3次。然后取4 mL甲醇粗提液加入10 mL去离子水混匀,上SPE柱进行毒素吸附,用3 mL 20%的甲醇清洗柱子以除去杂质。最后取1 mL含0.3%氨水的甲醇溶液将毒素洗脱收集。洗脱液过滤后进行HPLC-MS/MS分析。

    另取甲醇粗提液4 mL,加入2 mL NaOH (2.5) 溶液,混匀后75 ℃水浴40 min,冷却至室温后加入2 mL HCl (2.5 mol·L−1) 中和。水解后样品经净化、过滤进行HPLC-MS/MS分析。

    多种脂溶性藻毒素同步分析方法参照Liu等[7],根据质谱检测结果进行定性。

    将藻毒素标准配置成混合标准溶液,通过外标法得到毒素浓度与质谱信号响应值之间的关系,计算阳性样品藻毒素含量。

    采用风险熵值法 (Risk quotient, RQ)[8]和点评估法[9]进行安全风险评估。因环亚胺类GYM和SPX1安全阈值未设定,且没有明确证据表明该类毒素对人具有口服毒性[10-11]。因此,安全风险评价不包括这两种毒素。

    风险熵值法:

    $${\small{\rm{RQ}}} = \frac{{\small{\text{总毒素含量}}\;({\text{μ}}{\rm{ g}}\cdot{\rm{k}}{{\rm{g}}^{ - 1}})}}{{\small{\text{标准含量}}\;({\text{μ}}{\rm{ g}}\cdot{\rm{k}}{{\rm{g}}^{ - 1}})}}$$ (1)

    计算样品RQ值,若RQ<1,说明食用该样品不存在藻毒素中毒风险;若RQ≥1,说明存在风险,食用后可能引发安全问题。

    点评估法:

    $$ \begin{array}{c} {\small{\text{毒素摄入量}}}\;\left( {\small{\rm{Daily}}\;{\rm{toxin}}\;{\rm{intake}},\; {\rm{DTI}}} \right) =\\ \dfrac{{\small{\text{毒素含量}}\;({\small{\text{μ}}}{\small{\rm{ g}}}\cdot{\small{\rm{k}}}{\small{{\rm{g}}}^{ - 1}}) \times {\small{\text{食用量}}}\;\left( {\small{{\rm{g}}}\cdot{{\small{\rm{d}}}^{ - 1}}} \right)}}{{\small{\text{体质量}}\;({\small{\rm{kg}}}) \times \small{1\;000}}} \end{array}$$ (2)

    将每人每天单位体质量毒素摄入量DTI与急性毒性参考剂量 (Acute reference doses, ARfD)比较,计算暴露风险指数 (Expose risk index, ERI):${\rm{ERI}} = \displaystyle \sum \nolimits \left({{\rm{DTI}}/{\rm{ARFD}}} \right)$,若0≥ERI < 0.1, 表明食用非常安全;若0.1≥ERI<1, 表明存在安全隐患;若ERI≥1,表明食用风险超过限度,需要启动风险管理程序。

    从20世纪90年代起,我国已有贝类沾染脂溶性藻毒素的报道。随着LC-MS/MS技术的应用和普及,我国贝类样品中脂溶性藻毒素的检出率逐渐增加,且不断发现新的种类[12-13]。研究表明,脂溶性藻毒素在我国分布广泛,从渤海到南海各海域均有检出;渤海和南海贝类藻毒素超标率普遍高于黄海和东海,达70%以上[14-15]

    对春、夏、秋、冬四季牡蛎样品进行脂溶性藻毒素分析,结果见表1。OA、DTX1、YTX、AZA1和AZA3等毒素成分均未检出,说明样品未沾染这些类型的毒素或者其含量低于检测限。而homo-YTX、AZA2、SPX1、GYM和PTX2均有检出,且呈一定的季节差异。图1为典型阳性样品毒素质谱图。

