Study on transdermal penetration effects of Acorus tatarinowii essential oil and water soluble azone to fish anesthetics
-
摘要:
文章研究了石菖蒲 (Acorus tatarinowii) 挥发油和水溶性氮酮2种常见透皮促进剂 (PE) 的4种不同质量分数 (1%、4%、7%、10%和1%、3%、5%、10%) 对中国花鲈 (Lateolabrax maculatus) 幼鱼药浴吸收MS-222和丁香酚的促透效果。结果显示:1) 2种PE可显著减少入麻和复苏时间,并降低丁香酚或MS-222的使用剂量以达到相似的麻醉效果;2) 2种PE的促透效果随质量分数增加先增强后减弱;3) 石菖蒲挥发油与水溶性氮酮对丁香酚或MS-222的最佳促透质量分数分别为7%和3%。分析鳃组织抗氧化指标发现:1) 丁香酚和MS-222浸泡对中国花鲈鳃组织造成一定程度的氧化应激,表现为鳃组织中过氧化物酶 (POD)、超氧化物歧化酶 (SOD)、过氧化氢酶 (CAT) 活性和谷胱甘肽 (GSH)、丙二醛(MDA) 浓度显著 (P<0.05) 升高;2) 协同使用PE,可减少麻醉剂用量,进而降低鳃组织氧化应激,表现为麻醉协同组鳃中SOD、CAT活性和MDA、GSH浓度显著 (P<0.05) 低于麻醉对照组。
Abstract:This study compared the penetration effects of two common penetration enhancers (PE) (Acorus tatarinowii essential oil and water soluble azone) with different mass fractions (1%, 4%, 7%, 10% and 1%, 3%, 5%, 10%) on the juvenile Lateolabrax maculatus absorbing eugenol and MS-222. The results show that: 1) PEs could reduce the time of anaesthesia and recovery significantly, and reduce the dosage of anesthetics to achieve similar anesthetic effects. 2) With increasing mass fraction of PE, the penetration effect first enhanced and then weakened. 3) The optimal mass fraction of penetration of A. tatarinowii essential oil and water soluble azone on eugenol or MS-222 were 7% and 3%, respectively. According to the antioxidant index of the gill tissue, we found that: 1) After soaking the fish in the anesthetics, the activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT) and the concentrations of malonaldehyde (MDA), glutathione (GSH) increased in the gill tissue of L. maculatus (P<0.05). 2) The activities of SOD, CAT and the concentrations of MDA and GSH in the gill tissue of the PE anesthesia group were significantly lower than those of the control group (P<0.05).
-