    表  1  近江牡蛎样品体内脂溶性藻毒素组成与质量分数
    Table  1  Composition and contents of lipophilic phycotoxins in C. rivularis collected from Beihai of Guangxi μg·kg−1
    采样时间
    Sampling time
    毒素种类 Toxin profile
    大田软海绵酸
    OA
    鳍藻毒素
    DTX1
    虾夷扇贝毒素
    YTX
    虾夷扇贝毒素
    homo-YTX
    氮杂螺环酸毒素
    AZA1
    2017.04 ND ND ND 1.40±0.31 ND
    2017.07 ND ND ND 0.41±0.25 ND
    2017.10 ND ND ND 1.17±0.17 ND
    2018.01 ND ND ND 0.54±0.12 ND
    采样时间
    Sampling time
    毒素种类 Toxin profile
    氮杂螺环酸毒素
    AZA2
    氮杂螺环酸毒素
    AZA3
    螺环内脂毒素
    SPX1
    环亚胺毒素
    GYM
    蛤毒素
    PTX2
    2017.04 0.09±0.02 ND 0.52±0.18 6.36±1.55 ND
    2017.07 ND ND 0.54±0.19 7.22±1.84 0.06±0.03
    2017.10 0.12±0.12 ND 0.60±0.18 10.13±3.25 0.03±0.03
    2018.01 ND ND 0.26±0.02 13.15±2.54 0.43±0.04
    注:ND. 未检出 Note: ND. Undetected
    下载: 导出CSV 
    | 显示表格
    图  1  典型阳性样品毒素质谱图
    Fig. 1  Mass spectrogram of phycotoxins from typical positive sample
    图  2  不同季节近江牡蛎的食用安全风险
    a. 风险熵值法;b. 点评估法
    Fig. 2  Seasonal variation of C. rivularis safety
    a. Risk quotients; b. Point estimation

    我国GYM和SPXs首次在广东附近海域的长牡蛎 (C. gigas) 中检出,南海污染程度高于北方[16-18]。本次调查中,牡蛎样品沾染的脂溶性藻毒素以环亚胺类为主,GYM含量最高 (表1),且呈现秋冬高、春夏低的特点。冬季牡蛎样品中GYM质量分数达 (13.15±2.54) μg·kg−1,是春季样品的2倍[(6.36±1.55) μg·kg−1]。与GYM季节分布特征不同,SPX1质量分数在冬季样品中最低[(0.26±0.02) μg·kg−1],秋季最高 [(0.60±0.18) μg·kg−1]。这些毒素含量变化很可能与相关产毒藻种的季节性变动有关。以往研究表明,GYM在我国南海贝类中具有较高的检出率和含量[19],与本次调查结果一致。

    OA和DTXs是一类聚醚或大环内酯化合物,由鳍藻属 (Dinophysis sp.) 和原甲藻属 (Prorocentrum sp.) 的藻类产生,是导致腹泻的脂溶性毒素类型[20],具有分布范围广、发病率高等特点。PTXs是鳍藻属产生的是一类大环聚醚化合物,其中以PTX2在海洋环境中最为常见。研究表明,OA、DTX1和PTX2一般共存于海水、浮游植物和贝类样品[19, 21-22]

    贝类体内部分OA和DTX1与游离脂肪酸结合,以酯化形式存在。这部分结合态毒素无法直接检测,一定程度上低估了藻毒素的含量。碱水解使结合态毒素酯键断裂,释放出游离态[23]。本研究中,水解前后均未检测到OA和DTX1,说明该区域牡蛎受此类毒素污染较小。这一结果可能与牡蛎不易累积这些毒素有关[24]。而PTX2在夏、秋、冬三季均有检出,且冬季样品中质量分数最高[(0.43±0.04) μg·kg−1] (表1),可能是由于PTX2比OA和DTX1更易保留在牡蛎组织中。

    AZAs属于聚醚类毒素,其结构中具有独特的螺旋环、环胺或其他氮杂基团[25],由环胺藻AzadiniumAmphidoma两个属产生。本研究分析了样品中AZA1、AZA2、AZA3 3种同系物,结果只检测到少量的AZA2,AZA1和AZA3均未检测到。AZA2出现在春、秋两季,质量分数分别为 (0.09±0.02) μg·kg−1和 (0.12±0.02) μg·kg−1 (表1)。Az. poporum被认为是中国沿海AZAs的首要贡献者[26-27],而AZA2是Az. poporum中AZAs最主要的形式。因此,AZA2可能是我国近海海域存在的AZAs的主要形式。