玉足海参 (Holothuria leucospilota) 属棘皮动物门、海参纲、楯手目、海参科、海参属,自然分布于中国福建、广东和海南等南方沿海地区的岩石、珊瑚和海藻丛附近[1-3]。玉足海参作为海洋沉积物的搬运者和海底清道夫,在近岸海洋生态系统中扮演着重要角色,它们可以有效降低沉积物中的有机质含量,还可以促进海水的酸碱度平衡,对维护珊瑚礁生态系统的稳定具有重要意义[4-5]。玉足海参是一种重要的经济海参种类,其生殖腺是拉罗汤加文化中一种重要的传统食物[6-7]。近年来,国内外学者通过对海参的各类成分进行生物活性测定及其生物医学研究的不断深入,发现海参含有多种具有抗肿瘤、抗真菌、提高免疫力等作用的活性物质,如海参多糖、海参皂苷等[8-13],多方面研究表明玉足海参具有重要的药用和保健价值[14-17];此外,作为海洋生态系统中重要的一员,玉足海参在多营养层次生态养殖模式 (Integrated multi-trophic aquaculture, IMTA) 中应用于营养回收和颗粒废物处理,具有重大的商业和研究价值,玉足海参与其他水生生物进行多营养层次综合养殖,可以有效减少养殖水体中过量的有机营养物质,改善养殖环境,提高养殖物种成活率、产量及饵料利用率[18-20]。
近年来,随着市场需求不断增加,海参的捕捞量急剧上升,过度捕捞给野生海参资源带来了严重的威胁[21-25]。人工养殖海参被认为是解决海参危机的有效策略[3,26],通过将人工养殖的海参投放到野外,海参的自然种群可能得到恢复[4]。目前,已成功人工培育和繁殖了多种热带海参[24,27],其中糙海参 (H. scabra) 的人工繁育和养殖技术已较完善和成熟[28-29],而玉足海参的人工繁育研究尚处于起步阶段[4]。近年来,在人工繁育过程中海参亲体与幼体的养殖管理及生长环境上已有较多的研究探索;环境因子是影响海参人工繁殖的重要因素之一,对海参幼体和成体的养殖与日常管理均存在显著影响[30-31]。通过研究不同盐度对玉足海参成体的摄食、耗氧量、排泄率等方面的影响[32],表明成体的玉足海参对盐度具有广泛的耐受性,但是并不适合在低盐度水中进行养殖;海参幼体对养殖环境同样比较敏感,不同浓度梯度的盐度试验,表明盐度对海参幼体的生产、成活率和免疫力有显著影响,盐度过高会对其生长产生不良影响[31]。随着玉足海参人工繁育技术不断发展进步,存在的问题和挑战也日益凸显,如成活率低下、发育状态不佳、人工繁育过程中死亡率高等[4,21],无法达到如贝类人工繁育般的高度人工可控,环境因子对玉足海参浮游幼体生长发育影响的研究尚存在空白,有关其繁育与养殖的研究报道相对较少。本实验以玉足海参耳状幼体为研究对象,观察并记录不同盐度条件下玉足海参浮游幼体的生长、发育等情况,探讨了不同盐度养殖水体对其生长、发育和成活率的影响,旨在为提高玉足海参幼体繁育的成活率和热带海参野生资源的开发利用提供理论参考依据。
1. 材料与方法
1.1 实验材料
实验用玉足海参亲本采自海南省万宁海区,体长25~35 cm,湿质量580~1 480 g。暂养于海南省陵水黎族自治县热带水产研究开发中心,经阴干刺激后释放卵子,卵子受精后进行洗卵并移至水体体积为5 m3的育苗池中进行孵化,完成孵化后停止充气,用虹吸法收集上层优质耳状幼体。实验用耳状幼体平均体长为 (420.36±1.9) μm,平均胃宽为 (90.44±0.96) μm。
实验用玉足海参幼体饵料球等鞭金藻 (Isochrysis galbana) 藻种取自中国水产科学研究院南海水产研究所单胞藻培养室,并在热带水产研究开发中心进行扩种培养。实验在室内进行,主要用具包括15个容量为50 L的塑料桶 (同一颜色)、显微镜、盐度计、充气泵、光度计、胚胎培养皿等。
1.2 实验方法
实验在空调控温室内进行,水温保持在28~29 ℃;实验容器为体积为50 L的塑料桶,实验水体为40 L,实验用海水取自新村港,经过滤后使用,降低盐度用自来水勾兑,提高盐度使用海盐进行调节,经24 h充氧后,将海水盐度分别设置为24、27、30、33、36,每个盐度组设置3个平行,实验期间每天进行盐度调控,光照强度保持在 500 lx以下,每天投喂球等鞭金藻,投喂密度为每天20 000个·mL−1;实验期间每3~4天换水1次,换水量为实验水体的50%;每隔24 h取样,使用显微镜观测海参幼体发育,每组重复取样20个,测定玉足海参浮游幼体的体长 (L) 和胃宽 (SW,图1),并统计特定生长率,同时,记录每个盐度条件下幼体的成活率。
1.3 数据处理
实验数据的显著性采用SPSS 19.0软件进行t检验,使用Origin 2019软件作图。P<0.05表示差异显著。生长率 (Rg, d−1) 和成活率 (Rs, %) 的计算公式如下:
$$ R_{{\rm{g}}} =\ln(L_{t}/L_{0})/t $$ (1) $${R_{\rm{s}}} = {Q_{\rm{f}}}/{Q_{\rm{o}}} \times 100{\text{%}} $$ (2) 式中:Lt为大耳状幼体时的体长 (μm);L0为初始体长 (μm);t为实验时间 (d);Qf为最终存活个数;Qo为初始幼体个数。
2. 结果
2.1 不同盐度对玉足海参浮游幼体的体长和胃宽的影响
玉足海参浮游幼体发育至大耳状幼体阶段时,其体长和胃宽发育至最大值 (图2),与其他盐度组相比,24盐度组幼体体长和胃宽的特定生长率均为最低,与其他盐度组具有显著性差异 (P<0.05)。盐度对玉足海参浮游幼体体长特定生长率会产生一定的影响 (图2-a),33和36盐度组的体长特定生长率显著高于其他盐度组 (P<0.05),24和27盐度组间、33和36盐度组间差异不显著 (P>0.05)。同时,盐度对玉足海参浮游幼体胃宽的特定生长率也有显著影响 (图2-b),30盐度组幼体胃宽特定生长率显著高于24、33和36盐度组 (P<0.05);27和30盐度组有利于玉足海参浮游幼体胃部的生长和发育。
2.2 不同盐度下玉足海参幼体体长变化
本实验结果显示,不同盐度下玉足海参幼体体长的变化呈现不同规律。不同盐度组幼体的体长随着养殖时间的增加而增长。与其他盐度组相比,36盐度组的玉足海参幼体生长速度最快,其于实验第4天体长达到最长,随后其个体随变态发育而缩小;24盐度组的玉足海参幼体发育最为缓慢,直至第6天其体长达到最长,第7天开始体长随变态发育而缩小;其他盐度组从第5、第6天后开始变态。除24盐度组外,其他盐度组玉足海参幼体体长变化幅度大,从大耳状幼体发育至樽形幼体状态的速度也较快 (图3)。
2.3 不同盐度对玉足海参幼体成活率的影响
本实验结果显示,不同盐度组玉足海参幼体的成活率呈现不同规律。通过21 d的观察,第6—第8天24、33和36盐度组的玉足海参幼体成活率开始显著下降,第8—第10天27和30盐度组的玉足海参成活率才开始显著下降;与其他盐度组的结果相比,27和30盐度组玉足海参幼体的成活率高于其他盐度组,30盐度组出现了最高成活率 (11.69%),27盐度组的成活率最低 (图4)。结合不同盐度下玉足海参幼体体长变化结果,本研究表明盐度30对玉足海参幼体生长、发育较为适宜。
2.4 不同盐度对玉足海参浮游幼体形态的影响
本实验表明,不同盐度对玉足海参大耳状幼体形态有一定影响 (图5)。在玉足海参幼体发育至大耳状幼体时,相比较其他盐度条件,盐度为27~30时,玉足海参幼体球状体 (图中箭头处) 发育更加强壮和突出,个数更多,其整体形态与轮廓更加清晰 (图5-b、5-c);与其他盐度组相比,盐度为24和36时,玉足海参浮游幼体的胃明显没有其他盐度圆润与充盈;幼体大小也明显小于其他盐度 (图5-a、5-e)。
3. 讨论
3.1 盐度对玉足海参幼体生长的影响
盐度是影响海洋动物生理生态的重要环境因子之一,海参是棘皮动物,缺少渗透压调节器官,难以调节体腔液的盐度[33-34]。棘皮动物的体腔液通常与外界环境保持一致,外界环境盐度的波动会对海参的存活、生长、繁殖及行为等造成一定的影响[34-35];不适宜的盐度会降低其对不良环境的抵抗能力和对食物的吸收和代谢,严重时将影响其生长并降低其成活率[34-36]。本研究表明,适宜盐度 (盐度为27~30) 下,玉足海参幼体的体长和脏器能够得到更好的生长和发育,与其他组的特定生长率有显著差异 (P<0.05)。玉足海参对盐度变化有较强的耐受性,但并不适合在低盐度条件下进行养殖,18盐度组的玉足海参摄食速率显著低于其他盐度组;且盐度变化对玉足海参氨的排泄率也有显著影响[32]。