    YTXs是含有2个磺酰基的多环聚醚类化合物,其衍生物多达90多种,主要来源于网状原角藻 (Protoceratium reticulatum)、多边舌甲藻 (Lingulodinium polyedrum) 和具刺膝沟藻 (Gonyaulax spinifera),最早在虾夷扇贝中发现[28-29]。2008年,国内首次报道YTXs主要存在于黄渤海区域(特别是北部海区)的贝类样品中,组成基本以YTX为主;而在南海贝类中检出率较低,且主要为衍生物homo-YTX[4,30-31]。本次调查中homo-YTX质量分数为0.41~1.40 μg·kg−1,春、秋季明显高于冬、夏季 (表1)。该结果应该与北部湾海域普遍存在以产homo-YTX为主的有毒藻种有关[14]

    YTXs、AZAs和PTXs等3类毒素毒性效应各不相同,分别计算RQ值。总毒性根据毒性等效因子 (Toxicity equivalency factors, TEF) (表2) 计算,限量标准参照欧洲食品安全局 (European Food Safety Authority, EFSA) 的规定 (表3)。3类毒素的RQ值均小于1,采样区牡蛎不存在食用安全风险 (图2-a)。

    表  2  毒性等效因子换算表 (EFSA 2009)[32]
    Table  2  Toxicity equivalent factors (TEFs)  recommended by EFSA 2009
    毒素种类
    Toxin profile
    毒性等效因子
    TEF
    大田软海绵酸 OA 1
    鳍藻毒素 DTX-1 1
    蛤毒素 PTX-2 1
    氮杂螺环酸毒素 AZA-1 1
    氮杂螺环酸毒素 AZA-2 1.8
    氮杂螺环酸毒素 AZA-3 1.4
    虾夷扇贝毒素 YTX 1
    虾夷扇贝毒素 Homo-YTX 1
    下载: 导出CSV 
    | 显示表格
    表  3  脂溶性贝类毒素限定标准[32]
    Table  3  Limitations for lipophilic  phycotoxins in shellfish μg eq·kg−1
    毒素种类
    Toxin profile
    限定标准
    Limit
    急性毒性参考剂量
    ARfD
    大田软海绵酸及类似物
    OA and analogues
    45 0.3
    氮杂螺环酸毒素 AZA 30 0.2
    蛤毒素 PTX 120 0.8
    虾夷扇贝毒素 YTX 1 000 25
    石房蛤毒素 STX 800 0.5
    下载: 导出CSV 
    | 显示表格

    根据公式2及不同毒素ARfD值 (表3) 计算ERI,设定食用量400 g,成人体质量60 kg[32],结果见图2-b。此次调查中,所有受检样品ERI均小于0.1,说明食用该区域近江牡蛎非常安全。

    本文通过HPLC-MS/MS方法,分析不同季节近江牡蛎样品的脂溶性藻毒素,并采用风险熵值法和点评估法进行安全风险评价。结果显示,此次调查牡蛎样品中检测到homo-YTX、AZA2、SPX1、GYM和PTX2 5种脂溶性藻毒素成分,但含量远低于相关限量标准,安全风险评价表明不存在食用安全风险。然而,考虑我国沿海贝类脂溶性藻毒素的沾染情况,应该在更广空间范围内进行持续监测,以保障贝类养殖的持续发展和消费者健康。

    致谢:中国科学院海洋研究所有害藻华与海洋生态安全课题组于仁成研究员对本研究的支持与帮助,谨此致谢!

  • 图  1   基于Bray-Curtis距离矩阵的潜在致病菌群落的主成分分析

    Figure  1.   Principal co-ordinates analysis (pCoA) ordination of potential pathogenic microbial community data based on Bray-Curtis distance

    图  2   丰度前6的潜在致病菌属对不同海草床水体潜在致病菌群落结构的差异贡献率

    Figure  2.   Dissimilarity contribution rate of top six potential pathogenic genera to community structure of potential pathogenic bacteria in different seagrass meadows

    图  3   不同海草床水体可培养弧菌 (a) 和肠球菌 (b) 丰度

    Figure  3.   Abundance of Vibrio (a) and Enterococcus (b) in different seagrass meadows

    图  4   弧菌典型毒力基因ctxAtlhtrhvvp在不同海草床水体中的相对含量

    Figure  4.   Relative abundance of Vibrio typical virulence genes ctxA, tlh, trh and vvp in different seagrass meadows

    图  5   弧菌典型毒力基因vhhtoxRaspA 在不同海草床水体中的相对含量

    Figure  5.   Relative abundance of Vibrio typical virulence genes vhh , toxR and aspA in different seagrass meadows