本研究中玉足海参幼体对盐度的感知程度比成体更加敏感,因此进行玉足海参人工繁育时,应对其养殖水体的盐度变化进行监测。盐度变化导致仿刺参 (Apostichopus japonicus) 体腔液渗透压的改变,进而影响仿刺参体内免疫酶的活性[37];盐度对仿刺参的生长有极显著影响,当盐度介于22~30,随着盐度增加,其特定生长率逐渐升高,但当盐度继续增加后,其特定生长率开始下降[38]。Sari等[39]实验表明,当盐度高于34时对糙海参幼体的生长产生不良影响。与上述几种海参幼体的实验结果相比较,本研究结果与仿刺参的一致,糙海参幼体在高盐度下开始产生不良影响,表明在进行不同海参品种人工繁育过程中,需要进行相应的盐度调节。为不断优化玉足海参人工繁育机制,需进一步研究环境因子对其生理变化的影响,以为玉足海参人工繁育技术提供理论依据。
3.2 盐度对玉足海参幼体成活率的影响
盐度是影响海参生长、发育和存活的重要环境因素之一[33,40]。海参具有丰富的营养价值和较高的经济价值,这不仅刺激了中国海参养殖业的迅猛发展,同时也表明海参人工繁育技术的建立与完善是目前海参养殖业的首要任务。本研究通过对比不同盐度下玉足海参浮游幼体的成活率,结合不同盐度下其体长的变化,结果表明盐度为27~30的玉足海参幼体成活率高于其他盐度,樽形幼体在玉足海参整个发育过程中比较重要,是影响其成活率的重要因素之一。通过不同盐度梯度实验发现,24~34盐度下糙海参幼体成活率高于其他组,盐度达到44时,幼体成活率显著下降[39];而刺参幼体在盐度30下的成活率最高[41],盐度过低或过高 (<20或≥40) 最终成活率为0;本实验结果与刺参幼体盐度实验结果接近,过高或过低的盐度均会影响海参幼体的成活率,而糙海参幼体能够耐受更广的盐度,且糙海参和刺参的幼体成活率均高于玉足海参。因此,提高玉足海参幼体的成活率仍是人工繁育技术中的重点与难点,有待于进一步探究。
3.3 盐度对玉足海参幼体发育的影响
球状体结构在海参浮游幼体阶段至关重要[4,42-44],其不仅参与幼体的运动,同时还为海参幼体的变态发育提供营养。球状体发育状态影响海参幼体变态的成活率[43-45],研究表明,海参的变态发育可能高度依赖于幼虫在发育过程中脂质能量的积累,球状体结构用于脂质和营养物质的储存,为海参幼体的变态发育提供能量及营养物质[42]。球状体在糙海参幼体培育阶段,通过改善养殖模式和养殖环境能够有效地提高大耳幼体状态下球状体的出现率,并提高其变态成活率。本研究中,通过比较不同盐度下大耳状幼体的发育状态,盐度介于27~30时,玉足海参浮游幼体的球状体发育更加突出,轮廓更加清晰;玉足海参幼体的成活率除受到环境因子影响之外,一定程度上可能与球状体的发育状态有关[43]。球状体在玉足海参幼体变态发育中是否起决定性作用,有待进一步研究。
4. 结论
为提高玉足海参浮游幼体的变态成活率,建议在盐度为27~30条件下进行玉足海参浮游幼体的培育,以盐度不低于27为宜;适宜的养殖条件有利于玉足海参浮游幼体的生长和发育;在雨季或盐度变化的河口与沿海区域,建议进行养殖水体盐度的实时或间隔监测。
-
图 1 中国花鲈达到镇静、麻醉和完全复苏的时间 (n=10)
a. 丁香酚 (E) +石菖蒲挥发油 (S);b. MS-222 (M) +石菖蒲挥发油 (S);c. 丁香酚 (E) +水溶性氮酮 (D);d. MS-222 (M) +水溶性氮酮 (D);组间字母不同者差异显著 (P<0.05)
Figure 1. Time to achieve sedation, anesthesia and complete resuscitation of L. maculatus (n=10)
a. Eugenol (E) + A. tatarinowii essential oil (S); b. MS-222 (M) + A. tatarinowii essential oil (S); c. Eugenol (E) + water soluble azone (D); d. MS-222 (M) + water soluble azone (D); values with different letters were significantly different (P<0.05).