    图  6   肠球菌典型毒力基因espgelE在不同海草床水体中的相对含量

    Figure  6.   Relative abundance of Enterococcus typical virulence genes esp and gelE in different seagrass meadows

    表  1   本研究所用引物序列

    Table  1   Primer sequences used in this study

    引物名称
    Primer name
    引物序列
    Primer sequence
    基因描述
    Gene characterization
    16S rRNA-F TGTGTAGCGGTGAAATGCG 内参
    16S rRNA-R CATCGTTTACGGCGTGGAC 16S核糖体基因
    ctxA-F TTTGTTAGGCACGATGATGGAT 霍乱弧菌
    ctxA-R ACCAGACAATATAGTTTGACCCACTAAG 霍乱毒素A亚基基因
    tlh-F GAAAGCGCCTCAGTTTAAG 副溶血弧菌
    tlh-R ACTCGTTCATCTCAAGCACT 不耐热溶血毒素基因
    trh-F GACTAYTGGACAAACCGAAAC 副溶血弧菌耐热性溶血毒素
    trh-R ACYGTYATATAGGCGCTTAACC 相关的溶血毒素基因
    vvp-F TCTCGGTCTTATGCTTGTTGCA 创伤弧菌
    vvp-R TCGGAGACGGACACCATTTC 金属蛋白酶基因
    vhh-F GGGCAGAAAATCCAGACGGC 哈维弧菌
    vhh-R GTAGGAGAAACGGTTATCGGCTGC 溶血毒素基因
    toxR-F CGCCAGCAGTGGAGTTAGAA 溶藻弧菌
    toxR-R TAATGACACGCGGTAGCCAG 转录调控因子基因
    aspA-F GAAGGCGGTCAGCTACAGC 弧菌
    aspA-R GTTGTAAACGTAGTTTTCGCAAACTTC 碱性丝氨酸蛋白酶基因
    esp-F GCGGGAACAGGTCACAAAGC 肠球菌
    esp-R TTCATCTTTCGCGATTAATTTACTTGAATC 表面蛋白基因
    gelE-F ACACCAACAGGAAAAACGTATGC 肠球菌
    gelE-R TTCATTCAAGGCACCTGATTGTC 明胶酶基因
    下载: 导出CSV

    表  2   属水平海草床水体各潜在致病菌的相对丰度

    Table  2   Relative abundance of each potential pathogens of seagrass meadows at genus level

    分类系统
    Taxonomy
    新村
    Xincun
    黎安
    Li'an
    潭门
    Tanmen
    感染有机体
    Infection organism
    参考文献
    References
    弓形杆菌属 Arcobacter 22.96±19.39A 11.50±4.78A 2.29±0.36A 人、鱼 [23]
    拟杆菌属 Bacteroides 7.26±1.01A 9.02±1.02A 14.37±7.90A [24]
    肠球菌属 Enterococcus 2.39±0.37A 2.43±0.40A 2.63±0.44A 人、鱼 [24]
    嗜血杆菌属 Haemophilus 1.77±0.51A 1.86±0.21A 2.48±0.21A [24]
    弧菌属 Vibrio 7.73±2.59A 5.58±1.21A 6.92±2.06A 人、鱼、无脊椎动物 [25]
    黄杆菌属 Tenacibaculum 6.44±3.50A 8.97±3.24A 0.29±0.23A 人、鱼 [26]
    假交替单胞菌属 Pseudoalteromonas 0.72±0.46A 0.81±0.20A 12.17±3.91B 无脊椎动物 [27]
    链球菌属 Streptococcus 0.67±0.25A 0.95±0.19A 0.76±0.30A 人、鱼 [28]
    发光杆菌属 Photobacterium 1.91±1.72A 0.57±0.28A 2.63±1.60A 人、鱼 [29]
    芽孢杆菌属 Bacillus 0.14±0.14A 0.00±0.00A 2.00±2.00A 人、鱼、无脊椎动物 [26, 30]
    铜绿色假单胞菌属 Pseudomonas 0.10±0.10A 0.91±0.84A 0.00±0.00A 人、鱼、无脊椎动物 [30]
    分枝杆菌属 Mycobacterium 0.14±0.14A 0.67±0.61A 0.53±0.26A 人、鱼、哺乳动物 [31]
    噬细胞菌属 Cytophaga 1.29±1.29A 0.00±0.00A 0.00±0.00A 无脊椎动物 [32]
    盐单胞菌属 Halomonas 0.43±0.25A 0.14±0.14A 0.29±0.12A 人、鱼 [33]
    黄杆菌属 Flavobacterium 0.00±0.00A 0.53±0.32A 0.10±0.10A [34]
    军团菌属 Legionella 0.29±0.17A 0.00±0.00A 0.00±0.00A [35]
    弗朗西斯氏菌属 Francisella 0.05±0.05A 0.00±0.00A 0.10±0.10A 人、鱼 [36]
    微球菌属 Micrococcus 0.14±0.14A 0.00±0.00A 0.00±0.00A 无脊椎动物 [37]
    嗜冷杆菌属 Psychrobacter 0.00±0.00A 0.10±0.10A 0.00±0.00A [38]
    注:单因素方差分析结果,其中不同的字母(A, B) 代表差异性显著,相同的字母代表差异性不显著 Note: The results of One-way ANOVA. Different letters (A, B) indicate significant difference, and the same letters indicate no significant difference.
    下载: 导出CSV
  • [1]

    DUARTE C M, MIDDELBURG J J, CARACO N. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeosciences, 2005, 2(1): 1-8. doi: 10.5194/bg-2-1-2005

    [2]

    HECK K L, HAYS G, ORTH R J. Critical evaluation of the nursery role hypothesis for seagrass meadows[J]. Mar Ecol Prog, 2003, 253: 123-136. doi: 10.3354/meps253123

    [3]

    STEWART J R, GAST R J, FUJIOKA R S, et al. The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs[J]. Environ Health-Glob, 2008, 7(Sup 2): S3.

    [4]

    LAMB J B, van de WATER, JEROEN A J M, et al. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates[J]. Science, 2017, 355(6326): 731-733. doi: 10.1126/science.aal1956

    [5]

    ARUMUGAM R, ANANTHARAMAN P. Antibacterial potential of three seagrasses against human pathogens[J]. Asian Pac J Trop Med, 2010(11): 890-893.

    [6]

    DUARTE C M. Reviews and syntheses: hidden forests, the role of vegetated coastal habitats in the ocean carbon budget[J]. Biogeosciences, 2017, 14(2): 301-310. doi: 10.5194/bg-14-301-2017

    [7]

    COUPLAND G T, WALKER D D I. High metabolic rates in beach cast communities[J]. Ecosystems, 2007, 10(8): 1341-1350. doi: 10.1007/s10021-007-9102-3

    [8]

    PATIL R, EYASEKARAN G J, SHANMUGAM S A. Control of bacterial pathogens, associated with fish diseases, by antagonistic marine actinomycetes isolated from marine sediments[J]. Ind J Geo-Mar Sci, 2011, 30(4): 324-267. doi: 10.1006/jmsc.2001.1116

    [9]

    ZHU H Y, LI X W, ZHENG X Y. Sediment composition influences spatial variation in the abundance of human pathogen indicator bacteria within an estuarine environment[J]. Biomed Res Int, 2017: 2796054.

    [10]

    SHENG H, ZHOU P, ZHANG Y, et al. Loss of labile organic carbon from subsoil due to land-use changes in subtropical China[J]. Soil Biol Biochem, 2015, 88: 148-157. doi: 10.1016/j.soilbio.2015.05.015

    [11]

    ROLL B M, FUJIOKA R S. Sources of faecal indicator bacteria in a brackish, tropical stream and their impact on recreational water quality[J]. Water Sci Technol, 1997, 35(11/12): 179-186.

    [12]

    FUJIOKA R, SIAN-DENTON C, BORJA M, et al. Soil: the environmental source of Escherichia coli and Enterococci in Guam's streams[J]. J Appl Microbiol, 2010, 85(S1): 83-89.

    [13]

    WAYCOTT M, DUARTE C M, CARRUTHERS T J B, et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems[J]. Proc Natl Acad Sci USA, 2009, 106(30): 12377-12381. doi: 10.1073/pnas.0905620106

    [14] 周立柱, 杨顶田, 尹小青. 海南新村港和黎安港非点源污染负荷估算[J]. 生态科学, 2018, 37(3): 11-20.
    [15]

    ZHANG X, ZHAO C, YU S, et al. Rhizosphere microbial community structure are selected by habitats but not plant species in two  tropical  seagrass  beds[J].  Fronit  Mocrobiol,  2020, 11. doi: 10.3389/fmicb.2020.00161.