图 2 中国花鲈达到镇静、麻醉和完全复苏的时间 (n=10)
E. 丁香酚;S. 石菖蒲挥发油;D. 水溶性氮酮;M. MS-222;组间字母不同者差异显著 (P<0.05);N. 未观察到
Figure 2. Time to achieve sedation, anesthesia and complete resuscitation of L. maculatus (n=10)
E. Eugenol; S. A. tatarinowii essential oil; D. Water soluble azone; M. MS-222; values with different letters were significantly different (P<0.05); N. Not observed
图 3 鳃组织抗氧化指标 (n=5)
a. 过氧化物酶;b. 超氧化物歧化酶;c. 过氧化氢酶;d. 丙二醛;e. 谷胱甘肽;AC. 对照组;EC. 10 mg·L−1丁香酚;ES. 8 mg·L−1丁香酚+7%石菖蒲挥发油;ED. 8 mg·L−1丁香酚+3%水溶性氮酮;MC. 50 mg·L−1 MS-222;MS. 40 mg·L−1 MS-222+7%石菖蒲挥发油;MD. 40 mg·L−1 MS-222+3%水溶性氮酮;组间大写或小写字母不同者差异显著 (P <0.05)
Figure 3. Antioxidant indices of gill tissue (n=5)
a. POD; b. SOD; c. CAT; d. MDA; e. GSH; AC. Control group; EC. 10 mg·L−1 eugenol; ES. 8 mg·L−1 eugenol + 7% A. tatarinowii essential oil; ED. 8 mg·L−1 eugenol + 3% water soluble azone; MC. 50 mg·L−1 MS-222; MS. 40 mg·L−1 MS-222 + 7% A. tatarinowii essential oil; MD. 40 mg·L−1 MS-222 + 3% water soluble azone; values with different uppercase or lowercase letters were significantly different.
-
[1] RUAN S F, WANG Z X, XIANG S J, et al. Mechanisms of white mustard seed (Sinapis alba L.) volatile oils as transdermal penetration enhancers[J]. Fitoterapia, 2019, 138: 104195. doi: 10.1016/j.fitote.2019.104195
[2] PRAUSNITZ M R, LANGER R. Transdermal drug delivery[J]. Nature Biotechnol, 2008, 26(11): 1261-1268. doi: 10.1038/nbt.1504
[3] 杨晓春, 张强, 吴镭. 目前我国透皮给药系统研究的基本思路[J]. 中国新药杂志, 2001, 10(5): 321-324. doi: 10.3321/j.issn:1003-3734.2001.05.001 [4] 何治芬, 汤湛, 尹丽娜, 等. 氧化苦参碱凝胶体外经皮渗透及大鼠药动学研究[J]. 中国现代应用药学, 2015, 32(11): 1336-1342. [5] 李希, 易晓霞, 黄嫣, 等. 天麻素经鼻给药制剂的吸收促进剂筛选[J]. 中国实验方剂学杂志, 2013, 19(24): 25-28. [6] 刘开永, 汪开毓. 促渗剂——氮酮在水产中应用的可行性探讨[J]. 河北渔业, 2007(5): 1-4. doi: 10.3969/j.issn.1004-6755.2007.05.001 [7] 陈锡强, 韩利文, 刘可春, 等. 水溶性氮酮对斑马鱼胚胎药物渗透及致畸性作用的影响[J]. 实验动物与比较医学, 2011, 31(2): 108-110. doi: 10.3969/j.issn.1674-5817.2011.02.008 [8] FENG X L, YU Y, QIN D P, et al. Acorus linnaeus: a review of traditional uses, phytochemistry and neuropharmacology[J]. RSC Adv, 2015, 5(7): 5173-5182. doi: 10.1039/C4RA12049C
[9] LU Y, XUE Y, CHEN S, et al. Antioxidant lignans and neolignans from Acorus tatarinowii[J]. Sci Rep, 2016, 6: 22909. doi: 10.1038/srep22909