    [16]

    MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. Embnet J, 2011, 17(1): 10-12. doi: 10.14806/ej.17.1.200

    [17]

    KNIGHT R. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194-2200. doi: 10.1093/bioinformatics/btr381

    [18]

    EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10): 996-998. doi: 10.1038/nmeth.2604

    [19]

    CHRISTIAN Q, ELMAR P, PELIN Y, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Res, 2013, 41(D1): D590-D596.

    [20]

    UCHIYAMA H. Distribution of Vibrio species isolated from aquatic environments with TCBS agar[J]. Environ Health Prev, 2000, 4(4): 199-204. doi: 10.1007/BF02931258

    [21]

    EMBERGER O, PAVLOVÃ M. Suitability of Slanetz-Bartley esculine sodium azide media for determination of Enterococci[J]. Epidemiol Mikrobi Im, 1971, 20(5): 262-269.

    [22]

    ANDERSON M J, GORLEY R N, CLARKE K R. PERMANOVA for PRIMER: guide to software and statistical methods[M]. Plymouth, UK: PRIMER-E Ltd., 2008: 105-121.

    [23]

    COLLADO L, INZA I, GUARRO J, et al. Presence of Arcobacter spp. in environmental waters correlates with high levels of fecal pollution[J]. Environ Microbiol, 2008, 10(6): 1635-1640. doi: 10.1111/j.1462-2920.2007.01555.x

    [24]

    HAAGSMA J. Pathogenic anaerobic bacteria and the environment[J]. Rev Sci Tech, 1991, 10(3): 749-764. doi: 10.20506/rst.10.3.569

    [25]

    JANDA J M. Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp.[J]. Clin Microbiol Rev, 1988, 1(3): 245-267. doi: 10.1128/CMR.1.3.245

    [26]

    DAVID P P, AURELIE L, GHISLAINE M, et al. The complete genome sequence of the fish pathogen Tenacibaculum maritimum provides insights into virulence mechanisms[J]. Front Microbiol, 2017, 8: 1542. doi: 10.3389/fmicb.2017.01542.

    [27]

    CHISTOSERDOV A Y, GUBBALA S L, SMOLOWITZ R, et al. A microbiological assessment of epizootic shell disease in the American lobster indicates its strictly dermal etiology[M]. Boston: Boston University of Massachusetts, 2005: 12-20.

    [28]

    DIEDRICH L K, MANBY C L. Haemophilus species as a urinary tract pathogen[J]. Lab Med, 2017, 48(1): e1-e3. doi: 10.1093/labmed/lmw063

    [29]

    RIVAS A J, VENCES A, HUSMANN M, et al. The Photobacterium damselae subsp. damselae major virulence factors Dly, HlyApl and HlyAch are secreted via the type II secretion system[J]. Infect Immun, 2015, 83(4): 1246-1256. doi: 10.1128/IAI.02608-14

    [30]

    WEBSTER N S. Sponge disease: a global threat?[J]. Environ Microbiol, 2007, 9(6): 1363-1375. doi: 10.1111/j.1462-2920.2007.01303.x

    [31]

    WATRAL V, KENT M L. Pathogenesis of Mycobacterium spp. in zebrafish (Danio rerio) from research facilities[J]. Comp Biochem Physiol C, 2007, 145(1): 55-60. doi: 10.1016/j.cbpc.2006.06.004

    [32]

    DALSGAARD I. Virulence mechanisms in Cytophaga psychrophila and other Cytophaga-like bacteria pathogenic for fish[J]. Ann Rev Fish Dis, 1993, 3: 127-144. doi: 10.1016/0959-8030(93)90032-7

    [33]

    STEVENS D A, HAMILTON J R, JOHNSON N, et al. Halomonas, a newly recognized human pathogen causing infections and contamination in a dialysis center three new species[J]. Medicine, 2009, 88(4): 244-249. doi: 10.1097/MD.0b013e3181aede29

    [34]

    FARKAS J. Filamentous Flavobacterium sp. isolated from fish with gill diseases in cold water[J]. Aquaculture, 1985, 44(1): 1-10. doi: 10.1016/0044-8486(85)90037-7

    [35]

    JOHNSON D I. Legionella spp. [M]. New York: Springer International Publishing AG, 2018:279-287

    [36]

    MAUEL M J, SOTO E, MORALIS J A, et al. A Piscirickettsiosis-like syndrome in cultured nile tilapia in Latin America with Francisella spp. as the pathogenic agent[J]. J Aquat Anim Health, 2007, 19(1): 27-34. doi: 10.1577/H06-025.1

    [37]

    VALDIVIA-ARENAS M A. Bloodstream infections due to Micrococcus spp and intravenous epoprostenol[J]. Infect Cont Hosp Ep, 2009, 30(12): 1237-1237.

    [38]

    BOWMAN J P. The Genus, Psychrobacter[M]. New York: Springer, 2006: 920-930.

    [39]

    LIU S, JIANG Z, DENG Y, et al. Effects of nutrient loading on sediment bacterial and pathogen communities within seagrass meadows[J]. Microbiol Open, 2018, 7(5): e00600. doi: 10.1002/mbo3.600

    [40]

    GHADERPOUR A, NASORI K N M, CHEW L L, et al. Detection of multiple potentially pathogenic bacteria in Matang mangrove estuaries, Malaysia[J]. Mar Pollut Bull, 2014, 83(1): 324-330. doi: 10.1016/j.marpolbul.2014.04.029

    [41]

    PERKINS T L, KATIE C, BAAS J H, et al. Sediment composition influences spatial variation in the abundance of human pathogen indicator bacteria within an estuarine environment[J]. PLoS One, 2014, 9(11): e112951. doi: 10.1371/journal.pone.0112951

    [42]

    AGAWIN N S R, DUARTE C M. Evidence of direct particle trapping by a tropical seagrass meadow[J]. Estuar Coast, 2002, 25(6): 1205-1209. doi: 10.1007/BF02692217

    [43]

    MAUGERI T L, CARBONE M, FERA M T, et al. Distribution of potentially pathogenic bacteria as free living and plankton associated in a marine coastal zone[J]. J Appl Microbiol, 2004, 97(2): 354-361. doi: 10.1111/j.1365-2672.2004.02303.x

    [44]

    BAFFONE W, PIANETTI A, BRUSCOLINI F, et al. Occurrence and expression of virulence-related properties of Vibrio species isolated from widely consumed seafood products[J]. Int J Food Microbiol, 2000, 54(1/2): 9-18.

    [45]

    JOANN M B, DAVID A T, BRANT W T. Seagrasses and eutrophication[J]. J Exp Mar Biol Ecol, 2007, 50(1/2): 46-72.

    [46]

    ALLISON L S, JESSICA K C W, SUSANNE E C. Regional-scale effects of eutrophication on ecosystem structure and services of seagrass beds[J]. Limnol Oceanogr, 2012, 57(5): 1389-1402. doi: 10.4319/lo.2012.57.5.1389

    [47]

    MICHAEL J S, JOHN C B, MAGGY M N, et al. Algae as reservoirs for coral pathogens[J]. PLoS One, 2013, 8(7): e69717. doi: 10.1371/journal.pone.0069717

    [48]

    EGIDIUS E. Vibriosis: pathogenicity and pathology. A review[J]. Aquaculture, 1987, 67(1/2): 15-28.

    [49] 杨青, 俞云松, 倪语星, 等. 2009年中国CHINET肠球菌属细菌耐药性监测[J]. 中国感染与化疗杂志, 2010, 10(6): 421-425.
    [50]

    FISHER K, PHILLIPS C. The ecology, epidemiology and virulence of Enterococcus[J]. Microbiology, 2009, 155(6): 1749-1757. doi: 10.1099/mic.0.026385-0

    [51]

    YASUYOSHI I K E. Pathogenicity of Enterococci[J]. Nihon Saikingaku Zasshi, 2017, 72(2): 189-211. doi: 10.3412/jsb.72.189

    [52]

    HSIEH J L, FRIES J S, NOBLE R T. Vibrio and phytoplankton dynamics during the summer of 2004 in a eutrophying estuary[J]. Ecol Appl, 2007, 17(5): S102-S109.

    [53] 吴建平, 蔡创华, 周毅频, 等. 大亚湾网箱养殖水体弧菌种类组成及变化[J]. 湛江海洋大学学报, 2006, 26(4): 46-52.
    [54]

    AUSTIN B. Vibrios as causal agents of zoonoses[J]. Vet Microbiol, 2010, 140(3/4): 310-317.