[10] ZHANG F H, WANG Z M, LIU Y T, et al. Bioactivities of serotonin transporter mediate antidepressant effects of Acorus tatarinowii Schott[J]. J Ethnopharmacol, 2019, 241: 111967. doi: 10.1016/j.jep.2019.111967
[11] 白一岑, 李艳杰, 马云淑. 石菖蒲等3种挥发油对雪上一枝蒿甲素经皮渗透的影响[J]. 中国中药杂志, 2008, 33(5): 513. doi: 10.3321/j.issn:1001-5302.2008.05.006 [12] 李朝, 柯常亮, 古小莉, 等. 麻醉剂丁香酚对鳗弧菌抑菌效果初步研究[J]. 南方水产科学, 2019, 15(2): 60-65. [13] 王文豪, 董宏标, 孙永旭, 等. MS-222和丁香酚在大口黑鲈幼鱼模拟运输中的麻醉效果[J]. 南方水产科学, 2018, 14(6): 54-60. [14] WANG W, DONG H, SUN Y, et al. The efficacy of eugenol and tricaine methanesulphonate as anaesthetics for juvenile Chinese sea bass (Lateolabrax maculatus) during simulated transport[J]. J Appl Ichthyol, 2019, 35(2): 551-557. doi: 10.1111/jai.13844
[15] SOLTANIAN S, HOSEINIFAR S H, GHOLAMHOSSEINI A. Modulation of rainbow trout (Oncorhynchus mykiss) cutaneous mucosal immune responses following anesthesia: a comparative study on different anesthetic agents[J]. Fish Shellfish Immunol, 2018, 80: 319-324. doi: 10.1016/j.fsi.2018.06.032
[16] National Toxicology Program. NTP toxicology and carcinogenesis studies of methyleugenol (CAS NO. 93-15-2) in F344/N rats and B6C3F1 mice (gavage studies)[J]. Natl Toxicol Program Tech Rep Ser, 2000, 491: 1-412.
[17] 刘双凤, 蔡勋. 鱼用麻醉剂的研究进展[J]. 黑龙江水产, 2008(6): 40-43. [18] 张丽, 汪之和. MS-222对大黄鱼成鱼麻醉效果的研究[J]. 科技与产业, 2010(18): 38-40. [19] PAWAR H B, SANAYE S V, SREEPADA R A, et al. Comparative efficacy of four anaesthetic agents in the yellow seahorse, Hippocampus kuda (Bleeker, 1852)[J]. Aquaculture, 2011, 311(1/2/3/4): 155-161.
[20] COOKE S J, SUSKI C D, OSTRAND K G, et al. Behavioral and physiological assessment of low concentrations of clove oil anaesthetic for handling and transporting largemouth bass (Micropterus salmoides)[J]. Aquaculture, 2004, 239(1/2/3/4): 509-529.
[21] 孙宇航, 王绿洲, 李锋刚. 丁香酚在罗非鱼体内的药物代谢动力学研究[J]. 水产科技情报, 2018, 45(4): 218-222. [22] HUNN J B, ALLEN J L. Movement of drugs across the gills of fishes[J]. Annual Rev Pharmacol, 1974, 14(1): 47-54. doi: 10.1146/annurev.pa.14.040174.000403
[23] 王建新, 郭力. 如意巴布剂中透皮促进剂的筛选研究[J]. 中国中药杂志, 1998, 23(2): 90-91. doi: 10.3321/j.issn:1001-5302.1998.02.012 [24] 李扬, 王阳, 刘科攀. 中药挥发油作为透皮吸收促进剂的研究进展[J]. 药物评价研究, 2011, 34(6): 474-477. [25] EVANS D H, PIERMARINI P M, CHOE K P. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste[J]. Physiol Rev, 2005, 85(1): 97-177.