    [55]

    REILLY G D, REILLY C A, SMITH E G, et al. Vibrio alginolyticus-associated wound infection acquired in British waters, Guernsey, July 2011[J]. Euro Surveill, 2011, 16(42): 321-326.

    [56]

    LIU S, JIANG Z, ZHANG J, et al. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea[J]. Mar Pollut Bull, 2016, 110(1): 274-280. doi: 10.1016/j.marpolbul.2016.06.054

    [57]

    JOHNSON P T J, CARPENTER S R. Influence of eutrophication on disease in aquatic ecosystems: patterns, processes, and predictions. Infectious disease ecology: the effects of ecosystems on disease and of disease on ecosystems[M]. Princeton: Princeton University Press, 2010: 71-99.

    [58]

    GLADSTONE-GALLAGHER R V, HUGHES R W, DOUGLAS E J, et al. Biomass-dependent seagrass resilience to sediment eutrophication[J]. J Exp Mar Biol Ecol, 2008, 501: 54-64. doi: 10.1016/j.jembe.2018.01.002

    [59]

    GACIA E, DUARTE C M, MARBÀ N, et al. Sediment deposition and production in SE-Asia seagrass meadows[J]. Estuar Coast Shelf S, 2003, 56(5/6): 909-919.

    [60]

    MARBÀ N, ARIAS-ORTIZ A, MASQUÉ P, et al. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks[J]. J Ecol, 2015, 103(2): 296-302. doi: 10.1111/1365-2745.12370

  • 期刊类型引用(3)

    1. 陈妹,黄海燕,任晓虎,陈效,刘云岗,刘建军. 石房蛤毒素暴露对F1代小鼠肝损伤及脂质代谢的影响. 伤害医学(电子版). 2024(04): 31-38 . 百度学术
    2. 江姗姗,张晨晓. 广西北部湾沿海市售贝类脂溶性毒素污染分析及食用风险评价. 南方水产科学. 2023(04): 158-167 . 本站查看
    3. 付满,蔡秋杏,黄海,石宇,张晨晓,王允茹,董庆亮,韦燕丽. 北部湾常见牡蛎中磷脂提取及其抗氧化性研究. 中国食品添加剂. 2022(08): 58-63 . 百度学术

    其他类型引用(4)

推荐阅读
Embryonic and larval development of sea urchin (temnopleurus reevesii)
YU Weihuan et al., SOUTH CHINA FISHERIES SCIENCE, 2025
Comparison of fish species detection effect of three sets of commonly used edna metabarcoding primers on sanya water samples
GUO Yaojie et al., SOUTH CHINA FISHERIES SCIENCE, 2025
Research on fish feeding intensity classification model based on axial feature calibration and temporal segment network
XU Bo et al., SOUTH CHINA FISHERIES SCIENCE, 2024
Food habits study ofmystus guttatusjuvenile based on water body analysis and dna macro barcode technology for stomach contents
MENG Qingmi et al., SOUTH CHINA FISHERIES SCIENCE, 2024
Gene structure and expression analysis of insulin-like peptide in the pacific white shrimp litopenaeus vannamei
SU Manwen et al., PROGRESS IN FISHERY SCIENCES, 2024
Effects of feeding rate on the intermediate cultivation of penaeus vannamei
WANG Liwei et al., PROGRESS IN FISHERY SCIENCES, 2024
The effects of nano-curcumin on growth performance, feed utilization, blood biochemistry, disease resistance, and gene expression in european seabass ( dicentrarchus labrax ) fingerlings
Jastaniah, Samyah D., AQUACULTURE REPORTS, 2024
Double-phase parabolic equations with variable growth and nonlinear sources
Arora, Rakesh et al., ADVANCES IN NONLINEAR ANALYSIS, 2023
Learning self-growth maps for fast and accurate imbalanced streaming data clustering
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025
Orderly stacked 3d-nanohelices interlayer boosts performance of reverse osmosis membranes for effective water purification
ENERGY & ENVIRONMENTAL SUSTAINABILITY, 2025
Powered by
图(6)  /  表(2)
计量
  • 文章访问数:  3240
  • HTML全文浏览量:  1491
  • PDF下载量:  75
  • 被引次数: 7
出版历程
  • 收稿日期:  2020-04-06
  • 修回日期:  2020-05-07
  • 录用日期:  2020-05-31
  • 网络出版日期:  2020-09-27
  • 刊出日期:  2020-10-08

目录

/

返回文章
返回