[26] JIAO W, HAN Q, XU Y, et al. Impaired immune function and structural integrity in the gills of common carp (Cyprinus carpio L.) caused by chlorpyrifos exposure: through oxidative stress and apoptosis[J]. Fish Shellfish Immunol, 2019, 86: 239-245. doi: 10.1016/j.fsi.2018.08.060
[27] de DOMENICO E, MAUCERI A, GIORDANO D, et al. Biological responses of juvenile European sea bass (Dicentrarchus labrax) exposed to contaminated sediments[J]. Ecotoxicol Environ Saf, 2013, 97: 114-123. doi: 10.1016/j.ecoenv.2013.07.015
[28] CAPPELLO T, BRANDÃO F, GUILHERME S, et al. Insights into the mechanisms underlying mercury-induced oxidative stress in gills of wild fish (Liza aurata) combining 1H NMR metabolomics and conventional biochemical assays[J]. Sci Total Environ, 2016, 548: 13-24.
[29] KOHEN R, NYSKA A. Invited review: oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification[J]. Toxicol Pathol, 2002, 30(6): 620-650. doi: 10.1080/01926230290166724
[30] 段亚飞, 董宏标, 王芸, 等. 干露胁迫对日本囊对虾抗氧化酶活性的影响[J]. 南方水产科学, 2015, 11(4): 102-108. doi: 10.3969/j.issn.2095-0780.2015.04.015 [31] XU Y, LIANG Y, YANG M. Effects of composite LED light on root growth and antioxidant capacity of Cunninghamia lanceolata tissue culture seedlings[J]. Sci Rep, 2019, 9(1): 9766. doi: 10.1038/s41598-019-46139-2
[32] SHIAU S Y, GABAUDAN J, LIN Y H. Dietary nucleotide supplementation enhances immune responses and survival to Streptococcus iniae in hybrid tilapia fed diet containing low fish meal[J]. Aquacult Rep, 2015, 2: 77-81.
[33] 王海锋, 成永旭, 李京昊, 等. 干露和再入水对克氏原螯虾抗氧化应激能力的影响[J]. 南方水产科学, 2019, 15(5): 69-76. doi: 10.12131/20190059 [34] MA J, ZHU J, WANG W, et al. Biochemical and molecular impacts of glyphosate-based herbicide on the gills of common carp[J]. Environl Poll, 2019, 252: 1288-1300. doi: 10.1016/j.envpol.2019.06.040
[35] 姜会民. 氯化汞对鲤幼鱼鳃组织抗氧化系统和组织损伤研究[J]. 生态毒理学报, 2014, 9(5): 998-1003. [36] MING J, YE J, ZHANG Y, et al. Dietary optimal reduced glutathione improves innate immunity, oxidative stress resistance and detoxification function of grass carp (Ctenopharyngodon idella) against microcystin-LR[J]. Aquaculture, 2019, 498: 594-605. doi: 10.1016/j.aquaculture.2018.09.014
[37] 区又君, 陈世喜, 王鹏飞, 等. 低氧环境下卵形鲳鲹的氧化应激响应与生理代谢相关指标的研究[J]. 南方水产科学, 2017, 13(3): 120-124. doi: 10.3969/j.issn.2095-0780.2017.03.016 [38] MIRGHAED A T, FAYAZ S, HOSEINI S M. Effects of dietary 1,8-cineole supplementation on serum stress and antioxidant markers of common carp (Cyprinus carpio) acutely exposed to ambient ammonia[J]. Aquaculture, 2019, 509: 8-15. doi: 10.1016/j.aquaculture.2019.04.071
[39] 朱筛成, 龙晓文, 向朝林, 等. 复合蛋白源替代鱼粉对中华绒螯蟹幼蟹生长性能, 生理代谢和生化组成的影响[J]. 南方水产科学, 2019, 15(2): 83-92. doi: 10.12131/20180168 -
期刊类型引用(1)
1. 吴晓鹏,黄敏伟,陈晓瑛,彭凯,赵吉臣,钟平,刘凤坤,张业辉,黄文. 玉足海参变态附着阶段转录组分析. 南方水产科学. 2023(06): 84-96 . 本站查看
其他类型引用(2)